Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // >> 23 // $Id: G4VEmProcess.hh,v 1.1 2003/10/13 10:52:51 vnivanch Exp $ >> 24 // GEANT4 tag $Name: geant4-06-00 $ >> 25 // 26 // ------------------------------------------- 26 // ------------------------------------------------------------------- 27 // 27 // 28 // GEANT4 Class header file 28 // GEANT4 Class header file 29 // 29 // 30 // 30 // 31 // File name: G4VEmProcess 31 // File name: G4VEmProcess 32 // 32 // 33 // Author: Vladimir Ivanchenko << 33 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 34 // 34 // 35 // Creation date: 01.10.2003 35 // Creation date: 01.10.2003 36 // 36 // 37 // Modifications: Vladimir Ivanchenko << 37 // Modifications: >> 38 // 38 // 39 // 39 // Class Description: 40 // Class Description: 40 // 41 // 41 // It is the base class - EM discrete and rest << 42 // It is the unified process for e+ annililation at rest and in fly. 42 43 43 // ------------------------------------------- 44 // ------------------------------------------------------------------- 44 // 45 // 45 46 46 #ifndef G4VEmProcess_h 47 #ifndef G4VEmProcess_h 47 #define G4VEmProcess_h 1 48 #define G4VEmProcess_h 1 48 49 49 #include <CLHEP/Units/SystemOfUnits.h> << 50 << 51 #include "G4VDiscreteProcess.hh" 50 #include "G4VDiscreteProcess.hh" 52 #include "globals.hh" 51 #include "globals.hh" 53 #include "G4Material.hh" 52 #include "G4Material.hh" 54 #include "G4MaterialCutsCouple.hh" 53 #include "G4MaterialCutsCouple.hh" 55 #include "G4Track.hh" 54 #include "G4Track.hh" >> 55 #include "G4EmModelManager.hh" 56 #include "G4UnitsTable.hh" 56 #include "G4UnitsTable.hh" 57 #include "G4ParticleDefinition.hh" 57 #include "G4ParticleDefinition.hh" 58 #include "G4ParticleChangeForGamma.hh" << 59 #include "G4EmParameters.hh" << 60 #include "G4EmDataHandler.hh" << 61 #include "G4EmTableType.hh" << 62 #include "G4EmModelManager.hh" << 63 #include "G4EmSecondaryParticleType.hh" << 64 58 65 class G4Step; 59 class G4Step; 66 class G4VEmModel; 60 class G4VEmModel; >> 61 class G4VEmFluctuationModel; 67 class G4DataVector; 62 class G4DataVector; 68 class G4VParticleChange; 63 class G4VParticleChange; 69 class G4PhysicsTable; 64 class G4PhysicsTable; 70 class G4PhysicsVector; 65 class G4PhysicsVector; 71 class G4EmBiasingManager; << 72 class G4LossTableManager; << 73 66 74 //....oooOO0OOooo........oooOO0OOooo........oo 67 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 75 68 76 class G4VEmProcess : public G4VDiscreteProcess 69 class G4VEmProcess : public G4VDiscreteProcess 77 { 70 { 78 public: 71 public: 79 72 80 G4VEmProcess(const G4String& name, G4Process << 73 G4VEmProcess(const G4String& name, >> 74 G4ProcessType type = fElectromagnetic); 81 75 82 ~G4VEmProcess() override; << 76 ~G4VEmProcess(); 83 << 84 //------------------------------------------ << 85 // Virtual methods to be implemented in conc << 86 //------------------------------------------ << 87 << 88 void ProcessDescription(std::ostream& outFil << 89 << 90 protected: << 91 77 92 virtual void StreamProcessInfo(std::ostream& << 78 G4VParticleChange* PostStepDoIt(const G4Track&, const G4Step&); 93 79 94 virtual void InitialiseProcess(const G4Parti << 80 virtual void SecondariesPostStep( >> 81 G4VEmModel*, >> 82 const G4MaterialCutsCouple*, >> 83 const G4DynamicParticle*, >> 84 G4double& tcut, >> 85 G4double& kinEnergy) = 0; 95 86 96 //------------------------------------------ << 87 virtual G4bool IsApplicable(const G4ParticleDefinition& p) = 0; 97 // Implementation of virtual methods common << 88 // True for all charged particles 98 //------------------------------------------ << 99 << 100 public: << 101 << 102 // Initialise for build of tables << 103 void PreparePhysicsTable(const G4ParticleDef << 104 89 >> 90 virtual >> 91 void BuildPhysicsTable(const G4ParticleDefinition&); 105 // Build physics table during initialisation 92 // Build physics table during initialisation 106 void BuildPhysicsTable(const G4ParticleDefin << 107 93 108 // Called before tracking of each new G4Trac << 94 virtual void PrintInfoDefinition(); 109 void StartTracking(G4Track*) override; << 110 95 111 // implementation of virtual method, specifi << 96 // Print out of the class parameters 112 G4double PostStepGetPhysicalInteractionLengt << 97 113 const G4Track& tr << 98 G4PhysicsTable* BuildLambdaTable(); 114 G4double previo << 115 G4ForceCondition* << 116 << 117 // implementation of virtual method, specifi << 118 G4VParticleChange* PostStepDoIt(const G4Trac << 119 << 120 // Store PhysicsTable in a file. << 121 // Return false in case of failure at I/O << 122 G4bool StorePhysicsTable(const G4ParticleDef << 123 const G4String& dir << 124 G4bool ascii = fals << 125 << 126 // Retrieve Physics from a file. << 127 // (return true if the Physics Table can be << 128 // (return false if the process has no funct << 129 // File name should is constructed as proces << 130 // should be placed under the directory spec << 131 G4bool RetrievePhysicsTable(const G4Particle << 132 const G4String& << 133 G4bool ascii) ov << 134 << 135 // allowing check process name << 136 virtual G4VEmProcess* GetEmProcess(const G4S << 137 << 138 //------------------------------------------ << 139 // Specific methods for Discrete EM post ste << 140 //------------------------------------------ << 141 << 142 // The main method to access cross section p << 143 inline G4double GetLambda(G4double kinEnergy << 144 const G4MaterialCu << 145 G4double logKinEne << 146 << 147 // It returns the cross section per volume f << 148 G4double GetCrossSection(const G4double kinE << 149 const G4MaterialCut << 150 << 151 // It returns the cross section of the proce << 152 G4double ComputeCrossSectionPerAtom(G4double << 153 G4double << 154 G4double << 155 << 156 inline G4double MeanFreePath(const G4Track& << 157 << 158 //------------------------------------------ << 159 // Specific methods to build and access Phys << 160 //------------------------------------------ << 161 99 162 // Binning for lambda table << 163 void SetLambdaBinning(G4int nbins); 100 void SetLambdaBinning(G4int nbins); >> 101 // Binning for lambda table 164 102 165 // Min kinetic energy for tables << 166 void SetMinKinEnergy(G4double e); 103 void SetMinKinEnergy(G4double e); >> 104 G4double MinKinEnergy() const; >> 105 // Min kinetic energy for tables 167 106 168 // Min kinetic energy for high energy table << 169 void SetMinKinEnergyPrim(G4double e); << 170 << 171 // Max kinetic energy for tables << 172 void SetMaxKinEnergy(G4double e); 107 void SetMaxKinEnergy(G4double e); >> 108 G4double MaxKinEnergy() const; >> 109 // Max kinetic energy for tables 173 110 174 // Cross section table pointers << 111 G4bool StorePhysicsTable(G4ParticleDefinition*, 175 inline G4PhysicsTable* LambdaTable() const; << 112 const G4String& directory, 176 inline G4PhysicsTable* LambdaTablePrim() con << 113 G4bool ascii = false); 177 inline void SetLambdaTable(G4PhysicsTable*); << 114 // Store PhysicsTable in a file. 178 inline void SetLambdaTablePrim(G4PhysicsTabl << 115 // Return false in case of failure at I/O 179 << 116 180 // Integral method type and peak positions << 117 G4bool RetrievePhysicsTable(G4ParticleDefinition*, 181 inline std::vector<G4double>* EnergyOfCrossS << 118 const G4String& directory, 182 inline void SetEnergyOfCrossSectionMax(std:: << 119 G4bool ascii); 183 inline G4CrossSectionType CrossSectionType() << 120 // Retrieve Physics from a file. 184 inline void SetCrossSectionType(G4CrossSecti << 121 // (return true if the Physics Table can be build by using file) 185 << 122 // (return false if the process has no functionality or in case of failure) 186 //------------------------------------------ << 123 // File name should is constructed as processName+particleName and the 187 // Define and access particle type << 124 // should be placed under the directory specifed by the argument. 188 //------------------------------------------ << 125 >> 126 void AddEmModel(G4int, G4VEmModel*, G4VEmFluctuationModel* fluc = 0, >> 127 const G4Region* region = 0); >> 128 // Add EM model coupled with fluctuation model for the region >> 129 >> 130 void UpdateEmModel(const G4String&, G4double, G4double); >> 131 // Define new energy range for the model identified by the name >> 132 >> 133 // void SetLambdaTable(G4PhysicsTable* p); >> 134 // G4PhysicsTable* LambdaTable() {return theLambdaTable;}; >> 135 >> 136 G4double GetLambda(G4double kineticEnergy, const G4MaterialCutsCouple* couple); >> 137 // It returns the Lambda of the process >> 138 >> 139 G4double MicroscopicCrossSection(G4double kineticEnergy, >> 140 const G4MaterialCutsCouple* couple); >> 141 // It returns the cross section of the process for energy/ material >> 142 >> 143 void SetIntegral(G4bool val) {integral = val;}; >> 144 G4bool IsIntegral() const {return integral;} >> 145 >> 146 G4double MeanFreePath(const G4Track& track, >> 147 G4double previousStepSize, >> 148 G4ForceCondition* condition); 189 149 190 inline const G4ParticleDefinition* Particle( << 150 const G4ParticleDefinition* Particle() const; 191 inline const G4ParticleDefinition* Secondary << 151 const G4ParticleDefinition* SecondaryParticle() const; 192 152 193 protected: 153 protected: 194 154 195 //------------------------------------------ << 155 void SetParticle(const G4ParticleDefinition* p); 196 // Specific methods to set, access, modify m << 156 void SetSecondaryParticle(const G4ParticleDefinition* p); 197 //------------------------------------------ << 198 << 199 // Select model in run time << 200 inline G4VEmModel* SelectModel(G4double kinE << 201 << 202 public: << 203 << 204 // Select model by energy and couple index << 205 inline G4VEmModel* SelectModelForMaterial(G4 << 206 st << 207 << 208 // Add model for region, smaller value of or << 209 // model will be selected for a given energy << 210 void AddEmModel(G4int, G4VEmModel*, const G4 << 211 << 212 // Assign a model to a process local list, t << 213 // the derived process should execute AddEmM << 214 void SetEmModel(G4VEmModel*, G4int index = 0 << 215 << 216 inline G4int NumberOfModels() const; << 217 << 218 // return a model from the local list << 219 inline G4VEmModel* EmModel(std::size_t index << 220 << 221 // Access to active model << 222 inline const G4VEmModel* GetCurrentModel() c << 223 << 224 // Access to models << 225 inline G4VEmModel* GetModelByIndex(G4int idx << 226 << 227 // Access to the current G4Element << 228 const G4Element* GetCurrentElement() const; << 229 << 230 // Biasing parameters << 231 void SetCrossSectionBiasingFactor(G4double f << 232 inline G4double CrossSectionBiasingFactor() << 233 << 234 // Activate forced interaction << 235 void ActivateForcedInteraction(G4double leng << 236 const G4Strin << 237 G4bool flag = << 238 << 239 void ActivateSecondaryBiasing(const G4String << 240 G4double energ << 241 << 242 inline void SetEmMasterProcess(const G4VEmPr << 243 << 244 inline void SetBuildTableFlag(G4bool val); << 245 << 246 inline void CurrentSetup(const G4MaterialCut << 247 << 248 inline G4bool UseBaseMaterial() const; << 249 << 250 void BuildLambdaTable(); << 251 << 252 void StreamInfo(std::ostream& outFile, const << 253 G4bool rst=false) const; << 254 << 255 // hide copy constructor and assignment oper << 256 G4VEmProcess(G4VEmProcess &) = delete; << 257 G4VEmProcess & operator=(const G4VEmProcess << 258 << 259 //------------------------------------------ << 260 // Other generic methods << 261 //------------------------------------------ << 262 << 263 protected: << 264 157 >> 158 virtual 265 G4double GetMeanFreePath(const G4Track& trac 159 G4double GetMeanFreePath(const G4Track& track, 266 G4double previousSt << 160 G4double previousStepSize, 267 G4ForceCondition* c << 161 G4ForceCondition* condition); 268 162 >> 163 virtual 269 G4PhysicsVector* LambdaPhysicsVector(const G 164 G4PhysicsVector* LambdaPhysicsVector(const G4MaterialCutsCouple*); 270 165 271 inline void DefineMaterial(const G4MaterialC << 166 virtual G4double MinPrimaryEnergy(const G4ParticleDefinition*, 272 << 167 const G4Material*, G4double cut) = 0; 273 inline G4int LambdaBinning() const; << 274 << 275 inline G4double MinKinEnergy() const; << 276 << 277 inline G4double MaxKinEnergy() const; << 278 << 279 // Single scattering parameters << 280 inline G4double PolarAngleLimit() const; << 281 << 282 inline G4ParticleChangeForGamma* GetParticle << 283 << 284 inline void SetParticle(const G4ParticleDefi << 285 << 286 inline void SetSecondaryParticle(const G4Par << 287 << 288 inline std::size_t CurrentMaterialCutsCouple << 289 << 290 inline const G4MaterialCutsCouple* MaterialC << 291 << 292 inline G4bool ApplyCuts() const; << 293 << 294 inline G4double GetGammaEnergyCut(); << 295 << 296 inline G4double GetElectronEnergyCut(); << 297 168 298 inline void SetStartFromNullFlag(G4bool val) << 169 G4VEmModel* SelectModel(G4double& kinEnergy); 299 170 300 inline void SetSplineFlag(G4bool val); << 171 size_t CurrentMaterialCutsCoupleIndex() const {return currentMaterialIndex;}; 301 172 302 const G4Element* GetTargetElement() const; << 173 void ResetNumberOfInteractionLengthLeft(); 303 << 174 // reset (determine the value of)NumberOfInteractionLengthLeft 304 const G4Isotope* GetTargetIsotope() const; << 305 << 306 // these two methods assume that vectors are << 307 // and idx is within vector length << 308 inline G4int DensityIndex(G4int idx) const; << 309 inline G4double DensityFactor(G4int idx) con << 310 175 311 private: 176 private: 312 177 313 void PrintWarning(G4String tit, G4double val << 178 void Initialise(); 314 << 315 void ComputeIntegralLambda(G4double kinEnerg << 316 << 317 inline G4double LogEkin(const G4Track&); << 318 << 319 inline G4double GetLambdaFromTable(G4double << 320 << 321 inline G4double GetLambdaFromTable(G4double << 322 << 323 inline G4double GetLambdaFromTablePrim(G4dou << 324 << 325 inline G4double GetLambdaFromTablePrim(G4dou << 326 << 327 inline G4double GetCurrentLambda(G4double ki << 328 << 329 inline G4double GetCurrentLambda(G4double ki << 330 << 331 inline G4double ComputeCurrentLambda(G4doubl << 332 << 333 // ======== pointers ========= << 334 << 335 G4EmModelManager* modelManager = << 336 const G4ParticleDefinition* particle = null << 337 const G4ParticleDefinition* currentParticle << 338 const G4ParticleDefinition* theGamma = null << 339 const G4ParticleDefinition* theElectron = n << 340 const G4ParticleDefinition* thePositron = n << 341 const G4ParticleDefinition* secondaryPartic << 342 const G4VEmProcess* masterProc = nu << 343 G4EmDataHandler* theData = nullp << 344 G4VEmModel* currentModel = << 345 G4LossTableManager* lManager = null << 346 G4EmParameters* theParameters = << 347 const G4Material* baseMaterial = << 348 << 349 // ======== tables and vectors ======== << 350 G4PhysicsTable* theLambdaTable << 351 G4PhysicsTable* theLambdaTableP << 352 << 353 const std::vector<G4double>* theCuts = nullp << 354 const std::vector<G4double>* theCutsGamma = << 355 const std::vector<G4double>* theCutsElectron << 356 const std::vector<G4double>* theCutsPositron << 357 << 358 protected: << 359 << 360 // ======== pointers ========= << 361 179 362 const G4MaterialCutsCouple* currentCouple = << 180 void DefineMaterial(const G4MaterialCutsCouple* couple); 363 const G4Material* currentMaterial << 364 G4EmBiasingManager* biasManager = n << 365 std::vector<G4double>* theEnergyOfCros << 366 181 367 private: << 182 // hide assignment operator 368 183 369 const std::vector<G4double>* theDensityFacto << 184 G4VEmProcess(G4VEmProcess &); 370 const std::vector<G4int>* theDensityIdx = nu << 185 G4VEmProcess & operator=(const G4VEmProcess &right); 371 186 372 // ======== parameters ========= << 187 // ===================================================================== 373 G4double minKinEnergy; << 374 G4double maxKinEnergy; << 375 G4double minKinEnergyPrim = DBL_MAX; << 376 G4double lambdaFactor = 0.8; << 377 G4double invLambdaFactor; << 378 G4double biasFactor = 1.0; << 379 G4double massRatio = 1.0; << 380 G4double fFactor = 1.0; << 381 G4double fLambda = 0.0; << 382 G4double fLambdaEnergy = 0.0; << 383 << 384 protected: << 385 << 386 G4double mfpKinEnergy = DBL_MAX; << 387 G4double preStepKinEnergy = 0.0; << 388 G4double preStepLambda = 0.0; << 389 188 390 private: 189 private: 391 190 392 G4CrossSectionType fXSType = fEmNoIntegral; << 191 G4EmModelManager* modelManager; 393 192 394 G4int numberOfModels = 0; << 193 // tables and vectors 395 G4int nLambdaBins = 84; << 194 G4PhysicsTable* theLambdaTable; 396 195 397 protected: << 196 const G4ParticleDefinition* particle; >> 197 const G4ParticleDefinition* baseParticle; >> 198 const G4ParticleDefinition* secondaryParticle; >> 199 const G4DataVector* theCuts; 398 200 399 G4int mainSecondaries = 1; << 201 // cash 400 G4int secID = _EM; << 202 const G4Material* currentMaterial; 401 G4int fluoID = _Fluorescence; << 203 const G4MaterialCutsCouple* currentCouple; 402 G4int augerID = _AugerElectron; << 204 size_t currentMaterialIndex; 403 G4int biasID = _EM; << 404 G4int tripletID = _TripletElectron; << 405 std::size_t currentCoupleIndex = 0; << 406 std::size_t basedCoupleIndex = 0; << 407 std::size_t coupleIdxLambda = 0; << 408 std::size_t idxLambda = 0; << 409 205 410 G4bool isTheMaster = false; << 206 G4int nLambdaBins; 411 G4bool baseMat = false; << 412 207 413 private: << 208 G4double minKinEnergy; >> 209 G4double maxKinEnergy; 414 210 415 G4bool buildLambdaTable = true; << 211 G4double preStepLambda; 416 G4bool applyCuts = false; << 212 G4double preStepKinEnergy; 417 G4bool startFromNull = false; << 418 G4bool splineFlag = true; << 419 G4bool actMinKinEnergy = false; << 420 G4bool actMaxKinEnergy = false; << 421 G4bool actBinning = false; << 422 G4bool isIon = false; << 423 G4bool biasFlag = false; << 424 G4bool weightFlag = false; << 425 << 426 protected: << 427 << 428 // ======== particle change ========= << 429 std::vector<G4DynamicParticle*> secParticles << 430 G4ParticleChangeForGamma fParticleChange; << 431 << 432 private: << 433 << 434 // ======== local vectors ========= << 435 std::vector<G4VEmModel*> emModels; << 436 213 >> 214 G4bool integral; >> 215 G4bool meanFreePath; 437 }; 216 }; 438 217 439 // ======== Run time inline methods ========== << 440 << 441 //....oooOO0OOooo........oooOO0OOooo........oo << 442 << 443 inline std::size_t G4VEmProcess::CurrentMateri << 444 { << 445 return currentCoupleIndex; << 446 } << 447 << 448 //....oooOO0OOooo........oooOO0OOooo........oo 218 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 449 << 450 inline const G4MaterialCutsCouple* G4VEmProces << 451 { << 452 return currentCouple; << 453 } << 454 << 455 //....oooOO0OOooo........oooOO0OOooo........oo << 456 << 457 inline G4double G4VEmProcess::GetGammaEnergyCu << 458 { << 459 return (*theCutsGamma)[currentCoupleIndex]; << 460 } << 461 << 462 //....oooOO0OOooo........oooOO0OOooo........oo << 463 << 464 inline G4double G4VEmProcess::GetElectronEnerg << 465 { << 466 return (*theCutsElectron)[currentCoupleIndex << 467 } << 468 << 469 //....oooOO0OOooo........oooOO0OOooo........oo 219 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 470 220 471 inline void G4VEmProcess::DefineMaterial(const 221 inline void G4VEmProcess::DefineMaterial(const G4MaterialCutsCouple* couple) 472 { 222 { 473 if (couple != currentCouple) { << 223 if(couple != currentCouple) { 474 currentCouple = couple; << 224 currentCouple = couple; 475 baseMaterial = currentMaterial = couple->G << 225 currentMaterial = couple->GetMaterial(); 476 basedCoupleIndex = currentCoupleIndex = co << 226 currentMaterialIndex = couple->GetIndex(); 477 fFactor = biasFactor; << 227 if(integral && !meanFreePath) ResetNumberOfInteractionLengthLeft(); 478 mfpKinEnergy = DBL_MAX; << 479 if (baseMat) { << 480 basedCoupleIndex = (*theDensityIdx)[curr << 481 if (nullptr != currentMaterial->GetBaseM << 482 baseMaterial = currentMaterial->GetBas << 483 fFactor *= (*theDensityFactor)[currentCo << 484 } << 485 } << 486 } << 487 << 488 //....oooOO0OOooo........oooOO0OOooo........oo << 489 << 490 inline << 491 G4VEmModel* G4VEmProcess::SelectModel(G4double << 492 { << 493 if(1 < numberOfModels) { << 494 currentModel = modelManager->SelectModel(k << 495 } << 496 currentModel->SetCurrentCouple(currentCouple << 497 return currentModel; << 498 } << 499 << 500 //....oooOO0OOooo........oooOO0OOooo........oo << 501 << 502 inline << 503 G4VEmModel* G4VEmProcess::SelectModelForMateri << 504 << 505 { << 506 return modelManager->SelectModel(kinEnergy, << 507 } << 508 << 509 //....oooOO0OOooo........oooOO0OOooo........oo << 510 << 511 inline G4double G4VEmProcess::GetLambdaFromTab << 512 { << 513 return ((*theLambdaTable)[basedCoupleIndex]) << 514 } << 515 << 516 //....oooOO0OOooo........oooOO0OOooo........oo << 517 << 518 inline G4double G4VEmProcess::LogEkin(const G4 << 519 { << 520 return track.GetDynamicParticle()->GetLogKin << 521 } << 522 << 523 //....oooOO0OOooo........oooOO0OOooo........oo << 524 << 525 inline G4double G4VEmProcess::GetLambdaFromTab << 526 { << 527 return ((*theLambdaTable)[basedCoupleIndex]) << 528 } << 529 << 530 //....oooOO0OOooo........oooOO0OOooo........oo << 531 << 532 inline G4double G4VEmProcess::GetLambdaFromTab << 533 { << 534 return ((*theLambdaTablePrim)[basedCoupleInd << 535 } << 536 << 537 //....oooOO0OOooo........oooOO0OOooo........oo << 538 << 539 inline G4double G4VEmProcess::GetLambdaFromTab << 540 { << 541 return ((*theLambdaTablePrim)[basedCoupleInd << 542 } << 543 << 544 //....oooOO0OOooo........oooOO0OOooo........oo << 545 << 546 inline G4double G4VEmProcess::ComputeCurrentLa << 547 { << 548 return currentModel->CrossSectionPerVolume(b << 549 } << 550 << 551 //....oooOO0OOooo........oooOO0OOooo........oo << 552 << 553 inline G4double G4VEmProcess::GetCurrentLambda << 554 { << 555 if(currentCoupleIndex != coupleIdxLambda || << 556 coupleIdxLambda = currentCoupleIndex; << 557 fLambdaEnergy = e; << 558 if(e >= minKinEnergyPrim) { fLambda = GetL << 559 else if(nullptr != theLambdaTable) { fLamb << 560 else { fLambda = ComputeCurrentLambda(e); << 561 fLambda *= fFactor; << 562 } 228 } 563 return fLambda; << 564 } 229 } 565 230 566 //....oooOO0OOooo........oooOO0OOooo........oo 231 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 567 232 568 inline G4double G4VEmProcess::GetCurrentLambda << 233 inline G4double G4VEmProcess::GetMeanFreePath(const G4Track& track, 569 { << 234 G4double, 570 if(currentCoupleIndex != coupleIdxLambda || << 235 G4ForceCondition* cond) 571 coupleIdxLambda = currentCoupleIndex; << 236 { 572 fLambdaEnergy = e; << 237 *cond = NotForced; 573 if(e >= minKinEnergyPrim) { fLambda = GetL << 238 574 else if(nullptr != theLambdaTable) { fLamb << 239 DefineMaterial(track.GetMaterialCutsCouple()); 575 else { fLambda = ComputeCurrentLambda(e); << 240 preStepKinEnergy = track.GetKineticEnergy(); 576 fLambda *= fFactor; << 241 if (meanFreePath) { >> 242 G4bool b; >> 243 preStepLambda = (((*theLambdaTable)[currentMaterialIndex])-> >> 244 GetValue(preStepKinEnergy, b)); >> 245 if (integral) meanFreePath = false; 577 } 246 } 578 return fLambda; << 247 G4double x = DBL_MAX; 579 } << 248 if(0.0 < preStepLambda) x = 1.0/preStepLambda; 580 << 249 // G4cout << GetProcessName() << ": e= " << preStepKinEnergy << " mfp= " << x << G4endl; 581 //....oooOO0OOooo........oooOO0OOooo........oo << 250 return x; 582 << 583 inline void << 584 G4VEmProcess::CurrentSetup(const G4MaterialCut << 585 { << 586 DefineMaterial(couple); << 587 SelectModel(energy*massRatio, currentCoupleI << 588 } << 589 << 590 //....oooOO0OOooo........oooOO0OOooo........oo << 591 << 592 inline G4double << 593 G4VEmProcess::GetLambda(G4double kinEnergy, co << 594 G4double logKinEnergy) << 595 { << 596 CurrentSetup(couple, kinEnergy); << 597 return GetCurrentLambda(kinEnergy, logKinEne << 598 } << 599 << 600 //....oooOO0OOooo........oooOO0OOooo........oo << 601 << 602 G4double G4VEmProcess::MeanFreePath(const G4Tr << 603 { << 604 const G4double kinEnergy = track.GetKineticE << 605 CurrentSetup(track.GetMaterialCutsCouple(), << 606 const G4double xs = GetCurrentLambda(kinEner << 607 track.GetDynamicP << 608 return (0.0 < xs) ? 1.0/xs : DBL_MAX; << 609 } << 610 << 611 // ======== Get/Set inline methods used at ini << 612 << 613 inline G4bool G4VEmProcess::ApplyCuts() const << 614 { << 615 return applyCuts; << 616 } << 617 << 618 //....oooOO0OOooo........oooOO0OOooo........oo << 619 << 620 inline G4int G4VEmProcess::LambdaBinning() con << 621 { << 622 return nLambdaBins; << 623 } << 624 << 625 //....oooOO0OOooo........oooOO0OOooo........oo << 626 << 627 inline G4double G4VEmProcess::MinKinEnergy() c << 628 { << 629 return minKinEnergy; << 630 } << 631 << 632 //....oooOO0OOooo........oooOO0OOooo........oo << 633 << 634 inline G4double G4VEmProcess::MaxKinEnergy() c << 635 { << 636 return maxKinEnergy; << 637 } << 638 << 639 //....oooOO0OOooo........oooOO0OOooo........oo << 640 << 641 inline G4double G4VEmProcess::CrossSectionBias << 642 { << 643 return biasFactor; << 644 } << 645 << 646 //....oooOO0OOooo........oooOO0OOooo........oo << 647 << 648 inline G4PhysicsTable* G4VEmProcess::LambdaTab << 649 { << 650 return theLambdaTable; << 651 } << 652 << 653 //....oooOO0OOooo........oooOO0OOooo........oo << 654 << 655 inline G4PhysicsTable* G4VEmProcess::LambdaTab << 656 { << 657 return theLambdaTablePrim; << 658 } 251 } 659 252 660 //....oooOO0OOooo........oooOO0OOooo........oo 253 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 661 254 662 inline void G4VEmProcess::SetLambdaTable(G4Phy << 255 inline void G4VEmProcess::ResetNumberOfInteractionLengthLeft() 663 { 256 { 664 theLambdaTable = ptr; << 257 meanFreePath = true; >> 258 G4VProcess::ResetNumberOfInteractionLengthLeft(); 665 } 259 } 666 260 667 //....oooOO0OOooo........oooOO0OOooo........oo 261 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 668 262 669 inline void G4VEmProcess::SetLambdaTablePrim(G << 263 inline G4VEmModel* G4VEmProcess::SelectModel(G4double& kinEnergy) 670 { 264 { 671 theLambdaTablePrim = ptr; << 265 return modelManager->SelectModel(kinEnergy, currentMaterialIndex); 672 } << 673 << 674 //....oooOO0OOooo........oooOO0OOooo........oo << 675 << 676 inline std::vector<G4double>* G4VEmProcess::En << 677 { << 678 return theEnergyOfCrossSectionMax; << 679 } << 680 << 681 //....oooOO0OOooo........oooOO0OOooo........oo << 682 << 683 inline void << 684 G4VEmProcess::SetEnergyOfCrossSectionMax(std:: << 685 { << 686 theEnergyOfCrossSectionMax = ptr; << 687 } 266 } 688 267 689 //....oooOO0OOooo........oooOO0OOooo........oo 268 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 690 269 691 inline const G4ParticleDefinition* G4VEmProces 270 inline const G4ParticleDefinition* G4VEmProcess::Particle() const 692 { 271 { 693 return particle; 272 return particle; 694 } 273 } 695 274 696 //....oooOO0OOooo........oooOO0OOooo........oo 275 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 697 276 698 inline const G4ParticleDefinition* G4VEmProces 277 inline const G4ParticleDefinition* G4VEmProcess::SecondaryParticle() const 699 { 278 { 700 return secondaryParticle; 279 return secondaryParticle; 701 } 280 } 702 281 703 //....oooOO0OOooo........oooOO0OOooo........oo 282 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 704 283 705 inline void G4VEmProcess::SetCrossSectionType( << 284 inline void G4VEmProcess::SetLambdaBinning(G4int nbins) 706 { << 707 fXSType = val; << 708 } << 709 << 710 //....oooOO0OOooo........oooOO0OOooo........oo << 711 << 712 inline G4CrossSectionType G4VEmProcess::CrossS << 713 { 285 { 714 return fXSType; << 286 nLambdaBins = nbins; 715 } 287 } 716 288 717 //....oooOO0OOooo........oooOO0OOooo........oo 289 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 718 290 719 inline void G4VEmProcess::SetBuildTableFlag(G4 << 291 inline void G4VEmProcess::SetMinKinEnergy(G4double e) 720 { 292 { 721 buildLambdaTable = val; << 293 minKinEnergy = e; 722 } 294 } 723 295 724 //....oooOO0OOooo........oooOO0OOooo........oo 296 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 725 297 726 inline G4ParticleChangeForGamma* G4VEmProcess: << 298 inline G4double G4VEmProcess::MinKinEnergy() const 727 { << 728 return &fParticleChange; << 729 } << 730 << 731 //....oooOO0OOooo........oooOO0OOooo........oo << 732 << 733 inline void G4VEmProcess::SetParticle(const G4 << 734 { << 735 particle = p; << 736 currentParticle = p; << 737 } << 738 << 739 //....oooOO0OOooo........oooOO0OOooo........oo << 740 << 741 inline void G4VEmProcess::SetSecondaryParticle << 742 { << 743 secondaryParticle = p; << 744 } << 745 << 746 //....oooOO0OOooo........oooOO0OOooo........oo << 747 << 748 inline void G4VEmProcess::SetStartFromNullFlag << 749 { << 750 startFromNull = val; << 751 } << 752 << 753 //....oooOO0OOooo........oooOO0OOooo........oo << 754 << 755 inline void G4VEmProcess::SetSplineFlag(G4bool << 756 { << 757 splineFlag = val; << 758 } << 759 << 760 //....oooOO0OOooo........oooOO0OOooo........oo << 761 << 762 inline G4int G4VEmProcess::DensityIndex(G4int << 763 { << 764 return (*theDensityIdx)[idx]; << 765 } << 766 << 767 //....oooOO0OOooo........oooOO0OOooo........oo << 768 << 769 inline G4double G4VEmProcess::DensityFactor(G4 << 770 { << 771 return (*theDensityFactor)[idx]; << 772 } << 773 << 774 //....oooOO0OOooo........oooOO0OOooo........oo << 775 << 776 inline G4bool G4VEmProcess::UseBaseMaterial() << 777 { << 778 return baseMat; << 779 } << 780 << 781 //....oooOO0OOooo........oooOO0OOooo........oo << 782 << 783 inline const G4VEmModel* G4VEmProcess::GetCurr << 784 { 299 { 785 return currentModel; << 300 return minKinEnergy; 786 } << 787 << 788 //....oooOO0OOooo........oooOO0OOooo........oo << 789 << 790 inline void G4VEmProcess::SetEmMasterProcess(c << 791 { << 792 masterProc = ptr; << 793 } 301 } 794 302 795 //....oooOO0OOooo........oooOO0OOooo........oo 303 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 796 304 797 inline G4int G4VEmProcess::NumberOfModels() co << 305 inline void G4VEmProcess::SetMaxKinEnergy(G4double e) 798 { 306 { 799 return numberOfModels; << 307 maxKinEnergy = e; 800 } 308 } 801 309 802 //....oooOO0OOooo........oooOO0OOooo........oo 310 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 803 311 804 inline G4VEmModel* G4VEmProcess::EmModel(std:: << 312 inline G4double G4VEmProcess::MaxKinEnergy() const 805 { 313 { 806 return (index < emModels.size()) ? emModels[ << 314 return maxKinEnergy; 807 } 315 } 808 316 809 //....oooOO0OOooo........oooOO0OOooo........oo 317 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 810 318 811 inline G4VEmModel* G4VEmProcess::GetModelByInd << 319 inline G4double G4VEmProcess::GetLambda(G4double kineticEnergy, >> 320 const G4MaterialCutsCouple* couple) 812 { 321 { 813 return modelManager->GetModel(idx, ver); << 322 DefineMaterial(couple); >> 323 G4double x = DBL_MAX; >> 324 G4bool b; >> 325 if(theLambdaTable) { >> 326 G4double y = (((*theLambdaTable)[currentMaterialIndex])->GetValue(kineticEnergy, b)); >> 327 if(y > 0.0) x = 1.0/y; >> 328 } >> 329 return x; 814 } 330 } 815 331 816 //....oooOO0OOooo........oooOO0OOooo........oo 332 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 817 333 818 #endif 334 #endif 819 335