Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // 26 // ------------------------------------------- 27 // ------------------------------------------------------------------- 27 // 28 // 28 // GEANT4 Class header file 29 // GEANT4 Class header file 29 // 30 // 30 // 31 // 31 // File name: G4VEmProcess 32 // File name: G4VEmProcess 32 // 33 // 33 // Author: Vladimir Ivanchenko 34 // Author: Vladimir Ivanchenko 34 // 35 // 35 // Creation date: 01.10.2003 36 // Creation date: 01.10.2003 36 // 37 // 37 // Modifications: Vladimir Ivanchenko 38 // Modifications: Vladimir Ivanchenko 38 // 39 // 39 // Class Description: 40 // Class Description: 40 // 41 // 41 // It is the base class - EM discrete and rest 42 // It is the base class - EM discrete and rest/discrete process 42 43 43 // ------------------------------------------- 44 // ------------------------------------------------------------------- 44 // 45 // 45 46 46 #ifndef G4VEmProcess_h 47 #ifndef G4VEmProcess_h 47 #define G4VEmProcess_h 1 48 #define G4VEmProcess_h 1 48 49 49 #include <CLHEP/Units/SystemOfUnits.h> 50 #include <CLHEP/Units/SystemOfUnits.h> 50 51 51 #include "G4VDiscreteProcess.hh" 52 #include "G4VDiscreteProcess.hh" 52 #include "globals.hh" 53 #include "globals.hh" 53 #include "G4Material.hh" 54 #include "G4Material.hh" 54 #include "G4MaterialCutsCouple.hh" 55 #include "G4MaterialCutsCouple.hh" 55 #include "G4Track.hh" 56 #include "G4Track.hh" >> 57 #include "G4EmModelManager.hh" 56 #include "G4UnitsTable.hh" 58 #include "G4UnitsTable.hh" 57 #include "G4ParticleDefinition.hh" 59 #include "G4ParticleDefinition.hh" 58 #include "G4ParticleChangeForGamma.hh" 60 #include "G4ParticleChangeForGamma.hh" 59 #include "G4EmParameters.hh" << 60 #include "G4EmDataHandler.hh" 61 #include "G4EmDataHandler.hh" 61 #include "G4EmTableType.hh" << 62 #include "G4EmParameters.hh" 62 #include "G4EmModelManager.hh" << 63 #include "G4EmSecondaryParticleType.hh" << 64 63 65 class G4Step; 64 class G4Step; 66 class G4VEmModel; 65 class G4VEmModel; 67 class G4DataVector; 66 class G4DataVector; 68 class G4VParticleChange; 67 class G4VParticleChange; 69 class G4PhysicsTable; 68 class G4PhysicsTable; 70 class G4PhysicsVector; 69 class G4PhysicsVector; 71 class G4EmBiasingManager; 70 class G4EmBiasingManager; 72 class G4LossTableManager; 71 class G4LossTableManager; 73 72 74 //....oooOO0OOooo........oooOO0OOooo........oo 73 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 75 74 76 class G4VEmProcess : public G4VDiscreteProcess 75 class G4VEmProcess : public G4VDiscreteProcess 77 { 76 { 78 public: 77 public: 79 78 80 G4VEmProcess(const G4String& name, G4Process 79 G4VEmProcess(const G4String& name, G4ProcessType type = fElectromagnetic); 81 80 82 ~G4VEmProcess() override; << 81 virtual ~G4VEmProcess(); 83 82 84 //------------------------------------------ 83 //------------------------------------------------------------------------ 85 // Virtual methods to be implemented in conc 84 // Virtual methods to be implemented in concrete processes 86 //------------------------------------------ 85 //------------------------------------------------------------------------ 87 86 88 void ProcessDescription(std::ostream& outFil << 87 virtual G4bool IsApplicable(const G4ParticleDefinition& p) override = 0; >> 88 >> 89 // obsolete >> 90 virtual void PrintInfo() {}; >> 91 >> 92 virtual void ProcessDescription(std::ostream& outFile) const override; 89 93 90 protected: 94 protected: 91 95 92 virtual void StreamProcessInfo(std::ostream& 96 virtual void StreamProcessInfo(std::ostream&) const {}; 93 97 94 virtual void InitialiseProcess(const G4Parti 98 virtual void InitialiseProcess(const G4ParticleDefinition*) = 0; 95 99 96 //------------------------------------------ 100 //------------------------------------------------------------------------ >> 101 // Method with standard implementation; may be overwritten if needed >> 102 //------------------------------------------------------------------------ >> 103 >> 104 virtual G4double MinPrimaryEnergy(const G4ParticleDefinition*, >> 105 const G4Material*); >> 106 >> 107 //------------------------------------------------------------------------ 97 // Implementation of virtual methods common 108 // Implementation of virtual methods common to all Discrete processes 98 //------------------------------------------ 109 //------------------------------------------------------------------------ 99 110 100 public: 111 public: 101 112 102 // Initialise for build of tables 113 // Initialise for build of tables 103 void PreparePhysicsTable(const G4ParticleDef << 114 virtual void PreparePhysicsTable(const G4ParticleDefinition&) override; 104 115 105 // Build physics table during initialisation 116 // Build physics table during initialisation 106 void BuildPhysicsTable(const G4ParticleDefin << 117 virtual void BuildPhysicsTable(const G4ParticleDefinition&) override; 107 118 108 // Called before tracking of each new G4Trac 119 // Called before tracking of each new G4Track 109 void StartTracking(G4Track*) override; << 120 virtual void StartTracking(G4Track*) override; 110 121 111 // implementation of virtual method, specifi 122 // implementation of virtual method, specific for G4VEmProcess 112 G4double PostStepGetPhysicalInteractionLengt << 123 virtual G4double PostStepGetPhysicalInteractionLength( 113 const G4Track& tr 124 const G4Track& track, 114 G4double previo 125 G4double previousStepSize, 115 G4ForceCondition* 126 G4ForceCondition* condition) override; 116 127 117 // implementation of virtual method, specifi 128 // implementation of virtual method, specific for G4VEmProcess 118 G4VParticleChange* PostStepDoIt(const G4Trac << 129 virtual G4VParticleChange* PostStepDoIt(const G4Track&, >> 130 const G4Step&) override; 119 131 120 // Store PhysicsTable in a file. 132 // Store PhysicsTable in a file. 121 // Return false in case of failure at I/O 133 // Return false in case of failure at I/O 122 G4bool StorePhysicsTable(const G4ParticleDef << 134 virtual G4bool StorePhysicsTable(const G4ParticleDefinition*, 123 const G4String& dir << 135 const G4String& directory, 124 G4bool ascii = fals << 136 G4bool ascii = false) override; 125 137 126 // Retrieve Physics from a file. 138 // Retrieve Physics from a file. 127 // (return true if the Physics Table can be 139 // (return true if the Physics Table can be build by using file) 128 // (return false if the process has no funct 140 // (return false if the process has no functionality or in case of failure) 129 // File name should is constructed as proces 141 // File name should is constructed as processName+particleName and the 130 // should be placed under the directory spec << 142 // should be placed under the directory specifed by the argument. 131 G4bool RetrievePhysicsTable(const G4Particle << 143 virtual G4bool RetrievePhysicsTable(const G4ParticleDefinition*, 132 const G4String& << 144 const G4String& directory, 133 G4bool ascii) ov << 145 G4bool ascii) override; 134 << 135 // allowing check process name << 136 virtual G4VEmProcess* GetEmProcess(const G4S << 137 146 138 //------------------------------------------ 147 //------------------------------------------------------------------------ 139 // Specific methods for Discrete EM post ste 148 // Specific methods for Discrete EM post step simulation 140 //------------------------------------------ 149 //------------------------------------------------------------------------ 141 150 142 // The main method to access cross section p << 151 // It returns the cross section per volume for energy/ material 143 inline G4double GetLambda(G4double kinEnergy << 152 G4double CrossSectionPerVolume(G4double kineticEnergy, 144 const G4MaterialCu << 153 const G4MaterialCutsCouple* couple); 145 G4double logKinEne << 146 << 147 // It returns the cross section per volume f << 148 G4double GetCrossSection(const G4double kinE << 149 const G4MaterialCut << 150 154 151 // It returns the cross section of the proce 155 // It returns the cross section of the process per atom 152 G4double ComputeCrossSectionPerAtom(G4double 156 G4double ComputeCrossSectionPerAtom(G4double kineticEnergy, 153 G4double << 157 G4double Z, G4double A=0., 154 G4double << 158 G4double cut=0.0); >> 159 >> 160 G4double MeanFreePath(const G4Track& track); 155 161 156 inline G4double MeanFreePath(const G4Track& << 162 // It returns cross section per volume >> 163 inline G4double GetLambda(G4double kinEnergy, >> 164 const G4MaterialCutsCouple* couple); 157 165 158 //------------------------------------------ 166 //------------------------------------------------------------------------ 159 // Specific methods to build and access Phys 167 // Specific methods to build and access Physics Tables 160 //------------------------------------------ 168 //------------------------------------------------------------------------ 161 169 162 // Binning for lambda table 170 // Binning for lambda table 163 void SetLambdaBinning(G4int nbins); 171 void SetLambdaBinning(G4int nbins); 164 172 165 // Min kinetic energy for tables 173 // Min kinetic energy for tables 166 void SetMinKinEnergy(G4double e); 174 void SetMinKinEnergy(G4double e); 167 175 168 // Min kinetic energy for high energy table 176 // Min kinetic energy for high energy table 169 void SetMinKinEnergyPrim(G4double e); 177 void SetMinKinEnergyPrim(G4double e); 170 178 171 // Max kinetic energy for tables 179 // Max kinetic energy for tables 172 void SetMaxKinEnergy(G4double e); 180 void SetMaxKinEnergy(G4double e); 173 181 174 // Cross section table pointers 182 // Cross section table pointers 175 inline G4PhysicsTable* LambdaTable() const; 183 inline G4PhysicsTable* LambdaTable() const; 176 inline G4PhysicsTable* LambdaTablePrim() con 184 inline G4PhysicsTable* LambdaTablePrim() const; 177 inline void SetLambdaTable(G4PhysicsTable*); << 178 inline void SetLambdaTablePrim(G4PhysicsTabl << 179 << 180 // Integral method type and peak positions << 181 inline std::vector<G4double>* EnergyOfCrossS << 182 inline void SetEnergyOfCrossSectionMax(std:: << 183 inline G4CrossSectionType CrossSectionType() << 184 inline void SetCrossSectionType(G4CrossSecti << 185 185 186 //------------------------------------------ 186 //------------------------------------------------------------------------ 187 // Define and access particle type 187 // Define and access particle type 188 //------------------------------------------ 188 //------------------------------------------------------------------------ 189 189 190 inline const G4ParticleDefinition* Particle( 190 inline const G4ParticleDefinition* Particle() const; 191 inline const G4ParticleDefinition* Secondary 191 inline const G4ParticleDefinition* SecondaryParticle() const; 192 192 193 protected: << 194 << 195 //------------------------------------------ 193 //------------------------------------------------------------------------ 196 // Specific methods to set, access, modify m 194 // Specific methods to set, access, modify models and basic parameters 197 //------------------------------------------ 195 //------------------------------------------------------------------------ 198 << 196 >> 197 protected: 199 // Select model in run time 198 // Select model in run time 200 inline G4VEmModel* SelectModel(G4double kinE << 199 inline G4VEmModel* SelectModel(G4double kinEnergy, size_t index); 201 200 202 public: 201 public: 203 << 202 // Select model by energy and region index 204 // Select model by energy and couple index << 205 inline G4VEmModel* SelectModelForMaterial(G4 203 inline G4VEmModel* SelectModelForMaterial(G4double kinEnergy, 206 st << 204 size_t idxRegion) const; 207 205 208 // Add model for region, smaller value of or 206 // Add model for region, smaller value of order defines which 209 // model will be selected for a given energy 207 // model will be selected for a given energy interval 210 void AddEmModel(G4int, G4VEmModel*, const G4 208 void AddEmModel(G4int, G4VEmModel*, const G4Region* region = nullptr); 211 209 212 // Assign a model to a process local list, t 210 // Assign a model to a process local list, to enable the list in run time 213 // the derived process should execute AddEmM 211 // the derived process should execute AddEmModel(..) for all such models 214 void SetEmModel(G4VEmModel*, G4int index = 0 212 void SetEmModel(G4VEmModel*, G4int index = 0); 215 << 216 inline G4int NumberOfModels() const; << 217 213 218 // return a model from the local list 214 // return a model from the local list 219 inline G4VEmModel* EmModel(std::size_t index << 215 G4VEmModel* EmModel(size_t index = 0) const; 220 216 221 // Access to active model << 217 // Define new energy range for the model identified by the name 222 inline const G4VEmModel* GetCurrentModel() c << 218 void UpdateEmModel(const G4String&, G4double, G4double); 223 219 224 // Access to models 220 // Access to models 225 inline G4VEmModel* GetModelByIndex(G4int idx << 221 G4int GetNumberOfModels() const; >> 222 G4int GetNumberOfRegionModels(size_t couple_index) const; >> 223 G4VEmModel* GetRegionModel(G4int idx, size_t couple_index) const; >> 224 G4VEmModel* GetModelByIndex(G4int idx = 0, G4bool ver = false) const; >> 225 >> 226 // Access to active model >> 227 inline const G4VEmModel* GetCurrentModel() const; 226 228 227 // Access to the current G4Element 229 // Access to the current G4Element 228 const G4Element* GetCurrentElement() const; 230 const G4Element* GetCurrentElement() const; 229 231 230 // Biasing parameters 232 // Biasing parameters 231 void SetCrossSectionBiasingFactor(G4double f 233 void SetCrossSectionBiasingFactor(G4double f, G4bool flag = true); 232 inline G4double CrossSectionBiasingFactor() 234 inline G4double CrossSectionBiasingFactor() const; 233 235 234 // Activate forced interaction 236 // Activate forced interaction 235 void ActivateForcedInteraction(G4double leng 237 void ActivateForcedInteraction(G4double length = 0.0, 236 const G4Strin 238 const G4String& r = "", 237 G4bool flag = 239 G4bool flag = true); 238 240 239 void ActivateSecondaryBiasing(const G4String 241 void ActivateSecondaryBiasing(const G4String& region, G4double factor, 240 G4double energ << 242 G4double energyLimit); 241 243 242 inline void SetEmMasterProcess(const G4VEmPr 244 inline void SetEmMasterProcess(const G4VEmProcess*); >> 245 >> 246 inline void SetIntegral(G4bool val); 243 247 244 inline void SetBuildTableFlag(G4bool val); 248 inline void SetBuildTableFlag(G4bool val); 245 249 246 inline void CurrentSetup(const G4MaterialCut 250 inline void CurrentSetup(const G4MaterialCutsCouple*, G4double energy); 247 251 248 inline G4bool UseBaseMaterial() const; << 249 << 250 void BuildLambdaTable(); << 251 << 252 void StreamInfo(std::ostream& outFile, const << 253 G4bool rst=false) const; << 254 << 255 // hide copy constructor and assignment oper << 256 G4VEmProcess(G4VEmProcess &) = delete; << 257 G4VEmProcess & operator=(const G4VEmProcess << 258 << 259 //------------------------------------------ 252 //------------------------------------------------------------------------ 260 // Other generic methods 253 // Other generic methods 261 //------------------------------------------ 254 //------------------------------------------------------------------------ 262 255 263 protected: 256 protected: 264 257 265 G4double GetMeanFreePath(const G4Track& trac << 258 virtual G4double GetMeanFreePath(const G4Track& track, 266 G4double previousSt << 259 G4double previousStepSize, 267 G4ForceCondition* c << 260 G4ForceCondition* condition) override; 268 261 269 G4PhysicsVector* LambdaPhysicsVector(const G 262 G4PhysicsVector* LambdaPhysicsVector(const G4MaterialCutsCouple*); 270 263 271 inline void DefineMaterial(const G4MaterialC << 272 << 273 inline G4int LambdaBinning() const; 264 inline G4int LambdaBinning() const; 274 265 275 inline G4double MinKinEnergy() const; 266 inline G4double MinKinEnergy() const; 276 267 277 inline G4double MaxKinEnergy() const; 268 inline G4double MaxKinEnergy() const; 278 269 279 // Single scattering parameters 270 // Single scattering parameters 280 inline G4double PolarAngleLimit() const; 271 inline G4double PolarAngleLimit() const; 281 272 >> 273 inline G4bool IsIntegral() const; >> 274 >> 275 inline G4double RecalculateLambda(G4double kinEnergy, >> 276 const G4MaterialCutsCouple* couple); >> 277 282 inline G4ParticleChangeForGamma* GetParticle 278 inline G4ParticleChangeForGamma* GetParticleChange(); 283 279 284 inline void SetParticle(const G4ParticleDefi 280 inline void SetParticle(const G4ParticleDefinition* p); 285 281 286 inline void SetSecondaryParticle(const G4Par 282 inline void SetSecondaryParticle(const G4ParticleDefinition* p); 287 283 288 inline std::size_t CurrentMaterialCutsCouple << 284 inline size_t CurrentMaterialCutsCoupleIndex() const; 289 285 290 inline const G4MaterialCutsCouple* MaterialC 286 inline const G4MaterialCutsCouple* MaterialCutsCouple() const; 291 287 292 inline G4bool ApplyCuts() const; 288 inline G4bool ApplyCuts() const; 293 289 294 inline G4double GetGammaEnergyCut(); 290 inline G4double GetGammaEnergyCut(); 295 291 296 inline G4double GetElectronEnergyCut(); 292 inline G4double GetElectronEnergyCut(); 297 293 298 inline void SetStartFromNullFlag(G4bool val) 294 inline void SetStartFromNullFlag(G4bool val); 299 295 300 inline void SetSplineFlag(G4bool val); 296 inline void SetSplineFlag(G4bool val); 301 297 302 const G4Element* GetTargetElement() const; << 298 inline const G4Element* GetTargetElement() const; 303 << 304 const G4Isotope* GetTargetIsotope() const; << 305 299 306 // these two methods assume that vectors are << 300 inline const G4Isotope* GetTargetIsotope() const; 307 // and idx is within vector length << 308 inline G4int DensityIndex(G4int idx) const; << 309 inline G4double DensityFactor(G4int idx) con << 310 301 311 private: 302 private: 312 303 >> 304 void Clear(); >> 305 >> 306 void BuildLambdaTable(); >> 307 >> 308 void StreamInfo(std::ostream& outFile, const G4ParticleDefinition&, >> 309 G4bool rst=false) const; >> 310 >> 311 void FindLambdaMax(); >> 312 313 void PrintWarning(G4String tit, G4double val 313 void PrintWarning(G4String tit, G4double val); 314 314 315 void ComputeIntegralLambda(G4double kinEnerg << 315 void ComputeIntegralLambda(G4double kinEnergy); 316 316 317 inline G4double LogEkin(const G4Track&); << 317 inline void DefineMaterial(const G4MaterialCutsCouple* couple); 318 318 319 inline G4double GetLambdaFromTable(G4double 319 inline G4double GetLambdaFromTable(G4double kinEnergy); 320 320 321 inline G4double GetLambdaFromTable(G4double << 322 << 323 inline G4double GetLambdaFromTablePrim(G4dou 321 inline G4double GetLambdaFromTablePrim(G4double kinEnergy); 324 322 325 inline G4double GetLambdaFromTablePrim(G4dou << 326 << 327 inline G4double GetCurrentLambda(G4double ki 323 inline G4double GetCurrentLambda(G4double kinEnergy); 328 324 329 inline G4double GetCurrentLambda(G4double ki << 330 << 331 inline G4double ComputeCurrentLambda(G4doubl 325 inline G4double ComputeCurrentLambda(G4double kinEnergy); 332 326 333 // ======== pointers ========= << 327 // hide copy constructor and assignment operator 334 << 328 G4VEmProcess(G4VEmProcess &) = delete; 335 G4EmModelManager* modelManager = << 329 G4VEmProcess & operator=(const G4VEmProcess &right) = delete; 336 const G4ParticleDefinition* particle = null << 337 const G4ParticleDefinition* currentParticle << 338 const G4ParticleDefinition* theGamma = null << 339 const G4ParticleDefinition* theElectron = n << 340 const G4ParticleDefinition* thePositron = n << 341 const G4ParticleDefinition* secondaryPartic << 342 const G4VEmProcess* masterProc = nu << 343 G4EmDataHandler* theData = nullp << 344 G4VEmModel* currentModel = << 345 G4LossTableManager* lManager = null << 346 G4EmParameters* theParameters = << 347 const G4Material* baseMaterial = << 348 << 349 // ======== tables and vectors ======== << 350 G4PhysicsTable* theLambdaTable << 351 G4PhysicsTable* theLambdaTableP << 352 << 353 const std::vector<G4double>* theCuts = nullp << 354 const std::vector<G4double>* theCutsGamma = << 355 const std::vector<G4double>* theCutsElectron << 356 const std::vector<G4double>* theCutsPositron << 357 << 358 protected: << 359 << 360 // ======== pointers ========= << 361 << 362 const G4MaterialCutsCouple* currentCouple = << 363 const G4Material* currentMaterial << 364 G4EmBiasingManager* biasManager = n << 365 std::vector<G4double>* theEnergyOfCros << 366 << 367 private: << 368 << 369 const std::vector<G4double>* theDensityFacto << 370 const std::vector<G4int>* theDensityIdx = nu << 371 << 372 // ======== parameters ========= << 373 G4double minKinEnergy; << 374 G4double maxKinEnergy; << 375 G4double minKinEnergyPrim = DBL_MAX; << 376 G4double lambdaFactor = 0.8; << 377 G4double invLambdaFactor; << 378 G4double biasFactor = 1.0; << 379 G4double massRatio = 1.0; << 380 G4double fFactor = 1.0; << 381 G4double fLambda = 0.0; << 382 G4double fLambdaEnergy = 0.0; << 383 << 384 protected: << 385 << 386 G4double mfpKinEnergy = DBL_MAX; << 387 G4double preStepKinEnergy = 0.0; << 388 G4double preStepLambda = 0.0; << 389 330 390 private: << 331 // ======== Parameters of the class fixed at construction ========= 391 332 392 G4CrossSectionType fXSType = fEmNoIntegral; << 333 G4EmModelManager* modelManager; >> 334 const G4ParticleDefinition* thePositron; >> 335 const G4ParticleDefinition* secondaryParticle; >> 336 >> 337 G4bool buildLambdaTable; >> 338 >> 339 // ======== Parameters of the class fixed at initialisation ======= >> 340 >> 341 std::vector<G4VEmModel*> emModels; >> 342 G4int numberOfModels; >> 343 >> 344 // tables and vectors >> 345 G4PhysicsTable* theLambdaTable; >> 346 G4PhysicsTable* theLambdaTablePrim; >> 347 std::vector<G4double> theEnergyOfCrossSectionMax; >> 348 std::vector<G4double> theCrossSectionMax; >> 349 >> 350 size_t idxLambda; >> 351 size_t idxLambdaPrim; >> 352 >> 353 const std::vector<G4double>* theCuts; >> 354 const std::vector<G4double>* theCutsGamma; >> 355 const std::vector<G4double>* theCutsElectron; >> 356 const std::vector<G4double>* theCutsPositron; >> 357 const std::vector<G4double>* theDensityFactor; >> 358 const std::vector<G4int>* theDensityIdx; >> 359 >> 360 G4int nLambdaBins; >> 361 >> 362 G4double minKinEnergy; >> 363 G4double minKinEnergyPrim; >> 364 G4double maxKinEnergy; >> 365 G4double lambdaFactor; >> 366 G4double biasFactor; >> 367 G4double massRatio; >> 368 >> 369 G4bool integral; >> 370 G4bool applyCuts; >> 371 G4bool startFromNull; >> 372 G4bool splineFlag; >> 373 G4bool actMinKinEnergy; >> 374 G4bool actMaxKinEnergy; >> 375 G4bool actBinning; >> 376 G4bool actSpline; >> 377 G4bool isIon; 393 378 394 G4int numberOfModels = 0; << 379 // ======== Cashed values - may be state dependent ================ 395 G4int nLambdaBins = 84; << 396 380 397 protected: 381 protected: 398 382 399 G4int mainSecondaries = 1; << 383 G4LossTableManager* lManager; 400 G4int secID = _EM; << 384 G4EmParameters* theParameters; 401 G4int fluoID = _Fluorescence; << 402 G4int augerID = _AugerElectron; << 403 G4int biasID = _EM; << 404 G4int tripletID = _TripletElectron; << 405 std::size_t currentCoupleIndex = 0; << 406 std::size_t basedCoupleIndex = 0; << 407 std::size_t coupleIdxLambda = 0; << 408 std::size_t idxLambda = 0; << 409 385 410 G4bool isTheMaster = false; << 386 G4EmBiasingManager* biasManager; 411 G4bool baseMat = false; << 387 const G4ParticleDefinition* theGamma; 412 << 388 const G4ParticleDefinition* theElectron; 413 private: << 389 G4ParticleChangeForGamma fParticleChange; 414 << 415 G4bool buildLambdaTable = true; << 416 G4bool applyCuts = false; << 417 G4bool startFromNull = false; << 418 G4bool splineFlag = true; << 419 G4bool actMinKinEnergy = false; << 420 G4bool actMaxKinEnergy = false; << 421 G4bool actBinning = false; << 422 G4bool isIon = false; << 423 G4bool biasFlag = false; << 424 G4bool weightFlag = false; << 425 << 426 protected: << 427 << 428 // ======== particle change ========= << 429 std::vector<G4DynamicParticle*> secParticles 390 std::vector<G4DynamicParticle*> secParticles; 430 G4ParticleChangeForGamma fParticleChange; << 391 const G4MaterialCutsCouple* currentCouple; >> 392 const G4Material* currentMaterial; >> 393 size_t currentCoupleIndex; >> 394 >> 395 G4int mainSecondaries; >> 396 G4int secID; >> 397 G4int fluoID; >> 398 G4int augerID; >> 399 G4int biasID; >> 400 >> 401 G4bool isTheMaster; >> 402 >> 403 G4double mfpKinEnergy; >> 404 G4double preStepKinEnergy; >> 405 G4double preStepLambda; 431 406 432 private: 407 private: 433 408 434 // ======== local vectors ========= << 409 const G4VEmProcess* masterProc; 435 std::vector<G4VEmModel*> emModels; << 410 G4EmDataHandler* theData; 436 << 411 G4VEmModel* currentModel; >> 412 >> 413 const G4ParticleDefinition* particle; >> 414 const G4ParticleDefinition* currentParticle; >> 415 >> 416 // cache >> 417 const G4Material* baseMaterial; >> 418 size_t basedCoupleIndex; >> 419 >> 420 G4double fFactor; >> 421 G4bool biasFlag; >> 422 G4bool weightFlag; 437 }; 423 }; 438 424 439 // ======== Run time inline methods ========== 425 // ======== Run time inline methods ================ 440 426 >> 427 inline G4bool G4VEmProcess::ApplyCuts() const >> 428 { >> 429 return applyCuts; >> 430 } >> 431 441 //....oooOO0OOooo........oooOO0OOooo........oo 432 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 442 433 443 inline std::size_t G4VEmProcess::CurrentMateri << 434 inline size_t G4VEmProcess::CurrentMaterialCutsCoupleIndex() const 444 { 435 { 445 return currentCoupleIndex; 436 return currentCoupleIndex; 446 } 437 } 447 438 448 //....oooOO0OOooo........oooOO0OOooo........oo 439 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 449 440 450 inline const G4MaterialCutsCouple* G4VEmProces 441 inline const G4MaterialCutsCouple* G4VEmProcess::MaterialCutsCouple() const 451 { 442 { 452 return currentCouple; 443 return currentCouple; 453 } 444 } 454 445 455 //....oooOO0OOooo........oooOO0OOooo........oo 446 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 456 447 457 inline G4double G4VEmProcess::GetGammaEnergyCu 448 inline G4double G4VEmProcess::GetGammaEnergyCut() 458 { 449 { 459 return (*theCutsGamma)[currentCoupleIndex]; 450 return (*theCutsGamma)[currentCoupleIndex]; 460 } 451 } 461 452 462 //....oooOO0OOooo........oooOO0OOooo........oo 453 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 463 454 464 inline G4double G4VEmProcess::GetElectronEnerg 455 inline G4double G4VEmProcess::GetElectronEnergyCut() 465 { 456 { 466 return (*theCutsElectron)[currentCoupleIndex 457 return (*theCutsElectron)[currentCoupleIndex]; 467 } 458 } 468 459 469 //....oooOO0OOooo........oooOO0OOooo........oo 460 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 470 461 471 inline void G4VEmProcess::DefineMaterial(const 462 inline void G4VEmProcess::DefineMaterial(const G4MaterialCutsCouple* couple) 472 { 463 { 473 if (couple != currentCouple) { << 464 if(couple != currentCouple) { 474 currentCouple = couple; << 465 currentCouple = couple; 475 baseMaterial = currentMaterial = couple->G << 466 currentMaterial = couple->GetMaterial(); 476 basedCoupleIndex = currentCoupleIndex = co << 467 baseMaterial = (currentMaterial->GetBaseMaterial()) 477 fFactor = biasFactor; << 468 ? currentMaterial->GetBaseMaterial() : currentMaterial; >> 469 currentCoupleIndex = couple->GetIndex(); >> 470 basedCoupleIndex = (*theDensityIdx)[currentCoupleIndex]; >> 471 fFactor = biasFactor*(*theDensityFactor)[currentCoupleIndex]; 478 mfpKinEnergy = DBL_MAX; 472 mfpKinEnergy = DBL_MAX; 479 if (baseMat) { << 473 preStepKinEnergy = 0.0; 480 basedCoupleIndex = (*theDensityIdx)[curr << 474 idxLambda = idxLambdaPrim = 0; 481 if (nullptr != currentMaterial->GetBaseM << 482 baseMaterial = currentMaterial->GetBas << 483 fFactor *= (*theDensityFactor)[currentCo << 484 } << 485 } 475 } 486 } 476 } 487 477 488 //....oooOO0OOooo........oooOO0OOooo........oo 478 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 489 479 490 inline 480 inline 491 G4VEmModel* G4VEmProcess::SelectModel(G4double << 481 G4VEmModel* G4VEmProcess::SelectModel(G4double kinEnergy, size_t index) 492 { 482 { 493 if(1 < numberOfModels) { 483 if(1 < numberOfModels) { 494 currentModel = modelManager->SelectModel(k << 484 currentModel = modelManager->SelectModel(kinEnergy, index); 495 } 485 } 496 currentModel->SetCurrentCouple(currentCouple 486 currentModel->SetCurrentCouple(currentCouple); 497 return currentModel; 487 return currentModel; 498 } 488 } 499 489 500 //....oooOO0OOooo........oooOO0OOooo........oo 490 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 501 491 502 inline 492 inline 503 G4VEmModel* G4VEmProcess::SelectModelForMateri 493 G4VEmModel* G4VEmProcess::SelectModelForMaterial(G4double kinEnergy, 504 << 494 size_t idxRegion) const 505 { 495 { 506 return modelManager->SelectModel(kinEnergy, << 496 return modelManager->SelectModel(kinEnergy, idxRegion); 507 } 497 } 508 498 509 //....oooOO0OOooo........oooOO0OOooo........oo 499 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 510 500 511 inline G4double G4VEmProcess::GetLambdaFromTab 501 inline G4double G4VEmProcess::GetLambdaFromTable(G4double e) 512 { 502 { 513 return ((*theLambdaTable)[basedCoupleIndex]) 503 return ((*theLambdaTable)[basedCoupleIndex])->Value(e, idxLambda); 514 } 504 } 515 505 516 //....oooOO0OOooo........oooOO0OOooo........oo 506 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 517 507 518 inline G4double G4VEmProcess::LogEkin(const G4 << 519 { << 520 return track.GetDynamicParticle()->GetLogKin << 521 } << 522 << 523 //....oooOO0OOooo........oooOO0OOooo........oo << 524 << 525 inline G4double G4VEmProcess::GetLambdaFromTab << 526 { << 527 return ((*theLambdaTable)[basedCoupleIndex]) << 528 } << 529 << 530 //....oooOO0OOooo........oooOO0OOooo........oo << 531 << 532 inline G4double G4VEmProcess::GetLambdaFromTab 508 inline G4double G4VEmProcess::GetLambdaFromTablePrim(G4double e) 533 { 509 { 534 return ((*theLambdaTablePrim)[basedCoupleInd << 510 return ((*theLambdaTablePrim)[basedCoupleIndex])->Value(e, idxLambdaPrim)/e; 535 } << 536 << 537 //....oooOO0OOooo........oooOO0OOooo........oo << 538 << 539 inline G4double G4VEmProcess::GetLambdaFromTab << 540 { << 541 return ((*theLambdaTablePrim)[basedCoupleInd << 542 } 511 } 543 512 544 //....oooOO0OOooo........oooOO0OOooo........oo 513 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 545 514 546 inline G4double G4VEmProcess::ComputeCurrentLa 515 inline G4double G4VEmProcess::ComputeCurrentLambda(G4double e) 547 { 516 { 548 return currentModel->CrossSectionPerVolume(b << 517 return currentModel->CrossSectionPerVolume( >> 518 baseMaterial,currentParticle, e,(*theCuts)[currentCoupleIndex]); 549 } 519 } 550 520 551 //....oooOO0OOooo........oooOO0OOooo........oo 521 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 552 522 553 inline G4double G4VEmProcess::GetCurrentLambda 523 inline G4double G4VEmProcess::GetCurrentLambda(G4double e) 554 { 524 { 555 if(currentCoupleIndex != coupleIdxLambda || << 525 G4double x(0.0); 556 coupleIdxLambda = currentCoupleIndex; << 526 if(e >= minKinEnergyPrim) { x = GetLambdaFromTablePrim(e); } 557 fLambdaEnergy = e; << 527 else if(theLambdaTable) { x = GetLambdaFromTable(e); } 558 if(e >= minKinEnergyPrim) { fLambda = GetL << 528 else if(currentModel) { x = ComputeCurrentLambda(e); } 559 else if(nullptr != theLambdaTable) { fLamb << 529 return fFactor*x; 560 else { fLambda = ComputeCurrentLambda(e); << 561 fLambda *= fFactor; << 562 } << 563 return fLambda; << 564 } << 565 << 566 //....oooOO0OOooo........oooOO0OOooo........oo << 567 << 568 inline G4double G4VEmProcess::GetCurrentLambda << 569 { << 570 if(currentCoupleIndex != coupleIdxLambda || << 571 coupleIdxLambda = currentCoupleIndex; << 572 fLambdaEnergy = e; << 573 if(e >= minKinEnergyPrim) { fLambda = GetL << 574 else if(nullptr != theLambdaTable) { fLamb << 575 else { fLambda = ComputeCurrentLambda(e); << 576 fLambda *= fFactor; << 577 } << 578 return fLambda; << 579 } 530 } 580 531 581 //....oooOO0OOooo........oooOO0OOooo........oo 532 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 582 533 583 inline void 534 inline void 584 G4VEmProcess::CurrentSetup(const G4MaterialCut 535 G4VEmProcess::CurrentSetup(const G4MaterialCutsCouple* couple, G4double energy) 585 { 536 { 586 DefineMaterial(couple); 537 DefineMaterial(couple); 587 SelectModel(energy*massRatio, currentCoupleI << 538 SelectModel(energy, currentCoupleIndex); 588 } 539 } 589 540 590 //....oooOO0OOooo........oooOO0OOooo........oo 541 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 591 542 592 inline G4double 543 inline G4double 593 G4VEmProcess::GetLambda(G4double kinEnergy, co << 544 G4VEmProcess::GetLambda(G4double kinEnergy, 594 G4double logKinEnergy) << 545 const G4MaterialCutsCouple* couple) 595 { 546 { 596 CurrentSetup(couple, kinEnergy); 547 CurrentSetup(couple, kinEnergy); 597 return GetCurrentLambda(kinEnergy, logKinEne << 548 return GetCurrentLambda(kinEnergy); 598 } 549 } 599 550 600 //....oooOO0OOooo........oooOO0OOooo........oo 551 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 601 552 602 G4double G4VEmProcess::MeanFreePath(const G4Tr << 553 inline G4double >> 554 G4VEmProcess::RecalculateLambda(G4double e, const G4MaterialCutsCouple* couple) 603 { 555 { 604 const G4double kinEnergy = track.GetKineticE << 556 CurrentSetup(couple, e); 605 CurrentSetup(track.GetMaterialCutsCouple(), << 557 return fFactor*ComputeCurrentLambda(e); 606 const G4double xs = GetCurrentLambda(kinEner << 607 track.GetDynamicP << 608 return (0.0 < xs) ? 1.0/xs : DBL_MAX; << 609 } 558 } 610 559 611 // ======== Get/Set inline methods used at ini 560 // ======== Get/Set inline methods used at initialisation ================ 612 561 613 inline G4bool G4VEmProcess::ApplyCuts() const << 614 { << 615 return applyCuts; << 616 } << 617 << 618 //....oooOO0OOooo........oooOO0OOooo........oo 562 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 619 563 620 inline G4int G4VEmProcess::LambdaBinning() con 564 inline G4int G4VEmProcess::LambdaBinning() const 621 { 565 { 622 return nLambdaBins; 566 return nLambdaBins; 623 } 567 } 624 568 625 //....oooOO0OOooo........oooOO0OOooo........oo 569 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 626 570 627 inline G4double G4VEmProcess::MinKinEnergy() c 571 inline G4double G4VEmProcess::MinKinEnergy() const 628 { 572 { 629 return minKinEnergy; 573 return minKinEnergy; 630 } 574 } 631 575 632 //....oooOO0OOooo........oooOO0OOooo........oo 576 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 633 577 634 inline G4double G4VEmProcess::MaxKinEnergy() c 578 inline G4double G4VEmProcess::MaxKinEnergy() const 635 { 579 { 636 return maxKinEnergy; 580 return maxKinEnergy; 637 } 581 } 638 582 639 //....oooOO0OOooo........oooOO0OOooo........oo 583 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 640 584 >> 585 inline G4double G4VEmProcess::PolarAngleLimit() const >> 586 { >> 587 return theParameters->MscThetaLimit(); >> 588 } >> 589 >> 590 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 591 641 inline G4double G4VEmProcess::CrossSectionBias 592 inline G4double G4VEmProcess::CrossSectionBiasingFactor() const 642 { 593 { 643 return biasFactor; 594 return biasFactor; 644 } 595 } 645 596 646 //....oooOO0OOooo........oooOO0OOooo........oo 597 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 647 598 648 inline G4PhysicsTable* G4VEmProcess::LambdaTab 599 inline G4PhysicsTable* G4VEmProcess::LambdaTable() const 649 { 600 { 650 return theLambdaTable; 601 return theLambdaTable; 651 } 602 } 652 603 653 //....oooOO0OOooo........oooOO0OOooo........oo 604 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 654 605 655 inline G4PhysicsTable* G4VEmProcess::LambdaTab 606 inline G4PhysicsTable* G4VEmProcess::LambdaTablePrim() const 656 { 607 { 657 return theLambdaTablePrim; 608 return theLambdaTablePrim; 658 } 609 } 659 610 660 //....oooOO0OOooo........oooOO0OOooo........oo 611 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 661 612 662 inline void G4VEmProcess::SetLambdaTable(G4Phy << 663 { << 664 theLambdaTable = ptr; << 665 } << 666 << 667 //....oooOO0OOooo........oooOO0OOooo........oo << 668 << 669 inline void G4VEmProcess::SetLambdaTablePrim(G << 670 { << 671 theLambdaTablePrim = ptr; << 672 } << 673 << 674 //....oooOO0OOooo........oooOO0OOooo........oo << 675 << 676 inline std::vector<G4double>* G4VEmProcess::En << 677 { << 678 return theEnergyOfCrossSectionMax; << 679 } << 680 << 681 //....oooOO0OOooo........oooOO0OOooo........oo << 682 << 683 inline void << 684 G4VEmProcess::SetEnergyOfCrossSectionMax(std:: << 685 { << 686 theEnergyOfCrossSectionMax = ptr; << 687 } << 688 << 689 //....oooOO0OOooo........oooOO0OOooo........oo << 690 << 691 inline const G4ParticleDefinition* G4VEmProces 613 inline const G4ParticleDefinition* G4VEmProcess::Particle() const 692 { 614 { 693 return particle; 615 return particle; 694 } 616 } 695 617 696 //....oooOO0OOooo........oooOO0OOooo........oo 618 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 697 619 698 inline const G4ParticleDefinition* G4VEmProces 620 inline const G4ParticleDefinition* G4VEmProcess::SecondaryParticle() const 699 { 621 { 700 return secondaryParticle; 622 return secondaryParticle; 701 } 623 } 702 624 703 //....oooOO0OOooo........oooOO0OOooo........oo 625 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 704 626 705 inline void G4VEmProcess::SetCrossSectionType( << 627 inline void G4VEmProcess::SetIntegral(G4bool val) 706 { 628 { 707 fXSType = val; << 629 integral = val; 708 } 630 } 709 631 710 //....oooOO0OOooo........oooOO0OOooo........oo 632 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 711 633 712 inline G4CrossSectionType G4VEmProcess::CrossS << 634 inline G4bool G4VEmProcess::IsIntegral() const 713 { 635 { 714 return fXSType; << 636 return integral; 715 } 637 } 716 638 717 //....oooOO0OOooo........oooOO0OOooo........oo 639 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 718 640 719 inline void G4VEmProcess::SetBuildTableFlag(G4 641 inline void G4VEmProcess::SetBuildTableFlag(G4bool val) 720 { 642 { 721 buildLambdaTable = val; 643 buildLambdaTable = val; 722 } 644 } 723 645 724 //....oooOO0OOooo........oooOO0OOooo........oo 646 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 725 647 726 inline G4ParticleChangeForGamma* G4VEmProcess: 648 inline G4ParticleChangeForGamma* G4VEmProcess::GetParticleChange() 727 { 649 { 728 return &fParticleChange; 650 return &fParticleChange; 729 } 651 } 730 652 731 //....oooOO0OOooo........oooOO0OOooo........oo 653 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 732 654 733 inline void G4VEmProcess::SetParticle(const G4 655 inline void G4VEmProcess::SetParticle(const G4ParticleDefinition* p) 734 { 656 { 735 particle = p; 657 particle = p; 736 currentParticle = p; 658 currentParticle = p; 737 } 659 } 738 660 739 //....oooOO0OOooo........oooOO0OOooo........oo 661 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 740 662 741 inline void G4VEmProcess::SetSecondaryParticle 663 inline void G4VEmProcess::SetSecondaryParticle(const G4ParticleDefinition* p) 742 { 664 { 743 secondaryParticle = p; 665 secondaryParticle = p; 744 } 666 } 745 667 746 //....oooOO0OOooo........oooOO0OOooo........oo 668 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 747 669 748 inline void G4VEmProcess::SetStartFromNullFlag 670 inline void G4VEmProcess::SetStartFromNullFlag(G4bool val) 749 { 671 { 750 startFromNull = val; 672 startFromNull = val; 751 } 673 } 752 674 753 //....oooOO0OOooo........oooOO0OOooo........oo 675 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 754 676 755 inline void G4VEmProcess::SetSplineFlag(G4bool 677 inline void G4VEmProcess::SetSplineFlag(G4bool val) 756 { 678 { 757 splineFlag = val; 679 splineFlag = val; >> 680 actSpline = true; 758 } 681 } 759 682 760 //....oooOO0OOooo........oooOO0OOooo........oo 683 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 761 684 762 inline G4int G4VEmProcess::DensityIndex(G4int << 685 inline const G4Element* G4VEmProcess::GetTargetElement() const 763 { << 764 return (*theDensityIdx)[idx]; << 765 } << 766 << 767 //....oooOO0OOooo........oooOO0OOooo........oo << 768 << 769 inline G4double G4VEmProcess::DensityFactor(G4 << 770 { 686 { 771 return (*theDensityFactor)[idx]; << 687 return currentModel->GetCurrentElement(); 772 } 688 } 773 689 774 //....oooOO0OOooo........oooOO0OOooo........oo 690 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 775 691 776 inline G4bool G4VEmProcess::UseBaseMaterial() << 692 inline const G4Isotope* G4VEmProcess::GetTargetIsotope() const 777 { 693 { 778 return baseMat; << 694 return currentModel->GetCurrentIsotope(); 779 } 695 } 780 696 781 //....oooOO0OOooo........oooOO0OOooo........oo 697 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 782 698 783 inline const G4VEmModel* G4VEmProcess::GetCurr 699 inline const G4VEmModel* G4VEmProcess::GetCurrentModel() const 784 { 700 { 785 return currentModel; 701 return currentModel; 786 } 702 } 787 703 788 //....oooOO0OOooo........oooOO0OOooo........oo 704 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 789 705 790 inline void G4VEmProcess::SetEmMasterProcess(c 706 inline void G4VEmProcess::SetEmMasterProcess(const G4VEmProcess* ptr) 791 { 707 { 792 masterProc = ptr; 708 masterProc = ptr; 793 } << 794 << 795 //....oooOO0OOooo........oooOO0OOooo........oo << 796 << 797 inline G4int G4VEmProcess::NumberOfModels() co << 798 { << 799 return numberOfModels; << 800 } << 801 << 802 //....oooOO0OOooo........oooOO0OOooo........oo << 803 << 804 inline G4VEmModel* G4VEmProcess::EmModel(std:: << 805 { << 806 return (index < emModels.size()) ? emModels[ << 807 } << 808 << 809 //....oooOO0OOooo........oooOO0OOooo........oo << 810 << 811 inline G4VEmModel* G4VEmProcess::GetModelByInd << 812 { << 813 return modelManager->GetModel(idx, ver); << 814 } 709 } 815 710 816 //....oooOO0OOooo........oooOO0OOooo........oo 711 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 817 712 818 #endif 713 #endif 819 714