Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // 26 // ------------------------------------------- 27 // ------------------------------------------------------------------- 27 // 28 // 28 // GEANT4 Class header file 29 // GEANT4 Class header file 29 // 30 // 30 // 31 // 31 // File name: G4VEmProcess 32 // File name: G4VEmProcess 32 // 33 // 33 // Author: Vladimir Ivanchenko 34 // Author: Vladimir Ivanchenko 34 // 35 // 35 // Creation date: 01.10.2003 36 // Creation date: 01.10.2003 36 // 37 // 37 // Modifications: Vladimir Ivanchenko 38 // Modifications: Vladimir Ivanchenko 38 // 39 // 39 // Class Description: 40 // Class Description: 40 // 41 // 41 // It is the base class - EM discrete and rest 42 // It is the base class - EM discrete and rest/discrete process 42 43 43 // ------------------------------------------- 44 // ------------------------------------------------------------------- 44 // 45 // 45 46 46 #ifndef G4VEmProcess_h 47 #ifndef G4VEmProcess_h 47 #define G4VEmProcess_h 1 48 #define G4VEmProcess_h 1 48 49 49 #include <CLHEP/Units/SystemOfUnits.h> 50 #include <CLHEP/Units/SystemOfUnits.h> 50 51 51 #include "G4VDiscreteProcess.hh" 52 #include "G4VDiscreteProcess.hh" 52 #include "globals.hh" 53 #include "globals.hh" 53 #include "G4Material.hh" 54 #include "G4Material.hh" 54 #include "G4MaterialCutsCouple.hh" 55 #include "G4MaterialCutsCouple.hh" 55 #include "G4Track.hh" 56 #include "G4Track.hh" >> 57 #include "G4EmModelManager.hh" 56 #include "G4UnitsTable.hh" 58 #include "G4UnitsTable.hh" 57 #include "G4ParticleDefinition.hh" 59 #include "G4ParticleDefinition.hh" 58 #include "G4ParticleChangeForGamma.hh" 60 #include "G4ParticleChangeForGamma.hh" 59 #include "G4EmParameters.hh" << 60 #include "G4EmDataHandler.hh" 61 #include "G4EmDataHandler.hh" 61 #include "G4EmTableType.hh" << 62 #include "G4EmParameters.hh" 62 #include "G4EmModelManager.hh" << 63 #include "G4EmSecondaryParticleType.hh" << 64 63 65 class G4Step; 64 class G4Step; 66 class G4VEmModel; 65 class G4VEmModel; 67 class G4DataVector; 66 class G4DataVector; 68 class G4VParticleChange; 67 class G4VParticleChange; 69 class G4PhysicsTable; 68 class G4PhysicsTable; 70 class G4PhysicsVector; 69 class G4PhysicsVector; 71 class G4EmBiasingManager; 70 class G4EmBiasingManager; 72 class G4LossTableManager; 71 class G4LossTableManager; 73 72 74 //....oooOO0OOooo........oooOO0OOooo........oo 73 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 75 74 76 class G4VEmProcess : public G4VDiscreteProcess 75 class G4VEmProcess : public G4VDiscreteProcess 77 { 76 { 78 public: 77 public: 79 78 80 G4VEmProcess(const G4String& name, G4Process << 79 G4VEmProcess(const G4String& name, >> 80 G4ProcessType type = fElectromagnetic); 81 81 82 ~G4VEmProcess() override; << 82 virtual ~G4VEmProcess(); 83 83 84 //------------------------------------------ 84 //------------------------------------------------------------------------ 85 // Virtual methods to be implemented in conc 85 // Virtual methods to be implemented in concrete processes 86 //------------------------------------------ 86 //------------------------------------------------------------------------ 87 87 88 void ProcessDescription(std::ostream& outFil << 88 virtual G4bool IsApplicable(const G4ParticleDefinition& p) override = 0; >> 89 >> 90 // obsolete >> 91 virtual void PrintInfo() {}; >> 92 >> 93 virtual void ProcessDescription(std::ostream& outFile) const override; 89 94 90 protected: 95 protected: 91 96 92 virtual void StreamProcessInfo(std::ostream& 97 virtual void StreamProcessInfo(std::ostream&) const {}; 93 98 94 virtual void InitialiseProcess(const G4Parti 99 virtual void InitialiseProcess(const G4ParticleDefinition*) = 0; 95 100 96 //------------------------------------------ 101 //------------------------------------------------------------------------ >> 102 // Method with standard implementation; may be overwritten if needed >> 103 //------------------------------------------------------------------------ >> 104 >> 105 virtual G4double MinPrimaryEnergy(const G4ParticleDefinition*, >> 106 const G4Material*); >> 107 >> 108 //------------------------------------------------------------------------ 97 // Implementation of virtual methods common 109 // Implementation of virtual methods common to all Discrete processes 98 //------------------------------------------ 110 //------------------------------------------------------------------------ 99 111 100 public: 112 public: 101 113 102 // Initialise for build of tables 114 // Initialise for build of tables 103 void PreparePhysicsTable(const G4ParticleDef << 115 virtual void PreparePhysicsTable(const G4ParticleDefinition&) override; 104 116 105 // Build physics table during initialisation 117 // Build physics table during initialisation 106 void BuildPhysicsTable(const G4ParticleDefin << 118 virtual void BuildPhysicsTable(const G4ParticleDefinition&) override; 107 119 108 // Called before tracking of each new G4Trac 120 // Called before tracking of each new G4Track 109 void StartTracking(G4Track*) override; << 121 virtual void StartTracking(G4Track*) override; 110 122 111 // implementation of virtual method, specifi 123 // implementation of virtual method, specific for G4VEmProcess 112 G4double PostStepGetPhysicalInteractionLengt << 124 virtual G4double PostStepGetPhysicalInteractionLength( 113 const G4Track& tr 125 const G4Track& track, 114 G4double previo 126 G4double previousStepSize, 115 G4ForceCondition* 127 G4ForceCondition* condition) override; 116 128 117 // implementation of virtual method, specifi 129 // implementation of virtual method, specific for G4VEmProcess 118 G4VParticleChange* PostStepDoIt(const G4Trac << 130 virtual G4VParticleChange* PostStepDoIt(const G4Track&, >> 131 const G4Step&) override; 119 132 120 // Store PhysicsTable in a file. 133 // Store PhysicsTable in a file. 121 // Return false in case of failure at I/O 134 // Return false in case of failure at I/O 122 G4bool StorePhysicsTable(const G4ParticleDef << 135 virtual G4bool StorePhysicsTable(const G4ParticleDefinition*, 123 const G4String& dir << 136 const G4String& directory, 124 G4bool ascii = fals << 137 G4bool ascii = false) override; 125 138 126 // Retrieve Physics from a file. 139 // Retrieve Physics from a file. 127 // (return true if the Physics Table can be 140 // (return true if the Physics Table can be build by using file) 128 // (return false if the process has no funct 141 // (return false if the process has no functionality or in case of failure) 129 // File name should is constructed as proces 142 // File name should is constructed as processName+particleName and the 130 // should be placed under the directory spec << 143 // should be placed under the directory specifed by the argument. 131 G4bool RetrievePhysicsTable(const G4Particle << 144 virtual G4bool RetrievePhysicsTable(const G4ParticleDefinition*, 132 const G4String& << 145 const G4String& directory, 133 G4bool ascii) ov << 146 G4bool ascii) override; 134 << 135 // allowing check process name << 136 virtual G4VEmProcess* GetEmProcess(const G4S << 137 147 138 //------------------------------------------ 148 //------------------------------------------------------------------------ 139 // Specific methods for Discrete EM post ste 149 // Specific methods for Discrete EM post step simulation 140 //------------------------------------------ 150 //------------------------------------------------------------------------ 141 151 142 // The main method to access cross section p << 152 // It returns the cross section per volume for energy/ material 143 inline G4double GetLambda(G4double kinEnergy << 153 G4double CrossSectionPerVolume(G4double kineticEnergy, 144 const G4MaterialCu << 154 const G4MaterialCutsCouple* couple); 145 G4double logKinEne << 146 << 147 // It returns the cross section per volume f << 148 G4double GetCrossSection(const G4double kinE << 149 const G4MaterialCut << 150 155 151 // It returns the cross section of the proce 156 // It returns the cross section of the process per atom 152 G4double ComputeCrossSectionPerAtom(G4double 157 G4double ComputeCrossSectionPerAtom(G4double kineticEnergy, 153 G4double << 158 G4double Z, G4double A=0., 154 G4double << 159 G4double cut=0.0); >> 160 >> 161 G4double MeanFreePath(const G4Track& track); 155 162 156 inline G4double MeanFreePath(const G4Track& << 163 // It returns cross section per volume >> 164 inline G4double GetLambda(G4double kinEnergy, >> 165 const G4MaterialCutsCouple* couple); 157 166 158 //------------------------------------------ 167 //------------------------------------------------------------------------ 159 // Specific methods to build and access Phys 168 // Specific methods to build and access Physics Tables 160 //------------------------------------------ 169 //------------------------------------------------------------------------ 161 170 162 // Binning for lambda table 171 // Binning for lambda table 163 void SetLambdaBinning(G4int nbins); 172 void SetLambdaBinning(G4int nbins); 164 173 165 // Min kinetic energy for tables 174 // Min kinetic energy for tables 166 void SetMinKinEnergy(G4double e); 175 void SetMinKinEnergy(G4double e); 167 176 168 // Min kinetic energy for high energy table 177 // Min kinetic energy for high energy table 169 void SetMinKinEnergyPrim(G4double e); 178 void SetMinKinEnergyPrim(G4double e); 170 179 171 // Max kinetic energy for tables 180 // Max kinetic energy for tables 172 void SetMaxKinEnergy(G4double e); 181 void SetMaxKinEnergy(G4double e); 173 182 174 // Cross section table pointers 183 // Cross section table pointers 175 inline G4PhysicsTable* LambdaTable() const; 184 inline G4PhysicsTable* LambdaTable() const; 176 inline G4PhysicsTable* LambdaTablePrim() con 185 inline G4PhysicsTable* LambdaTablePrim() const; 177 inline void SetLambdaTable(G4PhysicsTable*); << 178 inline void SetLambdaTablePrim(G4PhysicsTabl << 179 << 180 // Integral method type and peak positions << 181 inline std::vector<G4double>* EnergyOfCrossS << 182 inline void SetEnergyOfCrossSectionMax(std:: << 183 inline G4CrossSectionType CrossSectionType() << 184 inline void SetCrossSectionType(G4CrossSecti << 185 186 186 //------------------------------------------ 187 //------------------------------------------------------------------------ 187 // Define and access particle type 188 // Define and access particle type 188 //------------------------------------------ 189 //------------------------------------------------------------------------ 189 190 190 inline const G4ParticleDefinition* Particle( 191 inline const G4ParticleDefinition* Particle() const; 191 inline const G4ParticleDefinition* Secondary 192 inline const G4ParticleDefinition* SecondaryParticle() const; 192 193 193 protected: << 194 << 195 //------------------------------------------ 194 //------------------------------------------------------------------------ 196 // Specific methods to set, access, modify m 195 // Specific methods to set, access, modify models and basic parameters 197 //------------------------------------------ 196 //------------------------------------------------------------------------ 198 << 197 >> 198 protected: 199 // Select model in run time 199 // Select model in run time 200 inline G4VEmModel* SelectModel(G4double kinE << 200 inline G4VEmModel* SelectModel(G4double kinEnergy, size_t index); 201 201 202 public: 202 public: 203 << 203 // Select model by energy and region index 204 // Select model by energy and couple index << 205 inline G4VEmModel* SelectModelForMaterial(G4 204 inline G4VEmModel* SelectModelForMaterial(G4double kinEnergy, 206 st << 205 size_t idxRegion) const; 207 206 208 // Add model for region, smaller value of or 207 // Add model for region, smaller value of order defines which 209 // model will be selected for a given energy 208 // model will be selected for a given energy interval 210 void AddEmModel(G4int, G4VEmModel*, const G4 209 void AddEmModel(G4int, G4VEmModel*, const G4Region* region = nullptr); 211 210 212 // Assign a model to a process local list, t 211 // Assign a model to a process local list, to enable the list in run time 213 // the derived process should execute AddEmM 212 // the derived process should execute AddEmModel(..) for all such models 214 void SetEmModel(G4VEmModel*, G4int index = 0 213 void SetEmModel(G4VEmModel*, G4int index = 0); 215 << 216 inline G4int NumberOfModels() const; << 217 214 218 // return a model from the local list 215 // return a model from the local list 219 inline G4VEmModel* EmModel(std::size_t index << 216 G4VEmModel* EmModel(size_t index = 0) const; 220 217 221 // Access to active model << 218 // Define new energy range for the model identified by the name 222 inline const G4VEmModel* GetCurrentModel() c << 219 void UpdateEmModel(const G4String&, G4double, G4double); 223 220 224 // Access to models 221 // Access to models 225 inline G4VEmModel* GetModelByIndex(G4int idx << 222 G4int GetNumberOfModels() const; >> 223 G4int GetNumberOfRegionModels(size_t couple_index) const; >> 224 G4VEmModel* GetRegionModel(G4int idx, size_t couple_index) const; >> 225 G4VEmModel* GetModelByIndex(G4int idx = 0, G4bool ver = false) const; >> 226 >> 227 // Access to active model >> 228 inline const G4VEmModel* GetCurrentModel() const; 226 229 227 // Access to the current G4Element 230 // Access to the current G4Element 228 const G4Element* GetCurrentElement() const; 231 const G4Element* GetCurrentElement() const; 229 232 230 // Biasing parameters 233 // Biasing parameters 231 void SetCrossSectionBiasingFactor(G4double f 234 void SetCrossSectionBiasingFactor(G4double f, G4bool flag = true); 232 inline G4double CrossSectionBiasingFactor() 235 inline G4double CrossSectionBiasingFactor() const; 233 236 234 // Activate forced interaction 237 // Activate forced interaction 235 void ActivateForcedInteraction(G4double leng 238 void ActivateForcedInteraction(G4double length = 0.0, 236 const G4Strin 239 const G4String& r = "", 237 G4bool flag = 240 G4bool flag = true); 238 241 239 void ActivateSecondaryBiasing(const G4String 242 void ActivateSecondaryBiasing(const G4String& region, G4double factor, 240 G4double energ << 243 G4double energyLimit); 241 244 242 inline void SetEmMasterProcess(const G4VEmPr 245 inline void SetEmMasterProcess(const G4VEmProcess*); >> 246 >> 247 inline void SetIntegral(G4bool val); 243 248 244 inline void SetBuildTableFlag(G4bool val); 249 inline void SetBuildTableFlag(G4bool val); 245 250 246 inline void CurrentSetup(const G4MaterialCut 251 inline void CurrentSetup(const G4MaterialCutsCouple*, G4double energy); 247 252 248 inline G4bool UseBaseMaterial() const; << 249 << 250 void BuildLambdaTable(); << 251 << 252 void StreamInfo(std::ostream& outFile, const << 253 G4bool rst=false) const; << 254 << 255 // hide copy constructor and assignment oper << 256 G4VEmProcess(G4VEmProcess &) = delete; << 257 G4VEmProcess & operator=(const G4VEmProcess << 258 << 259 //------------------------------------------ 253 //------------------------------------------------------------------------ 260 // Other generic methods 254 // Other generic methods 261 //------------------------------------------ 255 //------------------------------------------------------------------------ 262 256 263 protected: 257 protected: 264 258 265 G4double GetMeanFreePath(const G4Track& trac << 259 virtual G4double GetMeanFreePath(const G4Track& track, 266 G4double previousSt << 260 G4double previousStepSize, 267 G4ForceCondition* c << 261 G4ForceCondition* condition) override; 268 262 269 G4PhysicsVector* LambdaPhysicsVector(const G 263 G4PhysicsVector* LambdaPhysicsVector(const G4MaterialCutsCouple*); 270 264 271 inline void DefineMaterial(const G4MaterialC << 272 << 273 inline G4int LambdaBinning() const; 265 inline G4int LambdaBinning() const; 274 266 275 inline G4double MinKinEnergy() const; 267 inline G4double MinKinEnergy() const; 276 268 277 inline G4double MaxKinEnergy() const; 269 inline G4double MaxKinEnergy() const; 278 270 279 // Single scattering parameters 271 // Single scattering parameters 280 inline G4double PolarAngleLimit() const; 272 inline G4double PolarAngleLimit() const; 281 273 >> 274 inline G4bool IsIntegral() const; >> 275 >> 276 inline G4double RecalculateLambda(G4double kinEnergy, >> 277 const G4MaterialCutsCouple* couple); >> 278 282 inline G4ParticleChangeForGamma* GetParticle 279 inline G4ParticleChangeForGamma* GetParticleChange(); 283 280 284 inline void SetParticle(const G4ParticleDefi 281 inline void SetParticle(const G4ParticleDefinition* p); 285 282 286 inline void SetSecondaryParticle(const G4Par 283 inline void SetSecondaryParticle(const G4ParticleDefinition* p); 287 284 288 inline std::size_t CurrentMaterialCutsCouple << 285 inline size_t CurrentMaterialCutsCoupleIndex() const; 289 286 290 inline const G4MaterialCutsCouple* MaterialC 287 inline const G4MaterialCutsCouple* MaterialCutsCouple() const; 291 288 292 inline G4bool ApplyCuts() const; 289 inline G4bool ApplyCuts() const; 293 290 294 inline G4double GetGammaEnergyCut(); 291 inline G4double GetGammaEnergyCut(); 295 292 296 inline G4double GetElectronEnergyCut(); 293 inline G4double GetElectronEnergyCut(); 297 294 298 inline void SetStartFromNullFlag(G4bool val) 295 inline void SetStartFromNullFlag(G4bool val); 299 296 300 inline void SetSplineFlag(G4bool val); 297 inline void SetSplineFlag(G4bool val); 301 298 302 const G4Element* GetTargetElement() const; << 299 inline const G4Element* GetTargetElement() const; 303 << 304 const G4Isotope* GetTargetIsotope() const; << 305 300 306 // these two methods assume that vectors are << 301 inline const G4Isotope* GetTargetIsotope() const; 307 // and idx is within vector length << 308 inline G4int DensityIndex(G4int idx) const; << 309 inline G4double DensityFactor(G4int idx) con << 310 302 311 private: 303 private: 312 304 >> 305 void Clear(); >> 306 >> 307 void BuildLambdaTable(); >> 308 >> 309 void StreamInfo(std::ostream& outFile, const G4ParticleDefinition&, >> 310 G4bool rst=false) const; >> 311 >> 312 void FindLambdaMax(); >> 313 313 void PrintWarning(G4String tit, G4double val 314 void PrintWarning(G4String tit, G4double val); 314 315 315 void ComputeIntegralLambda(G4double kinEnerg << 316 void ComputeIntegralLambda(G4double kinEnergy); 316 317 317 inline G4double LogEkin(const G4Track&); << 318 inline void DefineMaterial(const G4MaterialCutsCouple* couple); 318 319 319 inline G4double GetLambdaFromTable(G4double 320 inline G4double GetLambdaFromTable(G4double kinEnergy); 320 321 321 inline G4double GetLambdaFromTable(G4double << 322 << 323 inline G4double GetLambdaFromTablePrim(G4dou 322 inline G4double GetLambdaFromTablePrim(G4double kinEnergy); 324 323 325 inline G4double GetLambdaFromTablePrim(G4dou << 326 << 327 inline G4double GetCurrentLambda(G4double ki 324 inline G4double GetCurrentLambda(G4double kinEnergy); 328 325 329 inline G4double GetCurrentLambda(G4double ki << 330 << 331 inline G4double ComputeCurrentLambda(G4doubl 326 inline G4double ComputeCurrentLambda(G4double kinEnergy); 332 327 333 // ======== pointers ========= << 328 // hide copy constructor and assignment operator 334 << 329 G4VEmProcess(G4VEmProcess &) = delete; 335 G4EmModelManager* modelManager = << 330 G4VEmProcess & operator=(const G4VEmProcess &right) = delete; 336 const G4ParticleDefinition* particle = null << 337 const G4ParticleDefinition* currentParticle << 338 const G4ParticleDefinition* theGamma = null << 339 const G4ParticleDefinition* theElectron = n << 340 const G4ParticleDefinition* thePositron = n << 341 const G4ParticleDefinition* secondaryPartic << 342 const G4VEmProcess* masterProc = nu << 343 G4EmDataHandler* theData = nullp << 344 G4VEmModel* currentModel = << 345 G4LossTableManager* lManager = null << 346 G4EmParameters* theParameters = << 347 const G4Material* baseMaterial = << 348 << 349 // ======== tables and vectors ======== << 350 G4PhysicsTable* theLambdaTable << 351 G4PhysicsTable* theLambdaTableP << 352 << 353 const std::vector<G4double>* theCuts = nullp << 354 const std::vector<G4double>* theCutsGamma = << 355 const std::vector<G4double>* theCutsElectron << 356 const std::vector<G4double>* theCutsPositron << 357 << 358 protected: << 359 << 360 // ======== pointers ========= << 361 << 362 const G4MaterialCutsCouple* currentCouple = << 363 const G4Material* currentMaterial << 364 G4EmBiasingManager* biasManager = n << 365 std::vector<G4double>* theEnergyOfCros << 366 << 367 private: << 368 << 369 const std::vector<G4double>* theDensityFacto << 370 const std::vector<G4int>* theDensityIdx = nu << 371 << 372 // ======== parameters ========= << 373 G4double minKinEnergy; << 374 G4double maxKinEnergy; << 375 G4double minKinEnergyPrim = DBL_MAX; << 376 G4double lambdaFactor = 0.8; << 377 G4double invLambdaFactor; << 378 G4double biasFactor = 1.0; << 379 G4double massRatio = 1.0; << 380 G4double fFactor = 1.0; << 381 G4double fLambda = 0.0; << 382 G4double fLambdaEnergy = 0.0; << 383 << 384 protected: << 385 << 386 G4double mfpKinEnergy = DBL_MAX; << 387 G4double preStepKinEnergy = 0.0; << 388 G4double preStepLambda = 0.0; << 389 331 390 private: << 332 // ======== Parameters of the class fixed at construction ========= 391 333 392 G4CrossSectionType fXSType = fEmNoIntegral; << 334 G4EmModelManager* modelManager; >> 335 const G4ParticleDefinition* thePositron; >> 336 const G4ParticleDefinition* secondaryParticle; >> 337 >> 338 G4bool buildLambdaTable; >> 339 >> 340 // ======== Parameters of the class fixed at initialisation ======= >> 341 >> 342 std::vector<G4VEmModel*> emModels; >> 343 G4int numberOfModels; >> 344 >> 345 // tables and vectors >> 346 G4PhysicsTable* theLambdaTable; >> 347 G4PhysicsTable* theLambdaTablePrim; >> 348 std::vector<G4double> theEnergyOfCrossSectionMax; >> 349 std::vector<G4double> theCrossSectionMax; >> 350 >> 351 size_t idxLambda; >> 352 size_t idxLambdaPrim; >> 353 >> 354 const std::vector<G4double>* theCuts; >> 355 const std::vector<G4double>* theCutsGamma; >> 356 const std::vector<G4double>* theCutsElectron; >> 357 const std::vector<G4double>* theCutsPositron; >> 358 const std::vector<G4double>* theDensityFactor; >> 359 const std::vector<G4int>* theDensityIdx; >> 360 >> 361 G4int nLambdaBins; >> 362 >> 363 G4double minKinEnergy; >> 364 G4double minKinEnergyPrim; >> 365 G4double maxKinEnergy; >> 366 G4double lambdaFactor; >> 367 G4double biasFactor; >> 368 G4double massRatio; >> 369 >> 370 G4bool integral; >> 371 G4bool applyCuts; >> 372 G4bool startFromNull; >> 373 G4bool splineFlag; >> 374 G4bool actMinKinEnergy; >> 375 G4bool actMaxKinEnergy; >> 376 G4bool actBinning; >> 377 G4bool actSpline; >> 378 G4bool isIon; 393 379 394 G4int numberOfModels = 0; << 380 // ======== Cashed values - may be state dependent ================ 395 G4int nLambdaBins = 84; << 396 381 397 protected: 382 protected: 398 383 399 G4int mainSecondaries = 1; << 384 G4LossTableManager* lManager; 400 G4int secID = _EM; << 385 G4EmParameters* theParameters; 401 G4int fluoID = _Fluorescence; << 402 G4int augerID = _AugerElectron; << 403 G4int biasID = _EM; << 404 G4int tripletID = _TripletElectron; << 405 std::size_t currentCoupleIndex = 0; << 406 std::size_t basedCoupleIndex = 0; << 407 std::size_t coupleIdxLambda = 0; << 408 std::size_t idxLambda = 0; << 409 386 410 G4bool isTheMaster = false; << 387 G4EmBiasingManager* biasManager; 411 G4bool baseMat = false; << 388 const G4ParticleDefinition* theGamma; 412 << 389 const G4ParticleDefinition* theElectron; 413 private: << 390 G4ParticleChangeForGamma fParticleChange; 414 << 415 G4bool buildLambdaTable = true; << 416 G4bool applyCuts = false; << 417 G4bool startFromNull = false; << 418 G4bool splineFlag = true; << 419 G4bool actMinKinEnergy = false; << 420 G4bool actMaxKinEnergy = false; << 421 G4bool actBinning = false; << 422 G4bool isIon = false; << 423 G4bool biasFlag = false; << 424 G4bool weightFlag = false; << 425 << 426 protected: << 427 << 428 // ======== particle change ========= << 429 std::vector<G4DynamicParticle*> secParticles 391 std::vector<G4DynamicParticle*> secParticles; 430 G4ParticleChangeForGamma fParticleChange; << 392 const G4MaterialCutsCouple* currentCouple; >> 393 const G4Material* currentMaterial; >> 394 size_t currentCoupleIndex; >> 395 >> 396 G4int mainSecondaries; >> 397 G4int secID; >> 398 G4int fluoID; >> 399 G4int augerID; >> 400 G4int biasID; >> 401 >> 402 G4bool isTheMaster; >> 403 >> 404 G4double mfpKinEnergy; >> 405 G4double preStepKinEnergy; >> 406 G4double preStepLambda; 431 407 432 private: 408 private: 433 409 434 // ======== local vectors ========= << 410 const G4VEmProcess* masterProc; 435 std::vector<G4VEmModel*> emModels; << 411 G4EmDataHandler* theData; 436 << 412 G4VEmModel* currentModel; >> 413 >> 414 const G4ParticleDefinition* particle; >> 415 const G4ParticleDefinition* currentParticle; >> 416 >> 417 // cache >> 418 const G4Material* baseMaterial; >> 419 size_t basedCoupleIndex; >> 420 >> 421 G4double fFactor; >> 422 G4bool biasFlag; >> 423 G4bool weightFlag; 437 }; 424 }; 438 425 439 // ======== Run time inline methods ========== 426 // ======== Run time inline methods ================ 440 427 >> 428 inline G4bool G4VEmProcess::ApplyCuts() const >> 429 { >> 430 return applyCuts; >> 431 } >> 432 441 //....oooOO0OOooo........oooOO0OOooo........oo 433 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 442 434 443 inline std::size_t G4VEmProcess::CurrentMateri << 435 inline size_t G4VEmProcess::CurrentMaterialCutsCoupleIndex() const 444 { 436 { 445 return currentCoupleIndex; 437 return currentCoupleIndex; 446 } 438 } 447 439 448 //....oooOO0OOooo........oooOO0OOooo........oo 440 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 449 441 450 inline const G4MaterialCutsCouple* G4VEmProces 442 inline const G4MaterialCutsCouple* G4VEmProcess::MaterialCutsCouple() const 451 { 443 { 452 return currentCouple; 444 return currentCouple; 453 } 445 } 454 446 455 //....oooOO0OOooo........oooOO0OOooo........oo 447 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 456 448 457 inline G4double G4VEmProcess::GetGammaEnergyCu 449 inline G4double G4VEmProcess::GetGammaEnergyCut() 458 { 450 { 459 return (*theCutsGamma)[currentCoupleIndex]; 451 return (*theCutsGamma)[currentCoupleIndex]; 460 } 452 } 461 453 462 //....oooOO0OOooo........oooOO0OOooo........oo 454 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 463 455 464 inline G4double G4VEmProcess::GetElectronEnerg 456 inline G4double G4VEmProcess::GetElectronEnergyCut() 465 { 457 { 466 return (*theCutsElectron)[currentCoupleIndex 458 return (*theCutsElectron)[currentCoupleIndex]; 467 } 459 } 468 460 469 //....oooOO0OOooo........oooOO0OOooo........oo 461 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 470 462 471 inline void G4VEmProcess::DefineMaterial(const 463 inline void G4VEmProcess::DefineMaterial(const G4MaterialCutsCouple* couple) 472 { 464 { 473 if (couple != currentCouple) { << 465 if(couple != currentCouple) { 474 currentCouple = couple; << 466 currentCouple = couple; 475 baseMaterial = currentMaterial = couple->G << 467 currentMaterial = couple->GetMaterial(); 476 basedCoupleIndex = currentCoupleIndex = co << 468 baseMaterial = (currentMaterial->GetBaseMaterial()) 477 fFactor = biasFactor; << 469 ? currentMaterial->GetBaseMaterial() : currentMaterial; >> 470 currentCoupleIndex = couple->GetIndex(); >> 471 basedCoupleIndex = (*theDensityIdx)[currentCoupleIndex]; >> 472 fFactor = biasFactor*(*theDensityFactor)[currentCoupleIndex]; 478 mfpKinEnergy = DBL_MAX; 473 mfpKinEnergy = DBL_MAX; 479 if (baseMat) { << 474 preStepKinEnergy = 0.0; 480 basedCoupleIndex = (*theDensityIdx)[curr << 475 idxLambda = idxLambdaPrim = 0; 481 if (nullptr != currentMaterial->GetBaseM << 482 baseMaterial = currentMaterial->GetBas << 483 fFactor *= (*theDensityFactor)[currentCo << 484 } << 485 } 476 } 486 } 477 } 487 478 488 //....oooOO0OOooo........oooOO0OOooo........oo 479 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 489 480 490 inline 481 inline 491 G4VEmModel* G4VEmProcess::SelectModel(G4double << 482 G4VEmModel* G4VEmProcess::SelectModel(G4double kinEnergy, size_t index) 492 { 483 { 493 if(1 < numberOfModels) { 484 if(1 < numberOfModels) { 494 currentModel = modelManager->SelectModel(k << 485 currentModel = modelManager->SelectModel(kinEnergy, index); 495 } 486 } 496 currentModel->SetCurrentCouple(currentCouple 487 currentModel->SetCurrentCouple(currentCouple); 497 return currentModel; 488 return currentModel; 498 } 489 } 499 490 500 //....oooOO0OOooo........oooOO0OOooo........oo 491 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 501 492 502 inline 493 inline 503 G4VEmModel* G4VEmProcess::SelectModelForMateri 494 G4VEmModel* G4VEmProcess::SelectModelForMaterial(G4double kinEnergy, 504 << 495 size_t idxRegion) const 505 { 496 { 506 return modelManager->SelectModel(kinEnergy, << 497 return modelManager->SelectModel(kinEnergy, idxRegion); 507 } 498 } 508 499 509 //....oooOO0OOooo........oooOO0OOooo........oo 500 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 510 501 511 inline G4double G4VEmProcess::GetLambdaFromTab 502 inline G4double G4VEmProcess::GetLambdaFromTable(G4double e) 512 { 503 { 513 return ((*theLambdaTable)[basedCoupleIndex]) 504 return ((*theLambdaTable)[basedCoupleIndex])->Value(e, idxLambda); 514 } 505 } 515 506 516 //....oooOO0OOooo........oooOO0OOooo........oo 507 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 517 508 518 inline G4double G4VEmProcess::LogEkin(const G4 << 519 { << 520 return track.GetDynamicParticle()->GetLogKin << 521 } << 522 << 523 //....oooOO0OOooo........oooOO0OOooo........oo << 524 << 525 inline G4double G4VEmProcess::GetLambdaFromTab << 526 { << 527 return ((*theLambdaTable)[basedCoupleIndex]) << 528 } << 529 << 530 //....oooOO0OOooo........oooOO0OOooo........oo << 531 << 532 inline G4double G4VEmProcess::GetLambdaFromTab 509 inline G4double G4VEmProcess::GetLambdaFromTablePrim(G4double e) 533 { 510 { 534 return ((*theLambdaTablePrim)[basedCoupleInd << 511 return ((*theLambdaTablePrim)[basedCoupleIndex])->Value(e, idxLambdaPrim)/e; 535 } << 536 << 537 //....oooOO0OOooo........oooOO0OOooo........oo << 538 << 539 inline G4double G4VEmProcess::GetLambdaFromTab << 540 { << 541 return ((*theLambdaTablePrim)[basedCoupleInd << 542 } 512 } 543 513 544 //....oooOO0OOooo........oooOO0OOooo........oo 514 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 545 515 546 inline G4double G4VEmProcess::ComputeCurrentLa 516 inline G4double G4VEmProcess::ComputeCurrentLambda(G4double e) 547 { 517 { 548 return currentModel->CrossSectionPerVolume(b << 518 return currentModel->CrossSectionPerVolume( >> 519 baseMaterial,currentParticle, e,(*theCuts)[currentCoupleIndex]); 549 } 520 } 550 521 551 //....oooOO0OOooo........oooOO0OOooo........oo 522 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 552 523 553 inline G4double G4VEmProcess::GetCurrentLambda 524 inline G4double G4VEmProcess::GetCurrentLambda(G4double e) 554 { 525 { 555 if(currentCoupleIndex != coupleIdxLambda || << 526 G4double x(0.0); 556 coupleIdxLambda = currentCoupleIndex; << 527 if(e >= minKinEnergyPrim) { x = GetLambdaFromTablePrim(e); } 557 fLambdaEnergy = e; << 528 else if(theLambdaTable) { x = GetLambdaFromTable(e); } 558 if(e >= minKinEnergyPrim) { fLambda = GetL << 529 else if(currentModel) { x = ComputeCurrentLambda(e); } 559 else if(nullptr != theLambdaTable) { fLamb << 530 return fFactor*x; 560 else { fLambda = ComputeCurrentLambda(e); << 561 fLambda *= fFactor; << 562 } << 563 return fLambda; << 564 } << 565 << 566 //....oooOO0OOooo........oooOO0OOooo........oo << 567 << 568 inline G4double G4VEmProcess::GetCurrentLambda << 569 { << 570 if(currentCoupleIndex != coupleIdxLambda || << 571 coupleIdxLambda = currentCoupleIndex; << 572 fLambdaEnergy = e; << 573 if(e >= minKinEnergyPrim) { fLambda = GetL << 574 else if(nullptr != theLambdaTable) { fLamb << 575 else { fLambda = ComputeCurrentLambda(e); << 576 fLambda *= fFactor; << 577 } << 578 return fLambda; << 579 } 531 } 580 532 581 //....oooOO0OOooo........oooOO0OOooo........oo 533 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 582 534 583 inline void 535 inline void 584 G4VEmProcess::CurrentSetup(const G4MaterialCut 536 G4VEmProcess::CurrentSetup(const G4MaterialCutsCouple* couple, G4double energy) 585 { 537 { 586 DefineMaterial(couple); 538 DefineMaterial(couple); 587 SelectModel(energy*massRatio, currentCoupleI << 539 SelectModel(energy, currentCoupleIndex); 588 } 540 } 589 541 590 //....oooOO0OOooo........oooOO0OOooo........oo 542 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 591 543 592 inline G4double 544 inline G4double 593 G4VEmProcess::GetLambda(G4double kinEnergy, co << 545 G4VEmProcess::GetLambda(G4double kinEnergy, 594 G4double logKinEnergy) << 546 const G4MaterialCutsCouple* couple) 595 { 547 { 596 CurrentSetup(couple, kinEnergy); 548 CurrentSetup(couple, kinEnergy); 597 return GetCurrentLambda(kinEnergy, logKinEne << 549 return GetCurrentLambda(kinEnergy); 598 } 550 } 599 551 600 //....oooOO0OOooo........oooOO0OOooo........oo 552 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 601 553 602 G4double G4VEmProcess::MeanFreePath(const G4Tr << 554 inline G4double >> 555 G4VEmProcess::RecalculateLambda(G4double e, const G4MaterialCutsCouple* couple) 603 { 556 { 604 const G4double kinEnergy = track.GetKineticE << 557 CurrentSetup(couple, e); 605 CurrentSetup(track.GetMaterialCutsCouple(), << 558 return fFactor*ComputeCurrentLambda(e); 606 const G4double xs = GetCurrentLambda(kinEner << 607 track.GetDynamicP << 608 return (0.0 < xs) ? 1.0/xs : DBL_MAX; << 609 } 559 } 610 560 611 // ======== Get/Set inline methods used at ini 561 // ======== Get/Set inline methods used at initialisation ================ 612 562 613 inline G4bool G4VEmProcess::ApplyCuts() const << 614 { << 615 return applyCuts; << 616 } << 617 << 618 //....oooOO0OOooo........oooOO0OOooo........oo 563 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 619 564 620 inline G4int G4VEmProcess::LambdaBinning() con 565 inline G4int G4VEmProcess::LambdaBinning() const 621 { 566 { 622 return nLambdaBins; 567 return nLambdaBins; 623 } 568 } 624 569 625 //....oooOO0OOooo........oooOO0OOooo........oo 570 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 626 571 627 inline G4double G4VEmProcess::MinKinEnergy() c 572 inline G4double G4VEmProcess::MinKinEnergy() const 628 { 573 { 629 return minKinEnergy; 574 return minKinEnergy; 630 } 575 } 631 576 632 //....oooOO0OOooo........oooOO0OOooo........oo 577 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 633 578 634 inline G4double G4VEmProcess::MaxKinEnergy() c 579 inline G4double G4VEmProcess::MaxKinEnergy() const 635 { 580 { 636 return maxKinEnergy; 581 return maxKinEnergy; 637 } 582 } 638 583 639 //....oooOO0OOooo........oooOO0OOooo........oo 584 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 640 585 >> 586 inline G4double G4VEmProcess::PolarAngleLimit() const >> 587 { >> 588 return theParameters->MscThetaLimit(); >> 589 } >> 590 >> 591 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... >> 592 641 inline G4double G4VEmProcess::CrossSectionBias 593 inline G4double G4VEmProcess::CrossSectionBiasingFactor() const 642 { 594 { 643 return biasFactor; 595 return biasFactor; 644 } 596 } 645 597 646 //....oooOO0OOooo........oooOO0OOooo........oo 598 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 647 599 648 inline G4PhysicsTable* G4VEmProcess::LambdaTab 600 inline G4PhysicsTable* G4VEmProcess::LambdaTable() const 649 { 601 { 650 return theLambdaTable; 602 return theLambdaTable; 651 } 603 } 652 604 653 //....oooOO0OOooo........oooOO0OOooo........oo 605 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 654 606 655 inline G4PhysicsTable* G4VEmProcess::LambdaTab 607 inline G4PhysicsTable* G4VEmProcess::LambdaTablePrim() const 656 { 608 { 657 return theLambdaTablePrim; 609 return theLambdaTablePrim; 658 } 610 } 659 611 660 //....oooOO0OOooo........oooOO0OOooo........oo 612 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 661 613 662 inline void G4VEmProcess::SetLambdaTable(G4Phy << 663 { << 664 theLambdaTable = ptr; << 665 } << 666 << 667 //....oooOO0OOooo........oooOO0OOooo........oo << 668 << 669 inline void G4VEmProcess::SetLambdaTablePrim(G << 670 { << 671 theLambdaTablePrim = ptr; << 672 } << 673 << 674 //....oooOO0OOooo........oooOO0OOooo........oo << 675 << 676 inline std::vector<G4double>* G4VEmProcess::En << 677 { << 678 return theEnergyOfCrossSectionMax; << 679 } << 680 << 681 //....oooOO0OOooo........oooOO0OOooo........oo << 682 << 683 inline void << 684 G4VEmProcess::SetEnergyOfCrossSectionMax(std:: << 685 { << 686 theEnergyOfCrossSectionMax = ptr; << 687 } << 688 << 689 //....oooOO0OOooo........oooOO0OOooo........oo << 690 << 691 inline const G4ParticleDefinition* G4VEmProces 614 inline const G4ParticleDefinition* G4VEmProcess::Particle() const 692 { 615 { 693 return particle; 616 return particle; 694 } 617 } 695 618 696 //....oooOO0OOooo........oooOO0OOooo........oo 619 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 697 620 698 inline const G4ParticleDefinition* G4VEmProces 621 inline const G4ParticleDefinition* G4VEmProcess::SecondaryParticle() const 699 { 622 { 700 return secondaryParticle; 623 return secondaryParticle; 701 } 624 } 702 625 703 //....oooOO0OOooo........oooOO0OOooo........oo 626 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 704 627 705 inline void G4VEmProcess::SetCrossSectionType( << 628 inline void G4VEmProcess::SetIntegral(G4bool val) 706 { 629 { 707 fXSType = val; << 630 integral = val; 708 } 631 } 709 632 710 //....oooOO0OOooo........oooOO0OOooo........oo 633 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 711 634 712 inline G4CrossSectionType G4VEmProcess::CrossS << 635 inline G4bool G4VEmProcess::IsIntegral() const 713 { 636 { 714 return fXSType; << 637 return integral; 715 } 638 } 716 639 717 //....oooOO0OOooo........oooOO0OOooo........oo 640 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 718 641 719 inline void G4VEmProcess::SetBuildTableFlag(G4 642 inline void G4VEmProcess::SetBuildTableFlag(G4bool val) 720 { 643 { 721 buildLambdaTable = val; 644 buildLambdaTable = val; 722 } 645 } 723 646 724 //....oooOO0OOooo........oooOO0OOooo........oo 647 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 725 648 726 inline G4ParticleChangeForGamma* G4VEmProcess: 649 inline G4ParticleChangeForGamma* G4VEmProcess::GetParticleChange() 727 { 650 { 728 return &fParticleChange; 651 return &fParticleChange; 729 } 652 } 730 653 731 //....oooOO0OOooo........oooOO0OOooo........oo 654 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 732 655 733 inline void G4VEmProcess::SetParticle(const G4 656 inline void G4VEmProcess::SetParticle(const G4ParticleDefinition* p) 734 { 657 { 735 particle = p; 658 particle = p; 736 currentParticle = p; 659 currentParticle = p; 737 } 660 } 738 661 739 //....oooOO0OOooo........oooOO0OOooo........oo 662 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 740 663 741 inline void G4VEmProcess::SetSecondaryParticle 664 inline void G4VEmProcess::SetSecondaryParticle(const G4ParticleDefinition* p) 742 { 665 { 743 secondaryParticle = p; 666 secondaryParticle = p; 744 } 667 } 745 668 746 //....oooOO0OOooo........oooOO0OOooo........oo 669 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 747 670 748 inline void G4VEmProcess::SetStartFromNullFlag 671 inline void G4VEmProcess::SetStartFromNullFlag(G4bool val) 749 { 672 { 750 startFromNull = val; 673 startFromNull = val; 751 } 674 } 752 675 753 //....oooOO0OOooo........oooOO0OOooo........oo 676 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 754 677 755 inline void G4VEmProcess::SetSplineFlag(G4bool 678 inline void G4VEmProcess::SetSplineFlag(G4bool val) 756 { 679 { 757 splineFlag = val; 680 splineFlag = val; >> 681 actSpline = true; 758 } 682 } 759 683 760 //....oooOO0OOooo........oooOO0OOooo........oo 684 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 761 685 762 inline G4int G4VEmProcess::DensityIndex(G4int << 686 inline const G4Element* G4VEmProcess::GetTargetElement() const 763 { << 764 return (*theDensityIdx)[idx]; << 765 } << 766 << 767 //....oooOO0OOooo........oooOO0OOooo........oo << 768 << 769 inline G4double G4VEmProcess::DensityFactor(G4 << 770 { 687 { 771 return (*theDensityFactor)[idx]; << 688 return currentModel->GetCurrentElement(); 772 } 689 } 773 690 774 //....oooOO0OOooo........oooOO0OOooo........oo 691 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 775 692 776 inline G4bool G4VEmProcess::UseBaseMaterial() << 693 inline const G4Isotope* G4VEmProcess::GetTargetIsotope() const 777 { 694 { 778 return baseMat; << 695 return currentModel->GetCurrentIsotope(); 779 } 696 } 780 697 781 //....oooOO0OOooo........oooOO0OOooo........oo 698 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 782 699 783 inline const G4VEmModel* G4VEmProcess::GetCurr 700 inline const G4VEmModel* G4VEmProcess::GetCurrentModel() const 784 { 701 { 785 return currentModel; 702 return currentModel; 786 } 703 } 787 704 788 //....oooOO0OOooo........oooOO0OOooo........oo 705 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 789 706 790 inline void G4VEmProcess::SetEmMasterProcess(c 707 inline void G4VEmProcess::SetEmMasterProcess(const G4VEmProcess* ptr) 791 { 708 { 792 masterProc = ptr; 709 masterProc = ptr; 793 } << 794 << 795 //....oooOO0OOooo........oooOO0OOooo........oo << 796 << 797 inline G4int G4VEmProcess::NumberOfModels() co << 798 { << 799 return numberOfModels; << 800 } << 801 << 802 //....oooOO0OOooo........oooOO0OOooo........oo << 803 << 804 inline G4VEmModel* G4VEmProcess::EmModel(std:: << 805 { << 806 return (index < emModels.size()) ? emModels[ << 807 } << 808 << 809 //....oooOO0OOooo........oooOO0OOooo........oo << 810 << 811 inline G4VEmModel* G4VEmProcess::GetModelByInd << 812 { << 813 return modelManager->GetModel(idx, ver); << 814 } 710 } 815 711 816 //....oooOO0OOooo........oooOO0OOooo........oo 712 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 817 713 818 #endif 714 #endif 819 715