Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/lowenergy/include/G4MicroElecInelasticModel_new.hh

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/lowenergy/include/G4MicroElecInelasticModel_new.hh (Version 11.3.0) and /processes/electromagnetic/lowenergy/include/G4MicroElecInelasticModel_new.hh (Version 8.3)


  1 //                                                  1 
  2 // *******************************************    
  3 // * License and Disclaimer                       
  4 // *                                              
  5 // * The  Geant4 software  is  copyright of th    
  6 // * the Geant4 Collaboration.  It is provided    
  7 // * conditions of the Geant4 Software License    
  8 // * LICENSE and available at  http://cern.ch/    
  9 // * include a list of copyright holders.         
 10 // *                                              
 11 // * Neither the authors of this software syst    
 12 // * institutes,nor the agencies providing fin    
 13 // * work  make  any representation or  warran    
 14 // * regarding  this  software system or assum    
 15 // * use.  Please see the license in the file     
 16 // * for the full disclaimer and the limitatio    
 17 // *                                              
 18 // * This  code  implementation is the result     
 19 // * technical work of the GEANT4 collaboratio    
 20 // * By using,  copying,  modifying or  distri    
 21 // * any work based  on the software)  you  ag    
 22 // * use  in  resulting  scientific  publicati    
 23 // * acceptance of all terms of the Geant4 Sof    
 24 // *******************************************    
 25 //                                                
 26 //                                                
 27 // G4MicroElecInelasticModel_new.hh, 2011/08/2    
 28 //                          2020/05/20 P. Caro    
 29 //                   Q. Gibaru is with CEA [a]    
 30 //                   M. Raine and D. Lambert a    
 31 //                                                
 32 // A part of this work has been funded by the     
 33 // [a] CEA, DAM, DIF - 91297 ARPAJON, France      
 34 // [b] ONERA - DPHY, 2 avenue E.Belin, 31055 T    
 35 // [c] CNES, 18 av.E.Belin, 31401 Toulouse CED    
 36 //                                                
 37 // Based on the following publications            
 38 //  - A.Valentin, M. Raine,                       
 39 //    Inelastic cross-sections of low energy e    
 40 //        for the simulation of heavy ion trac    
 41 //        NSS Conf. Record 2010, pp. 80-85        
 42 //             https://doi.org/10.1109/NSSMIC.    
 43 //                                                
 44 //      - A.Valentin, M. Raine, M.Gaillardin,     
 45 //        Geant4 physics processes for microdo    
 46 //        very low energy electromagnetic mode    
 47 //             https://doi.org/10.1016/j.nimb.    
 48 //        NIM B, vol. 288, pp. 66-73, 2012, pa    
 49 //        heavy ions in Si, NIM B, vol. 287, p    
 50 //             https://doi.org/10.1016/j.nimb.    
 51 //                                                
 52 //  - M. Raine, M. Gaillardin, P. Paillet         
 53 //        Geant4 physics processes for silicon    
 54 //        Improvements and extension of the en    
 55 //        NIM B, vol. 325, pp. 97-100, 2014       
 56 //             https://doi.org/10.1016/j.nimb.    
 57 //                                                
 58 //      - J. Pierron, C. Inguimbert, M. Belhaj    
 59 //        Electron emission yield for low ener    
 60 //        Monte Carlo simulation and experimen    
 61 //        Journal of Applied Physics 121 (2017    
 62 //               https://doi.org/10.1063/1.498    
 63 //                                                
 64 //      - P. Caron,                               
 65 //        Study of Electron-Induced Single-Eve    
 66 //        PHD, 16th October 2019                  
 67 //                                                
 68 //  - Q.Gibaru, C.Inguimbert, P.Caron, M.Raine    
 69 //        Geant4 physics processes for microdo    
 70 //        Extension of MicroElec to very low e    
 71 //        NIM B, 2020, in review.                 
 72 //                                                
 73 //                                                
 74 //....oooOO0OOooo........oooOO0OOooo........oo    
 75                                                   
 76 #ifndef G4MICROELECINELASTICMODEL_NEW_HH          
 77 #define G4MICROELECINELASTICMODEL_NEW_HH 1        
 78                                                   
 79 #include "globals.hh"                             
 80 #include "G4VEmModel.hh"                          
 81 #include "G4ParticleChangeForGamma.hh"            
 82 #include "G4ProductionCutsTable.hh"               
 83 #include "G4MicroElecMaterialStructure.hh"        
 84 #include "G4MicroElecCrossSectionDataSet_new.h    
 85 #include "G4Electron.hh"                          
 86 #include "G4Proton.hh"                            
 87 #include "G4GenericIon.hh"                        
 88 #include "G4ParticleDefinition.hh"                
 89 #include "G4LogLogInterpolation.hh"               
 90 #include "G4VAtomDeexcitation.hh"                 
 91 #include "G4NistManager.hh"                       
 92                                                   
 93 class G4MicroElecInelasticModel_new : public G    
 94 {                                                 
 95                                                   
 96 public:                                           
 97   explicit G4MicroElecInelasticModel_new(const    
 98         const G4String& nam = "MicroElecInelas    
 99   ~G4MicroElecInelasticModel_new() override;      
100                                                   
101   void Initialise(const G4ParticleDefinition*,    
102                                                   
103   G4double CrossSectionPerVolume(const G4Mater    
104          const G4ParticleDefinition* p,           
105          G4double ekin,                           
106          G4double emin,                           
107          G4double emax) override;                 
108                                                   
109   void SampleSecondaries(std::vector<G4Dynamic    
110        const G4MaterialCutsCouple*,               
111        const G4DynamicParticle*,                  
112        G4double tmin,                             
113        G4double maxEnergy) override;              
114                                                   
115   G4double DifferentialCrossSection(const G4Pa    
116                                     G4double k    
117                                                   
118   G4double ComputeRelativistVelocity(G4double     
119                                                   
120   G4double ComputeElasticQmax(G4double T1i, G4    
121                                                   
122   G4double BKZ(G4double Ep, G4double mp, G4int    
123   // compute the effective charge according Br    
124                                                   
125   G4double stepFunc(G4double x);                  
126   G4double vrkreussler(G4double v, G4double vF    
127                                                   
128   G4MicroElecInelasticModel_new & operator=(co    
129   G4MicroElecInelasticModel_new(const  G4Micro    
130                                                   
131 private:                                          
132   //                                              
133   // private methods                              
134   //                                              
135   G4int RandomSelect(G4double energy,const G4S    
136                                                   
137   G4double RandomizeCreatedElectronEnergy(G4do    
138                                                   
139   G4double RandomizeEjectedElectronEnergy(cons    
140             G4double incomingParticleEnergy, G    
141             G4double originalMass, G4int origi    
142                                                   
143   G4double RandomizeEjectedElectronEnergyFromC    
144                 G4double k, G4int shell);         
145                                                   
146   G4double TransferedEnergy(const G4ParticleDe    
147           G4int ionizationLevelIndex, G4double    
148                                                   
149   G4double Interpolate(G4double e1, G4double e    
150                                                   
151   G4double QuadInterpolator( G4double e11, G4d    
152            G4double x11, G4double x12, G4doubl    
153            G4double t1,  G4double t2,  G4doubl    
154   //                                              
155   // private elements                             
156   //                                              
157   G4ParticleChangeForGamma* fParticleChangeFor    
158                                                   
159   //deexcitation manager to produce fluo photn    
160   G4VAtomDeexcitation* fAtomDeexcitation = nul    
161   G4Material* nistSi = nullptr;                   
162   G4MicroElecMaterialStructure* currentMateria    
163                                                   
164   typedef std::map<G4String,G4String,std::less    
165   typedef std::map<G4String,G4MicroElecCrossSe    
166   typedef std::map<G4double, std::map<G4double    
167   typedef std::map<G4double, std::vector<G4dou    
168                                                   
169   //Tables for multilayers                        
170   typedef std::map<G4String, MapData*, std::le    
171   TCSMap tableTCS; //TCS tables by particle       
172   typedef std::map<G4String, std::vector<TriDi    
173   dataDiffCSMap eDiffDatatable, pDiffDatatable    
174   dataDiffCSMap eNrjTransStorage, pNrjTransSto    
175   typedef std::map<G4String, std::vector<VecMa    
176   dataProbaShellMap eProbaShellStorage, pProba    
177   typedef std::map<G4String, std::vector<G4dou    
178   incidentEnergyMap eIncidentEnergyStorage, pI    
179   typedef std::map<G4String, VecMap* > TranfEn    
180   TranfEnergyMap eVecmStorage, pVecmStorage; /    
181   typedef std::map<G4String, G4MicroElecMateri    
182   MapStructure tableMaterialsStructures; //Str    
183                                                   
184   G4String currentMaterial = "";                  
185   std::map<G4String,G4double,std::less<G4Strin    
186   std::map<G4String,G4double,std::less<G4Strin    
187                                                   
188   G4int verboseLevel;                             
189   G4bool isInitialised ;                          
190   G4bool fasterCode;                              
191   G4bool SEFromFermiLevel;                        
192                                                   
193 };                                                
194                                                   
195 #endif                                            
196