Geant4 Cross Reference |
1 // 1 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the result 19 // * technical work of the GEANT4 collaboratio 20 // * By using, copying, modifying or distri 21 // * any work based on the software) you ag 22 // * use in resulting scientific publicati 23 // * acceptance of all terms of the Geant4 Sof 24 // ******************************************* 25 // 26 // 27 // G4MicroElecInelasticModel_new.hh, 2011/08/2 28 // 2020/05/20 P. Caro 29 // Q. Gibaru is with CEA [a] 30 // M. Raine and D. Lambert a 31 // 32 // A part of this work has been funded by the 33 // [a] CEA, DAM, DIF - 91297 ARPAJON, France 34 // [b] ONERA - DPHY, 2 avenue E.Belin, 31055 T 35 // [c] CNES, 18 av.E.Belin, 31401 Toulouse CED 36 // 37 // Based on the following publications 38 // - A.Valentin, M. Raine, 39 // Inelastic cross-sections of low energy e 40 // for the simulation of heavy ion trac 41 // NSS Conf. Record 2010, pp. 80-85 42 // https://doi.org/10.1109/NSSMIC. 43 // 44 // - A.Valentin, M. Raine, M.Gaillardin, 45 // Geant4 physics processes for microdo 46 // very low energy electromagnetic mode 47 // https://doi.org/10.1016/j.nimb. 48 // NIM B, vol. 288, pp. 66-73, 2012, pa 49 // heavy ions in Si, NIM B, vol. 287, p 50 // https://doi.org/10.1016/j.nimb. 51 // 52 // - M. Raine, M. Gaillardin, P. Paillet 53 // Geant4 physics processes for silicon 54 // Improvements and extension of the en 55 // NIM B, vol. 325, pp. 97-100, 2014 56 // https://doi.org/10.1016/j.nimb. 57 // 58 // - J. Pierron, C. Inguimbert, M. Belhaj 59 // Electron emission yield for low ener 60 // Monte Carlo simulation and experimen 61 // Journal of Applied Physics 121 (2017 62 // https://doi.org/10.1063/1.498 63 // 64 // - P. Caron, 65 // Study of Electron-Induced Single-Eve 66 // PHD, 16th October 2019 67 // 68 // - Q.Gibaru, C.Inguimbert, P.Caron, M.Raine 69 // Geant4 physics processes for microdo 70 // Extension of MicroElec to very low e 71 // NIM B, 2020, in review. 72 // 73 // 74 //....oooOO0OOooo........oooOO0OOooo........oo 75 76 #ifndef G4MICROELECINELASTICMODEL_NEW_HH 77 #define G4MICROELECINELASTICMODEL_NEW_HH 1 78 79 #include "globals.hh" 80 #include "G4VEmModel.hh" 81 #include "G4ParticleChangeForGamma.hh" 82 #include "G4ProductionCutsTable.hh" 83 #include "G4MicroElecMaterialStructure.hh" 84 #include "G4MicroElecCrossSectionDataSet_new.h 85 #include "G4Electron.hh" 86 #include "G4Proton.hh" 87 #include "G4GenericIon.hh" 88 #include "G4ParticleDefinition.hh" 89 #include "G4LogLogInterpolation.hh" 90 #include "G4VAtomDeexcitation.hh" 91 #include "G4NistManager.hh" 92 93 class G4MicroElecInelasticModel_new : public G 94 { 95 96 public: 97 explicit G4MicroElecInelasticModel_new(const 98 const G4String& nam = "MicroElecInelas 99 ~G4MicroElecInelasticModel_new() override; 100 101 void Initialise(const G4ParticleDefinition*, 102 103 G4double CrossSectionPerVolume(const G4Mater 104 const G4ParticleDefinition* p, 105 G4double ekin, 106 G4double emin, 107 G4double emax) override; 108 109 void SampleSecondaries(std::vector<G4Dynamic 110 const G4MaterialCutsCouple*, 111 const G4DynamicParticle*, 112 G4double tmin, 113 G4double maxEnergy) override; 114 115 G4double DifferentialCrossSection(const G4Pa 116 G4double k 117 118 G4double ComputeRelativistVelocity(G4double 119 120 G4double ComputeElasticQmax(G4double T1i, G4 121 122 G4double BKZ(G4double Ep, G4double mp, G4int 123 // compute the effective charge according Br 124 125 G4double stepFunc(G4double x); 126 G4double vrkreussler(G4double v, G4double vF 127 128 G4MicroElecInelasticModel_new & operator=(co 129 G4MicroElecInelasticModel_new(const G4Micro 130 131 private: 132 // 133 // private methods 134 // 135 G4int RandomSelect(G4double energy,const G4S 136 137 G4double RandomizeCreatedElectronEnergy(G4do 138 139 G4double RandomizeEjectedElectronEnergy(cons 140 G4double incomingParticleEnergy, G 141 G4double originalMass, G4int origi 142 143 G4double RandomizeEjectedElectronEnergyFromC 144 G4double k, G4int shell); 145 146 G4double TransferedEnergy(const G4ParticleDe 147 G4int ionizationLevelIndex, G4double 148 149 G4double Interpolate(G4double e1, G4double e 150 151 G4double QuadInterpolator( G4double e11, G4d 152 G4double x11, G4double x12, G4doubl 153 G4double t1, G4double t2, G4doubl 154 // 155 // private elements 156 // 157 G4ParticleChangeForGamma* fParticleChangeFor 158 159 //deexcitation manager to produce fluo photn 160 G4VAtomDeexcitation* fAtomDeexcitation = nul 161 G4Material* nistSi = nullptr; 162 G4MicroElecMaterialStructure* currentMateria 163 164 typedef std::map<G4String,G4String,std::less 165 typedef std::map<G4String,G4MicroElecCrossSe 166 typedef std::map<G4double, std::map<G4double 167 typedef std::map<G4double, std::vector<G4dou 168 169 //Tables for multilayers 170 typedef std::map<G4String, MapData*, std::le 171 TCSMap tableTCS; //TCS tables by particle 172 typedef std::map<G4String, std::vector<TriDi 173 dataDiffCSMap eDiffDatatable, pDiffDatatable 174 dataDiffCSMap eNrjTransStorage, pNrjTransSto 175 typedef std::map<G4String, std::vector<VecMa 176 dataProbaShellMap eProbaShellStorage, pProba 177 typedef std::map<G4String, std::vector<G4dou 178 incidentEnergyMap eIncidentEnergyStorage, pI 179 typedef std::map<G4String, VecMap* > TranfEn 180 TranfEnergyMap eVecmStorage, pVecmStorage; / 181 typedef std::map<G4String, G4MicroElecMateri 182 MapStructure tableMaterialsStructures; //Str 183 184 G4String currentMaterial = ""; 185 std::map<G4String,G4double,std::less<G4Strin 186 std::map<G4String,G4double,std::less<G4Strin 187 188 G4int verboseLevel; 189 G4bool isInitialised ; 190 G4bool fasterCode; 191 G4bool SEFromFermiLevel; 192 193 }; 194 195 #endif 196