Geant4 Cross Reference |
1 // 1 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the result 19 // * technical work of the GEANT4 collaboratio 20 // * By using, copying, modifying or distri 21 // * any work based on the software) you ag 22 // * use in resulting scientific publicati 23 // * acceptance of all terms of the Geant4 Sof 24 // ******************************************* 25 // 26 // 27 // ------------ G4GammaConversionToMuo 28 // by H.Burkhardt, S. Kelner and R. Ko 29 // 30 // 31 // 07-08-02: missprint in OR condition in DoIt 32 // 25-10-04: migrade to new interfaces of Part 33 // ------------------------------------------- 34 35 #include "G4GammaConversionToMuons.hh" 36 37 #include "G4BetheHeitler5DModel.hh" 38 #include "G4Electron.hh" 39 #include "G4EmParameters.hh" 40 #include "G4EmProcessSubType.hh" 41 #include "G4Exp.hh" 42 #include "G4Gamma.hh" 43 #include "G4Log.hh" 44 #include "G4LossTableManager.hh" 45 #include "G4MuonMinus.hh" 46 #include "G4MuonPlus.hh" 47 #include "G4NistManager.hh" 48 #include "G4PhysicalConstants.hh" 49 #include "G4Positron.hh" 50 #include "G4ProductionCutsTable.hh" 51 #include "G4SystemOfUnits.hh" 52 #include "G4UnitsTable.hh" 53 54 //....oooOO0OOooo........oooOO0OOooo........oo 55 56 static const G4double sqrte = std::sqrt(std::e 57 static const G4double PowSat = -0.88; 58 59 G4GammaConversionToMuons::G4GammaConversionToM 60 G4ProcessType type) 61 : G4VDiscreteProcess (processName, type), 62 Mmuon(G4MuonPlus::MuonPlus()->GetPDGMass() 63 Rc(CLHEP::elm_coupling / Mmuon), 64 LimitEnergy(5. * Mmuon), 65 LowestEnergyLimit(2. * Mmuon), 66 HighestEnergyLimit(1e12 * CLHEP::GeV), // 67 theGamma(G4Gamma::Gamma()), 68 theMuonPlus(G4MuonPlus::MuonPlus()), 69 theMuonMinus(G4MuonMinus::MuonMinus()) 70 { 71 SetProcessSubType(fGammaConversionToMuMu); 72 fManager = G4LossTableManager::Instance(); 73 fManager->Register(this); 74 } 75 76 //....oooOO0OOooo........oooOO0OOooo........oo 77 78 G4GammaConversionToMuons::~G4GammaConversionTo 79 { 80 fManager->DeRegister(this); 81 } 82 83 //....oooOO0OOooo........oooOO0OOooo........oo 84 85 G4bool G4GammaConversionToMuons::IsApplicable( 86 { 87 return (&part == theGamma); 88 } 89 90 //....oooOO0OOooo........oooOO0OOooo........oo 91 92 void G4GammaConversionToMuons::BuildPhysicsTab 93 { 94 Energy5DLimit = G4EmParameters::Instance()-> 95 96 auto table = G4Material::GetMaterialTable(); 97 std::size_t nelm = 0; 98 for (auto const& mat : *table) { 99 std::size_t n = mat->GetNumberOfElements() 100 nelm = std::max(nelm, n); 101 } 102 temp.resize(nelm, 0); 103 104 if (Energy5DLimit > 0.0 && nullptr != f5Dmod 105 f5Dmodel = new G4BetheHeitler5DModel(); 106 f5Dmodel->SetLeptonPair(theMuonPlus, theMu 107 const std::size_t numElems = G4ProductionC 108 const G4DataVector cuts(numElems); 109 f5Dmodel->Initialise(&p, cuts); 110 } 111 PrintInfoDefinition(); 112 } 113 114 //....oooOO0OOooo........oooOO0OOooo........oo 115 116 G4double G4GammaConversionToMuons::GetMeanFree 117 118 // returns the photon mean free path in GEANT4 119 { 120 const G4DynamicParticle* aDynamicGamma = aTr 121 G4double GammaEnergy = aDynamicGamma->GetKin 122 const G4Material* aMaterial = aTrack.GetMate 123 return ComputeMeanFreePath(GammaEnergy, aMat 124 } 125 126 //....oooOO0OOooo........oooOO0OOooo........oo 127 128 G4double 129 G4GammaConversionToMuons::ComputeMeanFreePath( 130 131 132 // computes and returns the photon mean free p 133 { 134 if(GammaEnergy <= LowestEnergyLimit) { retur 135 const G4ElementVector* theElementVector = aM 136 const G4double* NbOfAtomsPerVolume = aMateri 137 138 G4double SIGMA = 0.0; 139 G4double fact = 1.0; 140 G4double e = GammaEnergy; 141 // low energy approximation as in Bethe-Heit 142 if(e < LimitEnergy) { 143 G4double y = (e - LowestEnergyLimit)/(Limi 144 fact = y*y; 145 e = LimitEnergy; 146 } 147 148 for ( std::size_t i=0 ; i < aMaterial->GetNu 149 { 150 SIGMA += NbOfAtomsPerVolume[i] * fact * 151 ComputeCrossSectionPerAtom(e, (*theEleme 152 } 153 return (SIGMA > 0.0) ? 1./SIGMA : DBL_MAX; 154 } 155 156 //....oooOO0OOooo........oooOO0OOooo........oo 157 158 G4double G4GammaConversionToMuons::GetCrossSec 159 const G4Dyn 160 const G4Ele 161 162 // gives the total cross section per atom in G 163 { 164 return ComputeCrossSectionPerAtom(aDynamicG 165 anElement 166 } 167 168 //....oooOO0OOooo........oooOO0OOooo........oo 169 170 G4double G4GammaConversionToMuons::ComputeCros 171 G4double Egam, G4int 172 173 // Calculates the microscopic cross section in 174 // Total cross section parametrisation from H. 175 // It gives a good description at any energy ( 176 { 177 if(Egam <= LowestEnergyLimit) { return 0.0; 178 179 G4NistManager* nist = G4NistManager::Instanc 180 181 G4double PowThres, Ecor, B, Dn, Zthird, Winf 182 183 if (Z == 1) { // special case of Hydrogen 184 B = 202.4; 185 Dn = 1.49; 186 } 187 else { 188 B = 183.; 189 Dn = 1.54 * nist->GetA27(Z); 190 } 191 Zthird = 1. / nist->GetZ13(Z); // Z**(-1/3) 192 Winfty = B * Zthird * Mmuon / (Dn * electron 193 WMedAppr = 1. / (4. * Dn * sqrte * Mmuon); 194 Wsatur = Winfty / WMedAppr; 195 sigfac = 4. * fine_structure_const * Z * Z * 196 PowThres = 1.479 + 0.00799 * Dn; 197 Ecor = -18. + 4347. / (B * Zthird); 198 199 G4double CorFuc = 1. + .04 * G4Log(1. + Ecor 200 G4double Eg = 201 G4Exp(G4Log(1. - 4. * Mmuon / Egam) * PowT 202 * G4Exp(G4Log(G4Exp(G4Log(Wsatur) * PowSat 203 204 G4double CrossSection = 7. / 9. * sigfac * G 205 CrossSection *= CrossSecFactor; // increase 206 return CrossSection; 207 } 208 209 //....oooOO0OOooo........oooOO0OOooo........oo 210 211 void G4GammaConversionToMuons::SetCrossSecFact 212 // Set the factor to artificially increase the 213 { 214 if (fac < 0.0) return; 215 CrossSecFactor = fac; 216 if (verboseLevel > 1) { 217 G4cout << "The cross section for GammaConv 218 << "increased by the CrossSecFactor 219 } 220 } 221 222 //....oooOO0OOooo........oooOO0OOooo........oo 223 224 G4VParticleChange* G4GammaConversionToMuons::P 225 226 227 // 228 // generation of gamma->mu+mu- 229 // 230 { 231 aParticleChange.Initialize(aTrack); 232 const G4Material* aMaterial = aTrack.GetMate 233 234 // current Gamma energy and direction, retur 235 const G4DynamicParticle* aDynamicGamma = aTr 236 G4double Egam = aDynamicGamma->GetKineticEne 237 if (Egam <= LowestEnergyLimit) { 238 return G4VDiscreteProcess::PostStepDoIt(aT 239 } 240 // 241 // Kill the incident photon 242 // 243 aParticleChange.ProposeMomentumDirection( 0. 244 aParticleChange.ProposeEnergy( 0. ) ; 245 aParticleChange.ProposeTrackStatus( fStopAnd 246 247 if (Egam <= Energy5DLimit) { 248 std::vector<G4DynamicParticle*> fvect; 249 f5Dmodel->SampleSecondaries(&fvect, aTrack 250 aTrack.GetDynamicParticle(), 0.0, DBL_ 251 for(auto dp : fvect) { aParticleChange.Add 252 return G4VDiscreteProcess::PostStepDoIt(aT 253 } 254 255 G4ParticleMomentum GammaDirection = aDynamic 256 257 // select randomly one element constituting 258 const G4Element* anElement = SelectRandomAto 259 G4int Z = anElement->GetZasInt(); 260 G4NistManager* nist = G4NistManager::Instanc 261 262 G4double B, Dn; 263 G4double A027 = nist->GetA27(Z); 264 265 if (Z == 1) { // special case of Hydrogen 266 B = 202.4; 267 Dn = 1.49; 268 } 269 else { 270 B = 183.; 271 Dn = 1.54 * A027; 272 } 273 G4double Zthird = 1. / nist->GetZ13(Z); // 274 G4double Winfty = B * Zthird * Mmuon / (Dn * 275 276 G4double C1Num = 0.138 * A027; 277 G4double C1Num2 = C1Num * C1Num; 278 G4double C2Term2 = electron_mass_c2 / (183. 279 280 G4double GammaMuonInv = Mmuon / Egam; 281 282 // generate xPlus according to the different 283 G4double xmin = (Egam <= LimitEnergy) ? 0.5 284 G4double xmax = 1. - xmin; 285 286 G4double Ds2 = (Dn * sqrte - 2.); 287 G4double sBZ = sqrte * B * Zthird / electron 288 G4double LogWmaxInv = 289 1. / G4Log(Winfty * (1. + 2. * Ds2 * Gamma 290 G4double xPlus = 0.5; 291 G4double xMinus = 0.5; 292 G4double xPM = 0.25; 293 294 G4int nn = 0; 295 const G4int nmax = 1000; 296 297 // sampling for Egam > LimitEnergy 298 if (xmin < 0.5) { 299 G4double result, W; 300 do { 301 xPlus = xmin + G4UniformRand() * (xmax - 302 xMinus = 1. - xPlus; 303 xPM = xPlus * xMinus; 304 G4double del = Mmuon * Mmuon / (2. * Ega 305 W = Winfty * (1. + Ds2 * del / Mmuon) / 306 G4double xxp = 1. - 4. / 3. * xPM; // t 307 result = (xxp > 0.) ? xxp * G4Log(W) * L 308 if (result > 1.) { 309 G4cout << "G4GammaConversionToMuons::P 310 << " in dSigxPlusGen, result=" 311 } 312 ++nn; 313 if(nn >= nmax) { break; } 314 } 315 // Loop checking, 07-Aug-2015, Vladimir Iv 316 while (G4UniformRand() > result); 317 } 318 319 // now generate the angular variables via th 320 G4double t; 321 G4double psi; 322 G4double rho; 323 324 G4double a3 = (GammaMuonInv / (2. * xPM)); 325 G4double a33 = a3 * a3; 326 G4double f1; 327 G4double b1 = 1./(4.*C1Num2); 328 G4double b3 = b1*b1*b1; 329 G4double a21 = a33 + b1; 330 331 G4double f1_max=-(1.-xPM)*(2.*b1+(a21+a33)*G 332 333 G4double thetaPlus,thetaMinus,phiHalf; // fi 334 nn = 0; 335 // t, psi, rho generation start (while angl 336 do { 337 //generate t by the rejection method 338 do { 339 ++nn; 340 t=G4UniformRand(); 341 G4double a34=a33/(t*t); 342 G4double a22 = a34 + b1; 343 if(std::abs(b1)<0.0001*a34) { 344 // special case of a34=a22 because of 345 f1=(1.-2.*xPM+4.*xPM*t*(1.-t))/(12.*a3 346 } 347 else { 348 f1=-(1.-2.*xPM+4.*xPM*t*(1.-t))*(2.*b1 349 } 350 if (f1 < 0.0 || f1 > f1_max) { // shoul 351 G4cout << "G4GammaConversionToMuons::P 352 << "outside allowed range f1=" << f1 353 << " is set to zero, a34 = "<< a34 << 354 << G4endl; 355 f1 = 0.0; 356 } 357 if(nn > nmax) { break; } 358 // Loop checking, 07-Aug-2015, Vladimir 359 } while ( G4UniformRand()*f1_max > f1); 360 // generate psi by the rejection method 361 G4double f2_max=1.-2.*xPM*(1.-4.*t*(1.-t)) 362 // long version 363 G4double f2; 364 do { 365 ++nn; 366 psi=twopi*G4UniformRand(); 367 f2=1.-2.*xPM+4.*xPM*t*(1.-t)*(1.+std::co 368 if(f2<0 || f2> f2_max) { // should never 369 G4cout << "G4GammaConversionToMuons::P 370 << "outside allowed range f2=" 371 f2 = 0.0; 372 } 373 if(nn >= nmax) { break; } 374 // Loop checking, 07-Aug-2015, Vladimir 375 } while ( G4UniformRand()*f2_max > f2); 376 377 // generate rho by direct transformation 378 G4double C2Term1=GammaMuonInv/(2.*xPM*t); 379 G4double C22 = C2Term1*C2Term1+C2Term2*C2T 380 G4double C2=4.*C22*C22/std::sqrt(xPM); 381 G4double rhomax=(1./t-1.)*1.9/A027; 382 G4double beta=G4Log( (C2+rhomax*rhomax*rho 383 rho=G4Exp(G4Log(C2 *( G4Exp(beta*G4Uniform 384 385 //now get from t and psi the kinematical v 386 G4double u=std::sqrt(1./t-1.); 387 G4double xiHalf=0.5*rho*std::cos(psi); 388 phiHalf=0.5*rho/u*std::sin(psi); 389 390 thetaPlus =GammaMuonInv*(u+xiHalf)/xPlus; 391 thetaMinus=GammaMuonInv*(u-xiHalf)/xMinus; 392 393 // protection against infinite loop 394 if(nn > nmax) { 395 if(std::abs(thetaPlus)>pi) { thetaPlus = 396 if(std::abs(thetaMinus)>pi) { thetaMinus 397 } 398 399 // Loop checking, 07-Aug-2015, Vladimir Iv 400 } while ( std::abs(thetaPlus)>pi || std::abs 401 402 // now construct the vectors 403 // azimuthal symmetry, take phi0 at random b 404 G4double phi0=twopi*G4UniformRand(); 405 G4double EPlus=xPlus*Egam; 406 G4double EMinus=xMinus*Egam; 407 408 // mu+ mu- directions for gamma in z-directi 409 G4ThreeVector MuPlusDirection ( std::sin(th 410 std::sin(thetaPlus) *std:: 411 G4ThreeVector MuMinusDirection (-std::sin(th 412 -std::sin(thetaMinus) *std:: 413 // rotate to actual gamma direction 414 MuPlusDirection.rotateUz(GammaDirection); 415 MuMinusDirection.rotateUz(GammaDirection); 416 417 // create G4DynamicParticle object for the p 418 auto aParticle1 = new G4DynamicParticle(theM 419 aParticleChange.AddSecondary(aParticle1); 420 // create G4DynamicParticle object for the p 421 auto aParticle2 = new G4DynamicParticle(theM 422 aParticleChange.AddSecondary(aParticle2); 423 // Reset NbOfInteractionLengthLeft and retu 424 return G4VDiscreteProcess::PostStepDoIt( aTr 425 } 426 427 //....oooOO0OOooo........oooOO0OOooo........oo 428 429 const G4Element* G4GammaConversionToMuons::Sel 430 const G4DynamicParticle* aDynamicGamma, 431 const G4Material* aMaterial) 432 { 433 // select randomly 1 element within the mate 434 435 const std::size_t NumberOfElements = aM 436 const G4ElementVector* theElementVector = aM 437 const G4Element* elm = (*theElementVector)[0 438 439 if (NumberOfElements > 1) { 440 G4double e = std::max(aDynamicGamma->GetKi 441 const G4double* natom = aMaterial->GetVecN 442 443 G4double sum = 0.; 444 for (std::size_t i=0; i<NumberOfElements; 445 elm = (*theElementVector)[i]; 446 sum += natom[i]*ComputeCrossSectionPerAt 447 temp[i] = sum; 448 } 449 sum *= G4UniformRand(); 450 for (std::size_t i=0; i<NumberOfElements; 451 if(sum <= temp[i]) { 452 elm = (*theElementVector)[i]; 453 break; 454 } 455 } 456 } 457 return elm; 458 } 459 460 //....oooOO0OOooo........oooOO0OOooo........oo 461 462 void G4GammaConversionToMuons::PrintInfoDefini 463 { 464 G4String comments = "gamma->mu+mu- Bethe Hei 465 G4cout << G4endl << GetProcessName() << ": 466 G4cout << " good cross section parame 467 << G4BestUnit(LowestEnergyLimit, "Ene 468 << " GeV for all Z." << G4endl; 469 G4cout << " cross section factor: " < 470 } 471 472 //....oooOO0OOooo........oooOO0OOooo........oo 473