Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/highenergy/src/G4GammaConversionToMuons.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/highenergy/src/G4GammaConversionToMuons.cc (Version 11.3.0) and /processes/electromagnetic/highenergy/src/G4GammaConversionToMuons.cc (Version 11.0.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
 27 //         ------------ G4GammaConversionToMuo     27 //         ------------ G4GammaConversionToMuons physics process ------
 28 //         by H.Burkhardt, S. Kelner and R. Ko     28 //         by H.Burkhardt, S. Kelner and R. Kokoulin, April 2002
 29 //                                                 29 //
 30 //                                                 30 //
 31 // 07-08-02: missprint in OR condition in DoIt     31 // 07-08-02: missprint in OR condition in DoIt : f1<0 || f1>f1_max ..etc ...
 32 // 25-10-04: migrade to new interfaces of Part     32 // 25-10-04: migrade to new interfaces of ParticleChange (vi)
 33 // -------------------------------------------     33 // ---------------------------------------------------------------------------
 34                                                    34 
 35 #include "G4GammaConversionToMuons.hh"             35 #include "G4GammaConversionToMuons.hh"
 36                                                <<  36 #include "G4PhysicalConstants.hh"
 37 #include "G4BetheHeitler5DModel.hh"            <<  37 #include "G4SystemOfUnits.hh"
 38 #include "G4Electron.hh"                       <<  38 #include "G4UnitsTable.hh"
 39 #include "G4EmParameters.hh"                   <<  39 #include "G4MuonPlus.hh"
                                                   >>  40 #include "G4MuonMinus.hh"
 40 #include "G4EmProcessSubType.hh"                   41 #include "G4EmProcessSubType.hh"
 41 #include "G4Exp.hh"                            <<  42 #include "G4EmParameters.hh"
 42 #include "G4Gamma.hh"                          << 
 43 #include "G4Log.hh"                            << 
 44 #include "G4LossTableManager.hh"                   43 #include "G4LossTableManager.hh"
 45 #include "G4MuonMinus.hh"                      <<  44 #include "G4BetheHeitler5DModel.hh"
 46 #include "G4MuonPlus.hh"                       <<  45 #include "G4Gamma.hh"
 47 #include "G4NistManager.hh"                    <<  46 #include "G4Electron.hh"
 48 #include "G4PhysicalConstants.hh"              << 
 49 #include "G4Positron.hh"                           47 #include "G4Positron.hh"
                                                   >>  48 #include "G4NistManager.hh"
                                                   >>  49 #include "G4Log.hh"
                                                   >>  50 #include "G4Exp.hh"
 50 #include "G4ProductionCutsTable.hh"                51 #include "G4ProductionCutsTable.hh"
 51 #include "G4SystemOfUnits.hh"                  << 
 52 #include "G4UnitsTable.hh"                     << 
 53                                                    52 
 54 //....oooOO0OOooo........oooOO0OOooo........oo     53 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
 55                                                    54 
 56 static const G4double sqrte = std::sqrt(std::e <<  55 using namespace std;
 57 static const G4double PowSat = -0.88;          <<  56 
                                                   >>  57 static const G4double sqrte=sqrt(exp(1.));
                                                   >>  58 static const G4double PowSat=-0.88;
 58                                                    59 
 59 G4GammaConversionToMuons::G4GammaConversionToM     60 G4GammaConversionToMuons::G4GammaConversionToMuons(const G4String& processName,
 60                G4ProcessType type)                 61                G4ProcessType type)
 61   : G4VDiscreteProcess (processName, type),        62   : G4VDiscreteProcess (processName, type),
 62     Mmuon(G4MuonPlus::MuonPlus()->GetPDGMass()     63     Mmuon(G4MuonPlus::MuonPlus()->GetPDGMass()),
 63     Rc(CLHEP::elm_coupling / Mmuon),           <<  64     Rc(CLHEP::elm_coupling/Mmuon),
 64     LimitEnergy(5. * Mmuon),                   <<  65     LimitEnergy (5.*Mmuon), 
 65     LowestEnergyLimit(2. * Mmuon),             <<  66     LowestEnergyLimit (2.*Mmuon), 
 66     HighestEnergyLimit(1e12 * CLHEP::GeV),  // <<  67     HighestEnergyLimit(1e12*CLHEP::GeV), // ok to 1e12GeV, then LPM suppression
 67     theGamma(G4Gamma::Gamma()),                    68     theGamma(G4Gamma::Gamma()),
 68     theMuonPlus(G4MuonPlus::MuonPlus()),           69     theMuonPlus(G4MuonPlus::MuonPlus()),
 69     theMuonMinus(G4MuonMinus::MuonMinus())         70     theMuonMinus(G4MuonMinus::MuonMinus())
 70 {                                              <<  71 { 
 71   SetProcessSubType(fGammaConversionToMuMu);       72   SetProcessSubType(fGammaConversionToMuMu);
 72   fManager = G4LossTableManager::Instance();       73   fManager = G4LossTableManager::Instance();
 73   fManager->Register(this);                        74   fManager->Register(this);
 74 }                                                  75 }
 75                                                    76 
 76 //....oooOO0OOooo........oooOO0OOooo........oo     77 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
 77                                                    78 
 78 G4GammaConversionToMuons::~G4GammaConversionTo <<  79 G4GammaConversionToMuons::~G4GammaConversionToMuons() 
 79 {                                                  80 {
 80   fManager->DeRegister(this);                      81   fManager->DeRegister(this);
 81 }                                                  82 }
 82                                                    83 
 83 //....oooOO0OOooo........oooOO0OOooo........oo     84 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
 84                                                    85 
 85 G4bool G4GammaConversionToMuons::IsApplicable(     86 G4bool G4GammaConversionToMuons::IsApplicable(const G4ParticleDefinition& part)
 86 {                                                  87 {
 87   return (&part == theGamma);                      88   return (&part == theGamma);
 88 }                                                  89 }
 89                                                    90 
 90 //....oooOO0OOooo........oooOO0OOooo........oo     91 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 91                                                    92 
 92 void G4GammaConversionToMuons::BuildPhysicsTab     93 void G4GammaConversionToMuons::BuildPhysicsTable(const G4ParticleDefinition& p)
 93 {                                              <<  94 // Build cross section and mean free path tables
                                                   >>  95 {  //here no tables, just calling PrintInfoDefinition
 94   Energy5DLimit = G4EmParameters::Instance()->     96   Energy5DLimit = G4EmParameters::Instance()->MaxEnergyFor5DMuPair();
 95                                                <<  97   if(Energy5DLimit > 0.0 && nullptr != f5Dmodel) { 
 96   auto table = G4Material::GetMaterialTable(); << 
 97   std::size_t nelm = 0;                        << 
 98   for (auto const& mat : *table) {             << 
 99     std::size_t n = mat->GetNumberOfElements() << 
100     nelm = std::max(nelm, n);                  << 
101   }                                            << 
102   temp.resize(nelm, 0);                        << 
103                                                << 
104   if (Energy5DLimit > 0.0 && nullptr != f5Dmod << 
105     f5Dmodel = new G4BetheHeitler5DModel();        98     f5Dmodel = new G4BetheHeitler5DModel();
106     f5Dmodel->SetLeptonPair(theMuonPlus, theMu     99     f5Dmodel->SetLeptonPair(theMuonPlus, theMuonMinus);
107     const std::size_t numElems = G4ProductionC << 100     const size_t numElems = G4ProductionCutsTable::GetProductionCutsTable()->GetTableSize();
108     const G4DataVector cuts(numElems);            101     const G4DataVector cuts(numElems);
109     f5Dmodel->Initialise(&p, cuts);               102     f5Dmodel->Initialise(&p, cuts);
110   }                                               103   }
111   PrintInfoDefinition();                          104   PrintInfoDefinition();
112 }                                                 105 }
113                                                   106 
114 //....oooOO0OOooo........oooOO0OOooo........oo    107 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
115                                                   108 
116 G4double G4GammaConversionToMuons::GetMeanFree << 109 G4double G4GammaConversionToMuons::GetMeanFreePath(const G4Track& aTrack,
117                                                << 110                                                    G4double, G4ForceCondition*)
                                                   >> 111 
118 // returns the photon mean free path in GEANT4    112 // returns the photon mean free path in GEANT4 internal units
                                                   >> 113 // (MeanFreePath is a private member of the class)
                                                   >> 114 
119 {                                                 115 {
120   const G4DynamicParticle* aDynamicGamma = aTr << 116    const G4DynamicParticle* aDynamicGamma = aTrack.GetDynamicParticle();
121   G4double GammaEnergy = aDynamicGamma->GetKin << 117    G4double GammaEnergy = aDynamicGamma->GetKineticEnergy();
122   const G4Material* aMaterial = aTrack.GetMate << 118    const G4Material* aMaterial = aTrack.GetMaterial();
123   return ComputeMeanFreePath(GammaEnergy, aMat << 119    return ComputeMeanFreePath(GammaEnergy, aMaterial);
124 }                                                 120 }
125                                                   121 
126 //....oooOO0OOooo........oooOO0OOooo........oo    122 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
127                                                   123 
128 G4double                                          124 G4double 
129 G4GammaConversionToMuons::ComputeMeanFreePath(    125 G4GammaConversionToMuons::ComputeMeanFreePath(G4double GammaEnergy,
130                                                   126                                               const G4Material* aMaterial)
131                                                   127 
132 // computes and returns the photon mean free p    128 // computes and returns the photon mean free path in GEANT4 internal units
133 {                                                 129 {
134   if(GammaEnergy <= LowestEnergyLimit) { retur    130   if(GammaEnergy <= LowestEnergyLimit) { return DBL_MAX; }
135   const G4ElementVector* theElementVector = aM    131   const G4ElementVector* theElementVector = aMaterial->GetElementVector();
136   const G4double* NbOfAtomsPerVolume = aMateri    132   const G4double* NbOfAtomsPerVolume = aMaterial->GetVecNbOfAtomsPerVolume();
137                                                   133 
138   G4double SIGMA = 0.0;                           134   G4double SIGMA = 0.0;
139   G4double fact  = 1.0;                           135   G4double fact  = 1.0;
140   G4double e = GammaEnergy;                       136   G4double e = GammaEnergy;
141   // low energy approximation as in Bethe-Heit    137   // low energy approximation as in Bethe-Heitler model
142   if(e < LimitEnergy) {                           138   if(e < LimitEnergy) {
143     G4double y = (e - LowestEnergyLimit)/(Limi    139     G4double y = (e - LowestEnergyLimit)/(LimitEnergy - LowestEnergyLimit);
144     fact = y*y;                                   140     fact = y*y;
145     e = LimitEnergy;                              141     e = LimitEnergy;
146   }                                               142   } 
147                                                   143 
148   for ( std::size_t i=0 ; i < aMaterial->GetNu << 144   for ( size_t i=0 ; i < aMaterial->GetNumberOfElements(); ++i)
149   {                                               145   {
150     SIGMA += NbOfAtomsPerVolume[i] * fact *       146     SIGMA += NbOfAtomsPerVolume[i] * fact *
151       ComputeCrossSectionPerAtom(e, (*theEleme    147       ComputeCrossSectionPerAtom(e, (*theElementVector)[i]->GetZasInt());
152   }                                               148   }
153   return (SIGMA > 0.0) ? 1./SIGMA : DBL_MAX;      149   return (SIGMA > 0.0) ? 1./SIGMA : DBL_MAX;
154 }                                                 150 }
155                                                   151 
156 //....oooOO0OOooo........oooOO0OOooo........oo    152 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
157                                                   153 
158 G4double G4GammaConversionToMuons::GetCrossSec    154 G4double G4GammaConversionToMuons::GetCrossSectionPerAtom(
159                                    const G4Dyn    155                                    const G4DynamicParticle* aDynamicGamma,
160                                    const G4Ele    156                                    const G4Element* anElement)
161                                                   157 
162 // gives the total cross section per atom in G    158 // gives the total cross section per atom in GEANT4 internal units
163 {                                                 159 {
164    return ComputeCrossSectionPerAtom(aDynamicG    160    return ComputeCrossSectionPerAtom(aDynamicGamma->GetKineticEnergy(),
165                                      anElement    161                                      anElement->GetZasInt());
166 }                                                 162 }
167                                                   163 
168 //....oooOO0OOooo........oooOO0OOooo........oo    164 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
169                                                   165 
170 G4double G4GammaConversionToMuons::ComputeCros    166 G4double G4GammaConversionToMuons::ComputeCrossSectionPerAtom(
171                          G4double Egam, G4int     167                          G4double Egam, G4int Z)
172                                                   168        
173 // Calculates the microscopic cross section in    169 // Calculates the microscopic cross section in GEANT4 internal units.
174 // Total cross section parametrisation from H.    170 // Total cross section parametrisation from H.Burkhardt
175 // It gives a good description at any energy (    171 // It gives a good description at any energy (from 0 to 10**21 eV)
176 {                                                 172 { 
177   if(Egam <= LowestEnergyLimit) { return 0.0;     173   if(Egam <= LowestEnergyLimit) { return 0.0; }
178                                                   174 
179   G4NistManager* nist = G4NistManager::Instanc    175   G4NistManager* nist = G4NistManager::Instance();
180                                                   176 
181   G4double PowThres, Ecor, B, Dn, Zthird, Winf << 177   G4double PowThres,Ecor,B,Dn,Zthird,Winfty,WMedAppr,
182                                                << 178     Wsatur,sigfac;
183   if (Z == 1) {  // special case of Hydrogen   << 179   
184     B = 202.4;                                 << 180   if(Z==1) // special case of Hydrogen
185     Dn = 1.49;                                 << 181     { B=202.4;
186   }                                            << 182       Dn=1.49;
187   else {                                       << 183     }
188     B = 183.;                                  << 184   else
189     Dn = 1.54 * nist->GetA27(Z);               << 185     { B=183.;
190   }                                            << 186       Dn=1.54*nist->GetA27(Z);
191   Zthird = 1. / nist->GetZ13(Z);  // Z**(-1/3) << 187     }
192   Winfty = B * Zthird * Mmuon / (Dn * electron << 188   Zthird=1./nist->GetZ13(Z); // Z**(-1/3)
193   WMedAppr = 1. / (4. * Dn * sqrte * Mmuon);   << 189   Winfty=B*Zthird*Mmuon/(Dn*electron_mass_c2);
194   Wsatur = Winfty / WMedAppr;                  << 190   WMedAppr=1./(4.*Dn*sqrte*Mmuon);
195   sigfac = 4. * fine_structure_const * Z * Z * << 191   Wsatur=Winfty/WMedAppr;
196   PowThres = 1.479 + 0.00799 * Dn;             << 192   sigfac=4.*fine_structure_const*Z*Z*Rc*Rc;
197   Ecor = -18. + 4347. / (B * Zthird);          << 193   PowThres=1.479+0.00799*Dn;
198                                                << 194   Ecor=-18.+4347./(B*Zthird);
199   G4double CorFuc = 1. + .04 * G4Log(1. + Ecor << 195   
200   G4double Eg =                                << 196   G4double CorFuc=1.+.04*G4Log(1.+Ecor/Egam);
201     G4Exp(G4Log(1. - 4. * Mmuon / Egam) * PowT << 197   //G4double Eg=pow(1.-4.*Mmuon/Egam,PowThres)*pow( pow(Wsatur,PowSat)+
202     * G4Exp(G4Log(G4Exp(G4Log(Wsatur) * PowSat << 198   //            pow(Egam,PowSat),1./PowSat); // threshold and saturation
203                                                << 199   G4double Eg=G4Exp(G4Log(1.-4.*Mmuon/Egam)*PowThres)*
204   G4double CrossSection = 7. / 9. * sigfac * G << 200     G4Exp(G4Log( G4Exp(G4Log(Wsatur)*PowSat)+G4Exp(G4Log(Egam)*PowSat))/PowSat);
205   CrossSection *= CrossSecFactor;  // increase << 201   G4double CrossSection=7./9.*sigfac*G4Log(1.+WMedAppr*CorFuc*Eg);
                                                   >> 202   CrossSection *= CrossSecFactor; // increase the CrossSection by  (by default 1)
206   return CrossSection;                            203   return CrossSection;
207 }                                                 204 }
208                                                   205 
209 //....oooOO0OOooo........oooOO0OOooo........oo    206 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
210                                                   207 
211 void G4GammaConversionToMuons::SetCrossSecFact    208 void G4GammaConversionToMuons::SetCrossSecFactor(G4double fac)
212 // Set the factor to artificially increase the    209 // Set the factor to artificially increase the cross section
213 {                                              << 210 { 
214   if (fac < 0.0) return;                       << 211   if(fac < 0.0) return;
215   CrossSecFactor = fac;                        << 212   CrossSecFactor=fac;
216   if (verboseLevel > 1) {                      << 213   G4cout << "The cross section for GammaConversionToMuons is artificially "
217     G4cout << "The cross section for GammaConv << 214          << "increased by the CrossSecFactor=" << CrossSecFactor << G4endl;
218            << "increased by the CrossSecFactor << 
219   }                                            << 
220 }                                                 215 }
221                                                   216 
222 //....oooOO0OOooo........oooOO0OOooo........oo    217 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
223                                                   218 
224 G4VParticleChange* G4GammaConversionToMuons::P    219 G4VParticleChange* G4GammaConversionToMuons::PostStepDoIt(
225                                                   220                                                         const G4Track& aTrack,
226                                                   221                                                         const G4Step&  aStep)
227 //                                                222 //
228 // generation of gamma->mu+mu-                    223 // generation of gamma->mu+mu-
229 //                                                224 //
230 {                                                 225 {
231   aParticleChange.Initialize(aTrack);             226   aParticleChange.Initialize(aTrack);
232   const G4Material* aMaterial = aTrack.GetMate    227   const G4Material* aMaterial = aTrack.GetMaterial();
233                                                   228 
234   // current Gamma energy and direction, retur    229   // current Gamma energy and direction, return if energy too low
235   const G4DynamicParticle* aDynamicGamma = aTr << 230   const G4DynamicParticle *aDynamicGamma = aTrack.GetDynamicParticle();
236   G4double Egam = aDynamicGamma->GetKineticEne    231   G4double Egam = aDynamicGamma->GetKineticEnergy();
237   if (Egam <= LowestEnergyLimit) {                232   if (Egam <= LowestEnergyLimit) {
238     return G4VDiscreteProcess::PostStepDoIt(aT    233     return G4VDiscreteProcess::PostStepDoIt(aTrack,aStep);
239   }                                               234   }
240   //                                              235   //
241   // Kill the incident photon                     236   // Kill the incident photon
242   //                                              237   //
243   aParticleChange.ProposeMomentumDirection( 0.    238   aParticleChange.ProposeMomentumDirection( 0., 0., 0. ) ;
244   aParticleChange.ProposeEnergy( 0. ) ;           239   aParticleChange.ProposeEnergy( 0. ) ;
245   aParticleChange.ProposeTrackStatus( fStopAnd    240   aParticleChange.ProposeTrackStatus( fStopAndKill ) ;
246                                                   241 
247   if (Egam <= Energy5DLimit) {                    242   if (Egam <= Energy5DLimit) {
248     std::vector<G4DynamicParticle*> fvect;        243     std::vector<G4DynamicParticle*> fvect;
249     f5Dmodel->SampleSecondaries(&fvect, aTrack    244     f5Dmodel->SampleSecondaries(&fvect, aTrack.GetMaterialCutsCouple(), 
250         aTrack.GetDynamicParticle(), 0.0, DBL_    245         aTrack.GetDynamicParticle(), 0.0, DBL_MAX);
                                                   >> 246     aParticleChange.SetNumberOfSecondaries(fvect.size());
251     for(auto dp : fvect) { aParticleChange.Add    247     for(auto dp : fvect) { aParticleChange.AddSecondary(dp); }
252     return G4VDiscreteProcess::PostStepDoIt(aT    248     return G4VDiscreteProcess::PostStepDoIt(aTrack,aStep);
253   }                                               249   }  
254                                                   250 
255   G4ParticleMomentum GammaDirection = aDynamic    251   G4ParticleMomentum GammaDirection = aDynamicGamma->GetMomentumDirection();
256                                                   252 
257   // select randomly one element constituting     253   // select randomly one element constituting the material
258   const G4Element* anElement = SelectRandomAto    254   const G4Element* anElement = SelectRandomAtom(aDynamicGamma, aMaterial);
259   G4int Z = anElement->GetZasInt();               255   G4int Z = anElement->GetZasInt();
260   G4NistManager* nist = G4NistManager::Instanc    256   G4NistManager* nist = G4NistManager::Instance();
261                                                   257 
262   G4double B, Dn;                              << 258   G4double B,Dn;
263   G4double A027 = nist->GetA27(Z);                259   G4double A027 = nist->GetA27(Z);
264                                                   260 
265   if (Z == 1) {  // special case of Hydrogen   << 261   if(Z==1) // special case of Hydrogen
266     B = 202.4;                                 << 262     { B=202.4;
267     Dn = 1.49;                                 << 263       Dn=1.49;
268   }                                            << 264     }
269   else {                                       << 265   else
270     B = 183.;                                  << 266     { B=183.;
271     Dn = 1.54 * A027;                          << 267       Dn=1.54*A027;
272   }                                            << 268     }
273   G4double Zthird = 1. / nist->GetZ13(Z);  //  << 269   G4double Zthird=1./nist->GetZ13(Z); // Z**(-1/3)
274   G4double Winfty = B * Zthird * Mmuon / (Dn * << 270   G4double Winfty=B*Zthird*Mmuon/(Dn*electron_mass_c2);
275                                                   271 
276   G4double C1Num = 0.138 * A027;               << 272   G4double C1Num=0.138*A027;
277   G4double C1Num2 = C1Num * C1Num;             << 273   G4double C1Num2=C1Num*C1Num;
278   G4double C2Term2 = electron_mass_c2 / (183.  << 274   G4double C2Term2=electron_mass_c2/(183.*Zthird*Mmuon);
279                                                   275 
280   G4double GammaMuonInv = Mmuon / Egam;        << 276   G4double GammaMuonInv=Mmuon/Egam;
281                                                   277 
282   // generate xPlus according to the different    278   // generate xPlus according to the differential cross section by rejection
283   G4double xmin = (Egam <= LimitEnergy) ? 0.5  << 279   G4double xmin=(Egam < LimitEnergy) ? GammaMuonInv : .5-sqrt(.25-GammaMuonInv);
284   G4double xmax = 1. - xmin;                   << 280   G4double xmax=1.-xmin;
285                                                << 
286   G4double Ds2 = (Dn * sqrte - 2.);            << 
287   G4double sBZ = sqrte * B * Zthird / electron << 
288   G4double LogWmaxInv =                        << 
289     1. / G4Log(Winfty * (1. + 2. * Ds2 * Gamma << 
290   G4double xPlus = 0.5;                        << 
291   G4double xMinus = 0.5;                       << 
292   G4double xPM = 0.25;                         << 
293                                                   281 
                                                   >> 282   G4double Ds2=(Dn*sqrte-2.);
                                                   >> 283   G4double sBZ=sqrte*B*Zthird/electron_mass_c2;
                                                   >> 284   G4double LogWmaxInv=1./G4Log(Winfty*(1.+2.*Ds2*GammaMuonInv)
                                                   >> 285              /(1.+2.*sBZ*Mmuon*GammaMuonInv));
                                                   >> 286   G4double xPlus,xMinus,xPM,result,W;
294   G4int nn = 0;                                   287   G4int nn = 0;
295   const G4int nmax = 1000;                        288   const G4int nmax = 1000;
296                                                << 289   do {
297   // sampling for Egam > LimitEnergy           << 290     xPlus=xmin+G4UniformRand()*(xmax-xmin);
298   if (xmin < 0.5) {                            << 291     xMinus=1.-xPlus;
299     G4double result, W;                        << 292     xPM=xPlus*xMinus;
300     do {                                       << 293     G4double del=Mmuon*Mmuon/(2.*Egam*xPM);
301       xPlus = xmin + G4UniformRand() * (xmax - << 294     W=Winfty*(1.+Ds2*del/Mmuon)/(1.+sBZ*del);
302       xMinus = 1. - xPlus;                     << 295     G4double xxp=1.-4./3.*xPM; // the main xPlus dependence
303       xPM = xPlus * xMinus;                    << 296     result=(xxp > 0.) ? xxp*G4Log(W)*LogWmaxInv : 0.0;
304       G4double del = Mmuon * Mmuon / (2. * Ega << 297     if(result>1.) {
305       W = Winfty * (1. + Ds2 * del / Mmuon) /  << 298       G4cout << "G4GammaConversionToMuons::PostStepDoIt WARNING:"
306       G4double xxp = 1. - 4. / 3. * xPM;  // t << 299        << " in dSigxPlusGen, result=" << result << " > 1" << G4endl;
307       result = (xxp > 0.) ? xxp * G4Log(W) * L << 
308       if (result > 1.) {                       << 
309         G4cout << "G4GammaConversionToMuons::P << 
310                << " in dSigxPlusGen, result="  << 
311       }                                        << 
312       ++nn;                                    << 
313       if(nn >= nmax) { break; }                << 
314     }                                             300     }
315     // Loop checking, 07-Aug-2015, Vladimir Iv << 301     ++nn;
316     while (G4UniformRand() > result);          << 302     if(nn >= nmax) { break; }
317   }                                               303   }
                                                   >> 304   // Loop checking, 07-Aug-2015, Vladimir Ivanchenko
                                                   >> 305   while (G4UniformRand() > result);
318                                                   306 
319   // now generate the angular variables via th    307   // now generate the angular variables via the auxilary variables t,psi,rho
320   G4double t;                                     308   G4double t;
321   G4double psi;                                   309   G4double psi;
322   G4double rho;                                   310   G4double rho;
323                                                   311 
324   G4double a3 = (GammaMuonInv / (2. * xPM));   << 312   G4double a3 = (GammaMuonInv/(2.*xPM));
325   G4double a33 = a3 * a3;                      << 313   G4double a33 = a3*a3;
326   G4double f1;                                    314   G4double f1;
327   G4double b1  = 1./(4.*C1Num2);                  315   G4double b1  = 1./(4.*C1Num2);
328   G4double b3  = b1*b1*b1;                        316   G4double b3  = b1*b1*b1;
329   G4double a21 = a33 + b1;                        317   G4double a21 = a33 + b1;
330                                                   318   
331   G4double f1_max=-(1.-xPM)*(2.*b1+(a21+a33)*G    319   G4double f1_max=-(1.-xPM)*(2.*b1+(a21+a33)*G4Log(a33/a21))/(2*b3);  
332                                                   320 
333   G4double thetaPlus,thetaMinus,phiHalf; // fi    321   G4double thetaPlus,thetaMinus,phiHalf; // final angular variables
334   nn = 0;                                         322   nn = 0;
335   // t, psi, rho generation start  (while angl    323   // t, psi, rho generation start  (while angle < pi)
336   do {                                            324   do {
337     //generate t by the rejection method          325     //generate t by the rejection method
338     do {                                          326     do { 
339       ++nn;                                       327       ++nn;
340       t=G4UniformRand();                          328       t=G4UniformRand();
341       G4double a34=a33/(t*t);                     329       G4double a34=a33/(t*t);
342       G4double a22 = a34 + b1;                    330       G4double a22 = a34 + b1;
343       if(std::abs(b1)<0.0001*a34) {            << 331       if(std::abs(b1)<0.0001*a34) 
344         // special case of a34=a22 because of  << 332   // special case of a34=a22 because of logarithm accuracy
345         f1=(1.-2.*xPM+4.*xPM*t*(1.-t))/(12.*a3 << 333   {
346       }                                        << 334     f1=(1.-2.*xPM+4.*xPM*t*(1.-t))/(12.*a34*a34*a34*a34);
347       else {                                   << 335   }
348         f1=-(1.-2.*xPM+4.*xPM*t*(1.-t))*(2.*b1 << 336       else
349       }                                        << 337   {
350       if (f1 < 0.0 || f1 > f1_max) {  // shoul << 338     f1=-(1.-2.*xPM+4.*xPM*t*(1.-t))*(2.*b1+(a22+a34)*G4Log(a34/a22))/(2*b3);      
351         G4cout << "G4GammaConversionToMuons::P << 339   }
352         << "outside allowed range f1=" << f1   << 340       if(f1<0.0 || f1> f1_max) // should never happend
353         << " is set to zero, a34 = "<< a34 <<  << 341   {
354         << G4endl;                             << 342     G4cout << "G4GammaConversionToMuons::PostStepDoIt WARNING:"
355         f1 = 0.0;                              << 343      << "outside allowed range f1=" << f1 
356       }                                        << 344      << " is set to zero, a34 = "<< a34 << " a22 = "<<a22<<"."
                                                   >> 345      << G4endl;
                                                   >> 346     f1 = 0.0;
                                                   >> 347   }
357       if(nn > nmax) { break; }                    348       if(nn > nmax) { break; }
358       // Loop checking, 07-Aug-2015, Vladimir     349       // Loop checking, 07-Aug-2015, Vladimir Ivanchenko  
359     } while ( G4UniformRand()*f1_max > f1);       350     } while ( G4UniformRand()*f1_max > f1);
360     // generate psi by the rejection method       351     // generate psi by the rejection method
361     G4double f2_max=1.-2.*xPM*(1.-4.*t*(1.-t))    352     G4double f2_max=1.-2.*xPM*(1.-4.*t*(1.-t));
362     // long version                               353     // long version
363     G4double f2;                                  354     G4double f2;
364     do {                                          355     do { 
365       ++nn;                                       356       ++nn;
366       psi=twopi*G4UniformRand();                  357       psi=twopi*G4UniformRand();
367       f2=1.-2.*xPM+4.*xPM*t*(1.-t)*(1.+std::co << 358       f2=1.-2.*xPM+4.*xPM*t*(1.-t)*(1.+cos(2.*psi));
368       if(f2<0 || f2> f2_max) { // should never << 359       if(f2<0 || f2> f2_max) // should never happend
369         G4cout << "G4GammaConversionToMuons::P << 360   {
370                << "outside allowed range f2="  << 361     G4cout << "G4GammaConversionToMuons::PostStepDoIt WARNING:"
371         f2 = 0.0;                              << 362      << "outside allowed range f2=" << f2 << " is set to zero"
372       }                                        << 363      << G4endl;
                                                   >> 364           f2 = 0.0;
                                                   >> 365   }
373       if(nn >= nmax) { break; }                   366       if(nn >= nmax) { break; }
374       // Loop checking, 07-Aug-2015, Vladimir     367       // Loop checking, 07-Aug-2015, Vladimir Ivanchenko
375     } while ( G4UniformRand()*f2_max > f2);       368     } while ( G4UniformRand()*f2_max > f2);
376                                                   369 
377     // generate rho by direct transformation      370     // generate rho by direct transformation
378     G4double C2Term1=GammaMuonInv/(2.*xPM*t);     371     G4double C2Term1=GammaMuonInv/(2.*xPM*t);
379     G4double C22 = C2Term1*C2Term1+C2Term2*C2T    372     G4double C22 = C2Term1*C2Term1+C2Term2*C2Term2;
380     G4double C2=4.*C22*C22/std::sqrt(xPM);     << 373     G4double C2=4.*C22*C22/sqrt(xPM);
381     G4double rhomax=(1./t-1.)*1.9/A027;           374     G4double rhomax=(1./t-1.)*1.9/A027;
382     G4double beta=G4Log( (C2+rhomax*rhomax*rho    375     G4double beta=G4Log( (C2+rhomax*rhomax*rhomax*rhomax)/C2 );
383     rho=G4Exp(G4Log(C2 *( G4Exp(beta*G4Uniform    376     rho=G4Exp(G4Log(C2 *( G4Exp(beta*G4UniformRand())-1. ))*0.25);
384                                                   377 
385     //now get from t and psi the kinematical v    378     //now get from t and psi the kinematical variables
386     G4double u=std::sqrt(1./t-1.);             << 379     G4double u=sqrt(1./t-1.);
387     G4double xiHalf=0.5*rho*std::cos(psi);     << 380     G4double xiHalf=0.5*rho*cos(psi);
388     phiHalf=0.5*rho/u*std::sin(psi);           << 381     phiHalf=0.5*rho/u*sin(psi);
389                                                   382 
390     thetaPlus =GammaMuonInv*(u+xiHalf)/xPlus;     383     thetaPlus =GammaMuonInv*(u+xiHalf)/xPlus;
391     thetaMinus=GammaMuonInv*(u-xiHalf)/xMinus;    384     thetaMinus=GammaMuonInv*(u-xiHalf)/xMinus;
392                                                   385 
393     // protection against infinite loop           386     // protection against infinite loop
394     if(nn > nmax) {                               387     if(nn > nmax) {
395       if(std::abs(thetaPlus)>pi) { thetaPlus =    388       if(std::abs(thetaPlus)>pi) { thetaPlus = 0.0; }
396       if(std::abs(thetaMinus)>pi) { thetaMinus    389       if(std::abs(thetaMinus)>pi) { thetaMinus = 0.0; }
397     }                                             390     }
398                                                   391 
399     // Loop checking, 07-Aug-2015, Vladimir Iv    392     // Loop checking, 07-Aug-2015, Vladimir Ivanchenko
400   } while ( std::abs(thetaPlus)>pi || std::abs    393   } while ( std::abs(thetaPlus)>pi || std::abs(thetaMinus) >pi);
401                                                   394 
402   // now construct the vectors                    395   // now construct the vectors
403   // azimuthal symmetry, take phi0 at random b    396   // azimuthal symmetry, take phi0 at random between 0 and 2 pi
404   G4double phi0=twopi*G4UniformRand();            397   G4double phi0=twopi*G4UniformRand(); 
405   G4double EPlus=xPlus*Egam;                      398   G4double EPlus=xPlus*Egam;
406   G4double EMinus=xMinus*Egam;                    399   G4double EMinus=xMinus*Egam;
407                                                   400 
408   // mu+ mu- directions for gamma in z-directi    401   // mu+ mu- directions for gamma in z-direction
409   G4ThreeVector MuPlusDirection  ( std::sin(th << 402   G4ThreeVector MuPlusDirection  ( sin(thetaPlus) *cos(phi0+phiHalf),
410                    std::sin(thetaPlus)  *std:: << 403                    sin(thetaPlus)  *sin(phi0+phiHalf), cos(thetaPlus) );
411   G4ThreeVector MuMinusDirection (-std::sin(th << 404   G4ThreeVector MuMinusDirection (-sin(thetaMinus)*cos(phi0-phiHalf),
412                   -std::sin(thetaMinus) *std:: << 405                   -sin(thetaMinus) *sin(phi0-phiHalf), cos(thetaMinus) );
413   // rotate to actual gamma direction             406   // rotate to actual gamma direction
414   MuPlusDirection.rotateUz(GammaDirection);       407   MuPlusDirection.rotateUz(GammaDirection);
415   MuMinusDirection.rotateUz(GammaDirection);      408   MuMinusDirection.rotateUz(GammaDirection);
416                                                << 409   aParticleChange.SetNumberOfSecondaries(2);
417   // create G4DynamicParticle object for the p    410   // create G4DynamicParticle object for the particle1
418   auto aParticle1 = new G4DynamicParticle(theM << 411   G4DynamicParticle* aParticle1 = 
                                                   >> 412     new G4DynamicParticle(theMuonPlus,MuPlusDirection,EPlus-Mmuon);
419   aParticleChange.AddSecondary(aParticle1);       413   aParticleChange.AddSecondary(aParticle1);
420   // create G4DynamicParticle object for the p    414   // create G4DynamicParticle object for the particle2
421   auto aParticle2 = new G4DynamicParticle(theM << 415   G4DynamicParticle* aParticle2 = 
                                                   >> 416     new G4DynamicParticle(theMuonMinus,MuMinusDirection,EMinus-Mmuon);
422   aParticleChange.AddSecondary(aParticle2);       417   aParticleChange.AddSecondary(aParticle2);
423   //  Reset NbOfInteractionLengthLeft and retu    418   //  Reset NbOfInteractionLengthLeft and return aParticleChange
424   return G4VDiscreteProcess::PostStepDoIt( aTr    419   return G4VDiscreteProcess::PostStepDoIt( aTrack, aStep );
425 }                                                 420 }
426                                                   421 
427 //....oooOO0OOooo........oooOO0OOooo........oo    422 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
428                                                   423 
429 const G4Element* G4GammaConversionToMuons::Sel    424 const G4Element* G4GammaConversionToMuons::SelectRandomAtom(
430       const G4DynamicParticle* aDynamicGamma,     425       const G4DynamicParticle* aDynamicGamma,
431       const G4Material* aMaterial)                426       const G4Material* aMaterial)
432 {                                                 427 {
433   // select randomly 1 element within the mate    428   // select randomly 1 element within the material, invoked by PostStepDoIt
434                                                   429 
435   const std::size_t NumberOfElements      = aM << 430   const G4int NumberOfElements            = aMaterial->GetNumberOfElements();
436   const G4ElementVector* theElementVector = aM    431   const G4ElementVector* theElementVector = aMaterial->GetElementVector();
437   const G4Element* elm = (*theElementVector)[0    432   const G4Element* elm = (*theElementVector)[0];
438                                                   433 
439   if (NumberOfElements > 1) {                  << 434   if (NumberOfElements > 1) { 
440     G4double e = std::max(aDynamicGamma->GetKi << 435     const G4double* NbOfAtomsPerVolume = aMaterial->GetVecNbOfAtomsPerVolume();
441     const G4double* natom = aMaterial->GetVecN << 436 
                                                   >> 437     G4double PartialSumSigma = 0.;
                                                   >> 438     G4double rval = G4UniformRand()/MeanFreePath;
442                                                   439 
443     G4double sum = 0.;                         << 440     for (G4int i=0; i<NumberOfElements; ++i)
444     for (std::size_t i=0; i<NumberOfElements;  << 441     { 
445       elm = (*theElementVector)[i];               442       elm = (*theElementVector)[i];
446       sum += natom[i]*ComputeCrossSectionPerAt << 443       PartialSumSigma += NbOfAtomsPerVolume[i]
447       temp[i] = sum;                           << 444   *GetCrossSectionPerAtom(aDynamicGamma, elm);
448     }                                          << 445       if (rval <= PartialSumSigma) { break; }
449     sum *= G4UniformRand();                    << 
450     for (std::size_t i=0; i<NumberOfElements;  << 
451       if(sum <= temp[i]) {                     << 
452         elm = (*theElementVector)[i];          << 
453         break;                                 << 
454       }                                        << 
455     }                                             446     }
456   }                                               447   }
457   return elm;                                     448   return elm;
458 }                                                 449 }
459                                                   450 
460 //....oooOO0OOooo........oooOO0OOooo........oo    451 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
461                                                   452 
462 void G4GammaConversionToMuons::PrintInfoDefini    453 void G4GammaConversionToMuons::PrintInfoDefinition()
463 {                                                 454 {
464   G4String comments = "gamma->mu+mu- Bethe Hei << 455   G4String comments ="gamma->mu+mu- Bethe Heitler process, SubType= ";
465   G4cout << G4endl << GetProcessName() << ":   << 456   G4cout << G4endl << GetProcessName() << ":  " << comments
                                                   >> 457    << GetProcessSubType() << G4endl;
466   G4cout << "        good cross section parame    458   G4cout << "        good cross section parametrization from "
467          << G4BestUnit(LowestEnergyLimit, "Ene << 459          << G4BestUnit(LowestEnergyLimit,"Energy")
468          << " GeV for all Z." << G4endl;       << 460          << " to " << HighestEnergyLimit/GeV << " GeV for all Z." << G4endl;
469   G4cout << "        cross section factor: " < << 
470 }                                                 461 }
471                                                   462 
472 //....oooOO0OOooo........oooOO0OOooo........oo    463 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
473                                                   464