Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/highenergy/src/G4GammaConversionToMuons.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/electromagnetic/highenergy/src/G4GammaConversionToMuons.cc (Version 11.3.0) and /processes/electromagnetic/highenergy/src/G4GammaConversionToMuons.cc (Version 10.6.p3)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
 27 //         ------------ G4GammaConversionToMuo     27 //         ------------ G4GammaConversionToMuons physics process ------
 28 //         by H.Burkhardt, S. Kelner and R. Ko     28 //         by H.Burkhardt, S. Kelner and R. Kokoulin, April 2002
 29 //                                                 29 //
 30 //                                                 30 //
 31 // 07-08-02: missprint in OR condition in DoIt     31 // 07-08-02: missprint in OR condition in DoIt : f1<0 || f1>f1_max ..etc ...
 32 // 25-10-04: migrade to new interfaces of Part     32 // 25-10-04: migrade to new interfaces of ParticleChange (vi)
 33 // -------------------------------------------     33 // ---------------------------------------------------------------------------
 34                                                    34 
 35 #include "G4GammaConversionToMuons.hh"             35 #include "G4GammaConversionToMuons.hh"
 36                                                <<  36 #include "G4PhysicalConstants.hh"
 37 #include "G4BetheHeitler5DModel.hh"            <<  37 #include "G4SystemOfUnits.hh"
 38 #include "G4Electron.hh"                       <<  38 #include "G4UnitsTable.hh"
 39 #include "G4EmParameters.hh"                   <<  39 #include "G4MuonPlus.hh"
                                                   >>  40 #include "G4MuonMinus.hh"
 40 #include "G4EmProcessSubType.hh"                   41 #include "G4EmProcessSubType.hh"
 41 #include "G4Exp.hh"                            <<  42 #include "G4EmParameters.hh"
 42 #include "G4Gamma.hh"                          << 
 43 #include "G4Log.hh"                            << 
 44 #include "G4LossTableManager.hh"                   43 #include "G4LossTableManager.hh"
 45 #include "G4MuonMinus.hh"                      <<  44 #include "G4BetheHeitler5DModel.hh"
 46 #include "G4MuonPlus.hh"                       <<  45 #include "G4Gamma.hh"
 47 #include "G4NistManager.hh"                    <<  46 #include "G4Electron.hh"
 48 #include "G4PhysicalConstants.hh"              << 
 49 #include "G4Positron.hh"                           47 #include "G4Positron.hh"
                                                   >>  48 #include "G4NistManager.hh"
                                                   >>  49 #include "G4Log.hh"
                                                   >>  50 #include "G4Exp.hh"
 50 #include "G4ProductionCutsTable.hh"                51 #include "G4ProductionCutsTable.hh"
 51 #include "G4SystemOfUnits.hh"                  << 
 52 #include "G4UnitsTable.hh"                     << 
 53                                                    52 
 54 //....oooOO0OOooo........oooOO0OOooo........oo     53 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
 55                                                    54 
 56 static const G4double sqrte = std::sqrt(std::e <<  55 using namespace std;
 57 static const G4double PowSat = -0.88;          <<  56 
                                                   >>  57 static const G4double sqrte=sqrt(exp(1.));
                                                   >>  58 static const G4double PowSat=-0.88;
 58                                                    59 
 59 G4GammaConversionToMuons::G4GammaConversionToM     60 G4GammaConversionToMuons::G4GammaConversionToMuons(const G4String& processName,
 60                G4ProcessType type)                 61                G4ProcessType type)
 61   : G4VDiscreteProcess (processName, type),        62   : G4VDiscreteProcess (processName, type),
 62     Mmuon(G4MuonPlus::MuonPlus()->GetPDGMass()     63     Mmuon(G4MuonPlus::MuonPlus()->GetPDGMass()),
 63     Rc(CLHEP::elm_coupling / Mmuon),           <<  64     Rc(elm_coupling/Mmuon),
 64     LimitEnergy(5. * Mmuon),                   <<  65     LimitEnergy (5.*Mmuon), 
 65     LowestEnergyLimit(2. * Mmuon),             <<  66     LowestEnergyLimit (2.*Mmuon), 
 66     HighestEnergyLimit(1e12 * CLHEP::GeV),  // <<  67     HighestEnergyLimit(1e12*GeV), // ok to 1e12GeV, then LPM suppression
                                                   >>  68     Energy5DLimit(0.0),
                                                   >>  69     CrossSecFactor(1.),
                                                   >>  70     f5Dmodel(nullptr),
 67     theGamma(G4Gamma::Gamma()),                    71     theGamma(G4Gamma::Gamma()),
 68     theMuonPlus(G4MuonPlus::MuonPlus()),           72     theMuonPlus(G4MuonPlus::MuonPlus()),
 69     theMuonMinus(G4MuonMinus::MuonMinus())         73     theMuonMinus(G4MuonMinus::MuonMinus())
 70 {                                              <<  74 { 
 71   SetProcessSubType(fGammaConversionToMuMu);       75   SetProcessSubType(fGammaConversionToMuMu);
                                                   >>  76   MeanFreePath = DBL_MAX;
 72   fManager = G4LossTableManager::Instance();       77   fManager = G4LossTableManager::Instance();
 73   fManager->Register(this);                        78   fManager->Register(this);
 74 }                                                  79 }
 75                                                    80 
 76 //....oooOO0OOooo........oooOO0OOooo........oo     81 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
 77                                                    82 
 78 G4GammaConversionToMuons::~G4GammaConversionTo <<  83 G4GammaConversionToMuons::~G4GammaConversionToMuons() 
 79 {                                                  84 {
 80   fManager->DeRegister(this);                      85   fManager->DeRegister(this);
 81 }                                                  86 }
 82                                                    87 
 83 //....oooOO0OOooo........oooOO0OOooo........oo     88 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
 84                                                    89 
 85 G4bool G4GammaConversionToMuons::IsApplicable(     90 G4bool G4GammaConversionToMuons::IsApplicable(const G4ParticleDefinition& part)
 86 {                                                  91 {
 87   return (&part == theGamma);                      92   return (&part == theGamma);
 88 }                                                  93 }
 89                                                    94 
 90 //....oooOO0OOooo........oooOO0OOooo........oo     95 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 91                                                    96 
 92 void G4GammaConversionToMuons::BuildPhysicsTab     97 void G4GammaConversionToMuons::BuildPhysicsTable(const G4ParticleDefinition& p)
 93 {                                              <<  98 // Build cross section and mean free path tables
                                                   >>  99 {  //here no tables, just calling PrintInfoDefinition
 94   Energy5DLimit = G4EmParameters::Instance()->    100   Energy5DLimit = G4EmParameters::Instance()->MaxEnergyFor5DMuPair();
 95                                                << 101   if(Energy5DLimit > 0.0 && !f5Dmodel) { 
 96   auto table = G4Material::GetMaterialTable(); << 
 97   std::size_t nelm = 0;                        << 
 98   for (auto const& mat : *table) {             << 
 99     std::size_t n = mat->GetNumberOfElements() << 
100     nelm = std::max(nelm, n);                  << 
101   }                                            << 
102   temp.resize(nelm, 0);                        << 
103                                                << 
104   if (Energy5DLimit > 0.0 && nullptr != f5Dmod << 
105     f5Dmodel = new G4BetheHeitler5DModel();       102     f5Dmodel = new G4BetheHeitler5DModel();
106     f5Dmodel->SetLeptonPair(theMuonPlus, theMu    103     f5Dmodel->SetLeptonPair(theMuonPlus, theMuonMinus);
107     const std::size_t numElems = G4ProductionC << 104     const size_t numElems = G4ProductionCutsTable::GetProductionCutsTable()->GetTableSize();
108     const G4DataVector cuts(numElems);            105     const G4DataVector cuts(numElems);
109     f5Dmodel->Initialise(&p, cuts);               106     f5Dmodel->Initialise(&p, cuts);
110   }                                               107   }
111   PrintInfoDefinition();                          108   PrintInfoDefinition();
112 }                                                 109 }
113                                                   110 
114 //....oooOO0OOooo........oooOO0OOooo........oo    111 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
115                                                   112 
116 G4double G4GammaConversionToMuons::GetMeanFree << 113 G4double G4GammaConversionToMuons::GetMeanFreePath(const G4Track& aTrack,
117                                                << 114                                                    G4double, G4ForceCondition*)
                                                   >> 115 
118 // returns the photon mean free path in GEANT4    116 // returns the photon mean free path in GEANT4 internal units
                                                   >> 117 // (MeanFreePath is a private member of the class)
                                                   >> 118 
119 {                                                 119 {
120   const G4DynamicParticle* aDynamicGamma = aTr << 120    const G4DynamicParticle* aDynamicGamma = aTrack.GetDynamicParticle();
121   G4double GammaEnergy = aDynamicGamma->GetKin << 121    G4double GammaEnergy = aDynamicGamma->GetKineticEnergy();
122   const G4Material* aMaterial = aTrack.GetMate << 122    const G4Material* aMaterial = aTrack.GetMaterial();
123   return ComputeMeanFreePath(GammaEnergy, aMat << 123 
                                                   >> 124    MeanFreePath = (GammaEnergy <= LowestEnergyLimit) 
                                                   >> 125      ? DBL_MAX : ComputeMeanFreePath(GammaEnergy,aMaterial);
                                                   >> 126 
                                                   >> 127    return MeanFreePath;
124 }                                                 128 }
125                                                   129 
126 //....oooOO0OOooo........oooOO0OOooo........oo    130 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
127                                                   131 
128 G4double                                          132 G4double 
129 G4GammaConversionToMuons::ComputeMeanFreePath(    133 G4GammaConversionToMuons::ComputeMeanFreePath(G4double GammaEnergy,
130                                                   134                                               const G4Material* aMaterial)
131                                                   135 
132 // computes and returns the photon mean free p    136 // computes and returns the photon mean free path in GEANT4 internal units
133 {                                                 137 {
134   if(GammaEnergy <= LowestEnergyLimit) { retur    138   if(GammaEnergy <= LowestEnergyLimit) { return DBL_MAX; }
135   const G4ElementVector* theElementVector = aM    139   const G4ElementVector* theElementVector = aMaterial->GetElementVector();
136   const G4double* NbOfAtomsPerVolume = aMateri    140   const G4double* NbOfAtomsPerVolume = aMaterial->GetVecNbOfAtomsPerVolume();
137                                                   141 
138   G4double SIGMA = 0.0;                           142   G4double SIGMA = 0.0;
139   G4double fact  = 1.0;                           143   G4double fact  = 1.0;
140   G4double e = GammaEnergy;                       144   G4double e = GammaEnergy;
141   // low energy approximation as in Bethe-Heit    145   // low energy approximation as in Bethe-Heitler model
142   if(e < LimitEnergy) {                           146   if(e < LimitEnergy) {
143     G4double y = (e - LowestEnergyLimit)/(Limi    147     G4double y = (e - LowestEnergyLimit)/(LimitEnergy - LowestEnergyLimit);
144     fact = y*y;                                   148     fact = y*y;
145     e = LimitEnergy;                              149     e = LimitEnergy;
146   }                                               150   } 
147                                                   151 
148   for ( std::size_t i=0 ; i < aMaterial->GetNu << 152   for ( size_t i=0 ; i < aMaterial->GetNumberOfElements(); ++i)
149   {                                               153   {
150     SIGMA += NbOfAtomsPerVolume[i] * fact *       154     SIGMA += NbOfAtomsPerVolume[i] * fact *
151       ComputeCrossSectionPerAtom(e, (*theEleme    155       ComputeCrossSectionPerAtom(e, (*theElementVector)[i]->GetZasInt());
152   }                                               156   }
153   return (SIGMA > 0.0) ? 1./SIGMA : DBL_MAX;      157   return (SIGMA > 0.0) ? 1./SIGMA : DBL_MAX;
154 }                                                 158 }
155                                                   159 
156 //....oooOO0OOooo........oooOO0OOooo........oo    160 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
157                                                   161 
158 G4double G4GammaConversionToMuons::GetCrossSec    162 G4double G4GammaConversionToMuons::GetCrossSectionPerAtom(
159                                    const G4Dyn    163                                    const G4DynamicParticle* aDynamicGamma,
160                                    const G4Ele    164                                    const G4Element* anElement)
161                                                   165 
162 // gives the total cross section per atom in G    166 // gives the total cross section per atom in GEANT4 internal units
163 {                                                 167 {
164    return ComputeCrossSectionPerAtom(aDynamicG    168    return ComputeCrossSectionPerAtom(aDynamicGamma->GetKineticEnergy(),
165                                      anElement    169                                      anElement->GetZasInt());
166 }                                                 170 }
167                                                   171 
168 //....oooOO0OOooo........oooOO0OOooo........oo    172 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
169                                                   173 
170 G4double G4GammaConversionToMuons::ComputeCros    174 G4double G4GammaConversionToMuons::ComputeCrossSectionPerAtom(
171                          G4double Egam, G4int     175                          G4double Egam, G4int Z)
172                                                   176        
173 // Calculates the microscopic cross section in    177 // Calculates the microscopic cross section in GEANT4 internal units.
174 // Total cross section parametrisation from H.    178 // Total cross section parametrisation from H.Burkhardt
175 // It gives a good description at any energy (    179 // It gives a good description at any energy (from 0 to 10**21 eV)
176 {                                                 180 { 
177   if(Egam <= LowestEnergyLimit) { return 0.0;     181   if(Egam <= LowestEnergyLimit) { return 0.0; }
178                                                   182 
179   G4NistManager* nist = G4NistManager::Instanc    183   G4NistManager* nist = G4NistManager::Instance();
180                                                   184 
181   G4double PowThres, Ecor, B, Dn, Zthird, Winf << 185   G4double PowThres,Ecor,B,Dn,Zthird,Winfty,WMedAppr,
182                                                << 186     Wsatur,sigfac;
183   if (Z == 1) {  // special case of Hydrogen   << 187   
184     B = 202.4;                                 << 188   if(Z==1) // special case of Hydrogen
185     Dn = 1.49;                                 << 189     { B=202.4;
186   }                                            << 190       Dn=1.49;
187   else {                                       << 191     }
188     B = 183.;                                  << 192   else
189     Dn = 1.54 * nist->GetA27(Z);               << 193     { B=183.;
190   }                                            << 194       Dn=1.54*nist->GetA27(Z);
191   Zthird = 1. / nist->GetZ13(Z);  // Z**(-1/3) << 195     }
192   Winfty = B * Zthird * Mmuon / (Dn * electron << 196   Zthird=1./nist->GetZ13(Z); // Z**(-1/3)
193   WMedAppr = 1. / (4. * Dn * sqrte * Mmuon);   << 197   Winfty=B*Zthird*Mmuon/(Dn*electron_mass_c2);
194   Wsatur = Winfty / WMedAppr;                  << 198   WMedAppr=1./(4.*Dn*sqrte*Mmuon);
195   sigfac = 4. * fine_structure_const * Z * Z * << 199   Wsatur=Winfty/WMedAppr;
196   PowThres = 1.479 + 0.00799 * Dn;             << 200   sigfac=4.*fine_structure_const*Z*Z*Rc*Rc;
197   Ecor = -18. + 4347. / (B * Zthird);          << 201   PowThres=1.479+0.00799*Dn;
198                                                << 202   Ecor=-18.+4347./(B*Zthird);
199   G4double CorFuc = 1. + .04 * G4Log(1. + Ecor << 203   
200   G4double Eg =                                << 204   G4double CorFuc=1.+.04*G4Log(1.+Ecor/Egam);
201     G4Exp(G4Log(1. - 4. * Mmuon / Egam) * PowT << 205   //G4double Eg=pow(1.-4.*Mmuon/Egam,PowThres)*pow( pow(Wsatur,PowSat)+
202     * G4Exp(G4Log(G4Exp(G4Log(Wsatur) * PowSat << 206   //            pow(Egam,PowSat),1./PowSat); // threshold and saturation
203                                                << 207   G4double Eg=G4Exp(G4Log(1.-4.*Mmuon/Egam)*PowThres)*
204   G4double CrossSection = 7. / 9. * sigfac * G << 208     G4Exp(G4Log( G4Exp(G4Log(Wsatur)*PowSat)+G4Exp(G4Log(Egam)*PowSat))/PowSat);
205   CrossSection *= CrossSecFactor;  // increase << 209   G4double CrossSection=7./9.*sigfac*G4Log(1.+WMedAppr*CorFuc*Eg);
                                                   >> 210   CrossSection*=CrossSecFactor; // increase the CrossSection by  (by default 1)
206   return CrossSection;                            211   return CrossSection;
207 }                                                 212 }
208                                                   213 
209 //....oooOO0OOooo........oooOO0OOooo........oo    214 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
210                                                   215 
211 void G4GammaConversionToMuons::SetCrossSecFact    216 void G4GammaConversionToMuons::SetCrossSecFactor(G4double fac)
212 // Set the factor to artificially increase the    217 // Set the factor to artificially increase the cross section
213 {                                              << 218 { 
214   if (fac < 0.0) return;                       << 219   CrossSecFactor=fac;
215   CrossSecFactor = fac;                        << 220   G4cout << "The cross section for GammaConversionToMuons is artificially "
216   if (verboseLevel > 1) {                      << 221          << "increased by the CrossSecFactor=" << CrossSecFactor << G4endl;
217     G4cout << "The cross section for GammaConv << 
218            << "increased by the CrossSecFactor << 
219   }                                            << 
220 }                                                 222 }
221                                                   223 
222 //....oooOO0OOooo........oooOO0OOooo........oo    224 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
223                                                   225 
224 G4VParticleChange* G4GammaConversionToMuons::P    226 G4VParticleChange* G4GammaConversionToMuons::PostStepDoIt(
225                                                   227                                                         const G4Track& aTrack,
226                                                   228                                                         const G4Step&  aStep)
227 //                                                229 //
228 // generation of gamma->mu+mu-                    230 // generation of gamma->mu+mu-
229 //                                                231 //
230 {                                                 232 {
231   aParticleChange.Initialize(aTrack);             233   aParticleChange.Initialize(aTrack);
232   const G4Material* aMaterial = aTrack.GetMate    234   const G4Material* aMaterial = aTrack.GetMaterial();
233                                                   235 
234   // current Gamma energy and direction, retur    236   // current Gamma energy and direction, return if energy too low
235   const G4DynamicParticle* aDynamicGamma = aTr << 237   const G4DynamicParticle *aDynamicGamma = aTrack.GetDynamicParticle();
236   G4double Egam = aDynamicGamma->GetKineticEne    238   G4double Egam = aDynamicGamma->GetKineticEnergy();
237   if (Egam <= LowestEnergyLimit) {                239   if (Egam <= LowestEnergyLimit) {
238     return G4VDiscreteProcess::PostStepDoIt(aT    240     return G4VDiscreteProcess::PostStepDoIt(aTrack,aStep);
239   }                                               241   }
240   //                                              242   //
241   // Kill the incident photon                     243   // Kill the incident photon
242   //                                              244   //
243   aParticleChange.ProposeMomentumDirection( 0.    245   aParticleChange.ProposeMomentumDirection( 0., 0., 0. ) ;
244   aParticleChange.ProposeEnergy( 0. ) ;           246   aParticleChange.ProposeEnergy( 0. ) ;
245   aParticleChange.ProposeTrackStatus( fStopAnd    247   aParticleChange.ProposeTrackStatus( fStopAndKill ) ;
246                                                   248 
247   if (Egam <= Energy5DLimit) {                    249   if (Egam <= Energy5DLimit) {
248     std::vector<G4DynamicParticle*> fvect;        250     std::vector<G4DynamicParticle*> fvect;
249     f5Dmodel->SampleSecondaries(&fvect, aTrack    251     f5Dmodel->SampleSecondaries(&fvect, aTrack.GetMaterialCutsCouple(), 
250         aTrack.GetDynamicParticle(), 0.0, DBL_    252         aTrack.GetDynamicParticle(), 0.0, DBL_MAX);
                                                   >> 253     aParticleChange.SetNumberOfSecondaries(fvect.size());
251     for(auto dp : fvect) { aParticleChange.Add    254     for(auto dp : fvect) { aParticleChange.AddSecondary(dp); }
252     return G4VDiscreteProcess::PostStepDoIt(aT    255     return G4VDiscreteProcess::PostStepDoIt(aTrack,aStep);
253   }                                               256   }  
254                                                   257 
255   G4ParticleMomentum GammaDirection = aDynamic    258   G4ParticleMomentum GammaDirection = aDynamicGamma->GetMomentumDirection();
256                                                   259 
257   // select randomly one element constituting     260   // select randomly one element constituting the material
258   const G4Element* anElement = SelectRandomAto    261   const G4Element* anElement = SelectRandomAtom(aDynamicGamma, aMaterial);
259   G4int Z = anElement->GetZasInt();               262   G4int Z = anElement->GetZasInt();
260   G4NistManager* nist = G4NistManager::Instanc    263   G4NistManager* nist = G4NistManager::Instance();
261                                                   264 
262   G4double B, Dn;                              << 265   G4double B,Dn;
263   G4double A027 = nist->GetA27(Z);                266   G4double A027 = nist->GetA27(Z);
264                                                   267 
265   if (Z == 1) {  // special case of Hydrogen   << 268   if(Z==1) // special case of Hydrogen
266     B = 202.4;                                 << 269     { B=202.4;
267     Dn = 1.49;                                 << 270       Dn=1.49;
268   }                                            << 271     }
269   else {                                       << 272   else
270     B = 183.;                                  << 273     { B=183.;
271     Dn = 1.54 * A027;                          << 274       Dn=1.54*A027;
272   }                                            << 275     }
273   G4double Zthird = 1. / nist->GetZ13(Z);  //  << 276   G4double Zthird=1./nist->GetZ13(Z); // Z**(-1/3)
274   G4double Winfty = B * Zthird * Mmuon / (Dn * << 277   G4double Winfty=B*Zthird*Mmuon/(Dn*electron_mass_c2);
275                                                   278 
276   G4double C1Num = 0.138 * A027;               << 279   G4double C1Num=0.138*A027;
277   G4double C1Num2 = C1Num * C1Num;             << 280   G4double C1Num2=C1Num*C1Num;
278   G4double C2Term2 = electron_mass_c2 / (183.  << 281   G4double C2Term2=electron_mass_c2/(183.*Zthird*Mmuon);
279                                                   282 
280   G4double GammaMuonInv = Mmuon / Egam;        << 283   G4double GammaMuonInv=Mmuon/Egam;
281                                                   284 
282   // generate xPlus according to the different    285   // generate xPlus according to the differential cross section by rejection
283   G4double xmin = (Egam <= LimitEnergy) ? 0.5  << 286   G4double xmin=(Egam < LimitEnergy) ? GammaMuonInv : .5-sqrt(.25-GammaMuonInv);
284   G4double xmax = 1. - xmin;                   << 287   G4double xmax=1.-xmin;
285                                                << 
286   G4double Ds2 = (Dn * sqrte - 2.);            << 
287   G4double sBZ = sqrte * B * Zthird / electron << 
288   G4double LogWmaxInv =                        << 
289     1. / G4Log(Winfty * (1. + 2. * Ds2 * Gamma << 
290   G4double xPlus = 0.5;                        << 
291   G4double xMinus = 0.5;                       << 
292   G4double xPM = 0.25;                         << 
293                                                   288 
                                                   >> 289   G4double Ds2=(Dn*sqrte-2.);
                                                   >> 290   G4double sBZ=sqrte*B*Zthird/electron_mass_c2;
                                                   >> 291   G4double LogWmaxInv=1./G4Log(Winfty*(1.+2.*Ds2*GammaMuonInv)
                                                   >> 292              /(1.+2.*sBZ*Mmuon*GammaMuonInv));
                                                   >> 293   G4double xPlus,xMinus,xPM,result,W;
294   G4int nn = 0;                                   294   G4int nn = 0;
295   const G4int nmax = 1000;                        295   const G4int nmax = 1000;
296                                                << 296   do {
297   // sampling for Egam > LimitEnergy           << 297     xPlus=xmin+G4UniformRand()*(xmax-xmin);
298   if (xmin < 0.5) {                            << 298     xMinus=1.-xPlus;
299     G4double result, W;                        << 299     xPM=xPlus*xMinus;
300     do {                                       << 300     G4double del=Mmuon*Mmuon/(2.*Egam*xPM);
301       xPlus = xmin + G4UniformRand() * (xmax - << 301     W=Winfty*(1.+Ds2*del/Mmuon)/(1.+sBZ*del);
302       xMinus = 1. - xPlus;                     << 302     G4double xxp=1.-4./3.*xPM; // the main xPlus dependence
303       xPM = xPlus * xMinus;                    << 303     result=(xxp > 0.) ? xxp*G4Log(W)*LogWmaxInv : 0.0;
304       G4double del = Mmuon * Mmuon / (2. * Ega << 304     if(result>1.) {
305       W = Winfty * (1. + Ds2 * del / Mmuon) /  << 305       G4cout << "G4GammaConversionToMuons::PostStepDoIt WARNING:"
306       G4double xxp = 1. - 4. / 3. * xPM;  // t << 306        << " in dSigxPlusGen, result=" << result << " > 1" << G4endl;
307       result = (xxp > 0.) ? xxp * G4Log(W) * L << 
308       if (result > 1.) {                       << 
309         G4cout << "G4GammaConversionToMuons::P << 
310                << " in dSigxPlusGen, result="  << 
311       }                                        << 
312       ++nn;                                    << 
313       if(nn >= nmax) { break; }                << 
314     }                                             307     }
315     // Loop checking, 07-Aug-2015, Vladimir Iv << 308     ++nn;
316     while (G4UniformRand() > result);          << 309     if(nn >= nmax) { break; }
317   }                                               310   }
                                                   >> 311   // Loop checking, 07-Aug-2015, Vladimir Ivanchenko
                                                   >> 312   while (G4UniformRand() > result);
318                                                   313 
319   // now generate the angular variables via th    314   // now generate the angular variables via the auxilary variables t,psi,rho
320   G4double t;                                     315   G4double t;
321   G4double psi;                                   316   G4double psi;
322   G4double rho;                                   317   G4double rho;
323                                                   318 
324   G4double a3 = (GammaMuonInv / (2. * xPM));   << 319   G4double a3 = (GammaMuonInv/(2.*xPM));
325   G4double a33 = a3 * a3;                      << 320   G4double a33 = a3*a3;
326   G4double f1;                                    321   G4double f1;
327   G4double b1  = 1./(4.*C1Num2);                  322   G4double b1  = 1./(4.*C1Num2);
328   G4double b3  = b1*b1*b1;                        323   G4double b3  = b1*b1*b1;
329   G4double a21 = a33 + b1;                        324   G4double a21 = a33 + b1;
330                                                   325   
331   G4double f1_max=-(1.-xPM)*(2.*b1+(a21+a33)*G    326   G4double f1_max=-(1.-xPM)*(2.*b1+(a21+a33)*G4Log(a33/a21))/(2*b3);  
332                                                   327 
333   G4double thetaPlus,thetaMinus,phiHalf; // fi    328   G4double thetaPlus,thetaMinus,phiHalf; // final angular variables
334   nn = 0;                                         329   nn = 0;
335   // t, psi, rho generation start  (while angl    330   // t, psi, rho generation start  (while angle < pi)
336   do {                                            331   do {
337     //generate t by the rejection method          332     //generate t by the rejection method
338     do {                                          333     do { 
339       ++nn;                                       334       ++nn;
340       t=G4UniformRand();                          335       t=G4UniformRand();
341       G4double a34=a33/(t*t);                     336       G4double a34=a33/(t*t);
342       G4double a22 = a34 + b1;                    337       G4double a22 = a34 + b1;
343       if(std::abs(b1)<0.0001*a34) {            << 338       if(std::abs(b1)<0.0001*a34) 
344         // special case of a34=a22 because of  << 339   // special case of a34=a22 because of logarithm accuracy
345         f1=(1.-2.*xPM+4.*xPM*t*(1.-t))/(12.*a3 << 340   {
346       }                                        << 341     f1=(1.-2.*xPM+4.*xPM*t*(1.-t))/(12.*a34*a34*a34*a34);
347       else {                                   << 342   }
348         f1=-(1.-2.*xPM+4.*xPM*t*(1.-t))*(2.*b1 << 343       else
349       }                                        << 344   {
350       if (f1 < 0.0 || f1 > f1_max) {  // shoul << 345     f1=-(1.-2.*xPM+4.*xPM*t*(1.-t))*(2.*b1+(a22+a34)*G4Log(a34/a22))/(2*b3);      
351         G4cout << "G4GammaConversionToMuons::P << 346   }
352         << "outside allowed range f1=" << f1   << 347       if(f1<0.0 || f1> f1_max) // should never happend
353         << " is set to zero, a34 = "<< a34 <<  << 348   {
354         << G4endl;                             << 349     G4cout << "G4GammaConversionToMuons::PostStepDoIt WARNING:"
355         f1 = 0.0;                              << 350      << "outside allowed range f1=" << f1 
356       }                                        << 351      << " is set to zero, a34 = "<< a34 << " a22 = "<<a22<<"."
                                                   >> 352      << G4endl;
                                                   >> 353     f1 = 0.0;
                                                   >> 354   }
357       if(nn > nmax) { break; }                    355       if(nn > nmax) { break; }
358       // Loop checking, 07-Aug-2015, Vladimir     356       // Loop checking, 07-Aug-2015, Vladimir Ivanchenko  
359     } while ( G4UniformRand()*f1_max > f1);       357     } while ( G4UniformRand()*f1_max > f1);
360     // generate psi by the rejection method       358     // generate psi by the rejection method
361     G4double f2_max=1.-2.*xPM*(1.-4.*t*(1.-t))    359     G4double f2_max=1.-2.*xPM*(1.-4.*t*(1.-t));
362     // long version                               360     // long version
363     G4double f2;                                  361     G4double f2;
364     do {                                          362     do { 
365       ++nn;                                       363       ++nn;
366       psi=twopi*G4UniformRand();                  364       psi=twopi*G4UniformRand();
367       f2=1.-2.*xPM+4.*xPM*t*(1.-t)*(1.+std::co << 365       f2=1.-2.*xPM+4.*xPM*t*(1.-t)*(1.+cos(2.*psi));
368       if(f2<0 || f2> f2_max) { // should never << 366       if(f2<0 || f2> f2_max) // should never happend
369         G4cout << "G4GammaConversionToMuons::P << 367   {
370                << "outside allowed range f2="  << 368     G4cout << "G4GammaConversionToMuons::PostStepDoIt WARNING:"
371         f2 = 0.0;                              << 369      << "outside allowed range f2=" << f2 << " is set to zero"
372       }                                        << 370      << G4endl;
                                                   >> 371           f2 = 0.0;
                                                   >> 372   }
373       if(nn >= nmax) { break; }                   373       if(nn >= nmax) { break; }
374       // Loop checking, 07-Aug-2015, Vladimir     374       // Loop checking, 07-Aug-2015, Vladimir Ivanchenko
375     } while ( G4UniformRand()*f2_max > f2);       375     } while ( G4UniformRand()*f2_max > f2);
376                                                   376 
377     // generate rho by direct transformation      377     // generate rho by direct transformation
378     G4double C2Term1=GammaMuonInv/(2.*xPM*t);     378     G4double C2Term1=GammaMuonInv/(2.*xPM*t);
379     G4double C22 = C2Term1*C2Term1+C2Term2*C2T    379     G4double C22 = C2Term1*C2Term1+C2Term2*C2Term2;
380     G4double C2=4.*C22*C22/std::sqrt(xPM);     << 380     G4double C2=4.*C22*C22/sqrt(xPM);
381     G4double rhomax=(1./t-1.)*1.9/A027;           381     G4double rhomax=(1./t-1.)*1.9/A027;
382     G4double beta=G4Log( (C2+rhomax*rhomax*rho    382     G4double beta=G4Log( (C2+rhomax*rhomax*rhomax*rhomax)/C2 );
383     rho=G4Exp(G4Log(C2 *( G4Exp(beta*G4Uniform    383     rho=G4Exp(G4Log(C2 *( G4Exp(beta*G4UniformRand())-1. ))*0.25);
384                                                   384 
385     //now get from t and psi the kinematical v    385     //now get from t and psi the kinematical variables
386     G4double u=std::sqrt(1./t-1.);             << 386     G4double u=sqrt(1./t-1.);
387     G4double xiHalf=0.5*rho*std::cos(psi);     << 387     G4double xiHalf=0.5*rho*cos(psi);
388     phiHalf=0.5*rho/u*std::sin(psi);           << 388     phiHalf=0.5*rho/u*sin(psi);
389                                                   389 
390     thetaPlus =GammaMuonInv*(u+xiHalf)/xPlus;     390     thetaPlus =GammaMuonInv*(u+xiHalf)/xPlus;
391     thetaMinus=GammaMuonInv*(u-xiHalf)/xMinus;    391     thetaMinus=GammaMuonInv*(u-xiHalf)/xMinus;
392                                                   392 
393     // protection against infinite loop           393     // protection against infinite loop
394     if(nn > nmax) {                               394     if(nn > nmax) {
395       if(std::abs(thetaPlus)>pi) { thetaPlus =    395       if(std::abs(thetaPlus)>pi) { thetaPlus = 0.0; }
396       if(std::abs(thetaMinus)>pi) { thetaMinus    396       if(std::abs(thetaMinus)>pi) { thetaMinus = 0.0; }
397     }                                             397     }
398                                                   398 
399     // Loop checking, 07-Aug-2015, Vladimir Iv    399     // Loop checking, 07-Aug-2015, Vladimir Ivanchenko
400   } while ( std::abs(thetaPlus)>pi || std::abs    400   } while ( std::abs(thetaPlus)>pi || std::abs(thetaMinus) >pi);
401                                                   401 
402   // now construct the vectors                    402   // now construct the vectors
403   // azimuthal symmetry, take phi0 at random b    403   // azimuthal symmetry, take phi0 at random between 0 and 2 pi
404   G4double phi0=twopi*G4UniformRand();            404   G4double phi0=twopi*G4UniformRand(); 
405   G4double EPlus=xPlus*Egam;                      405   G4double EPlus=xPlus*Egam;
406   G4double EMinus=xMinus*Egam;                    406   G4double EMinus=xMinus*Egam;
407                                                   407 
408   // mu+ mu- directions for gamma in z-directi    408   // mu+ mu- directions for gamma in z-direction
409   G4ThreeVector MuPlusDirection  ( std::sin(th << 409   G4ThreeVector MuPlusDirection  ( sin(thetaPlus) *cos(phi0+phiHalf),
410                    std::sin(thetaPlus)  *std:: << 410                    sin(thetaPlus)  *sin(phi0+phiHalf), cos(thetaPlus) );
411   G4ThreeVector MuMinusDirection (-std::sin(th << 411   G4ThreeVector MuMinusDirection (-sin(thetaMinus)*cos(phi0-phiHalf),
412                   -std::sin(thetaMinus) *std:: << 412                   -sin(thetaMinus) *sin(phi0-phiHalf), cos(thetaMinus) );
413   // rotate to actual gamma direction             413   // rotate to actual gamma direction
414   MuPlusDirection.rotateUz(GammaDirection);       414   MuPlusDirection.rotateUz(GammaDirection);
415   MuMinusDirection.rotateUz(GammaDirection);      415   MuMinusDirection.rotateUz(GammaDirection);
416                                                << 416   aParticleChange.SetNumberOfSecondaries(2);
417   // create G4DynamicParticle object for the p    417   // create G4DynamicParticle object for the particle1
418   auto aParticle1 = new G4DynamicParticle(theM << 418   G4DynamicParticle* aParticle1 = 
                                                   >> 419     new G4DynamicParticle(theMuonPlus,MuPlusDirection,EPlus-Mmuon);
419   aParticleChange.AddSecondary(aParticle1);       420   aParticleChange.AddSecondary(aParticle1);
420   // create G4DynamicParticle object for the p    421   // create G4DynamicParticle object for the particle2
421   auto aParticle2 = new G4DynamicParticle(theM << 422   G4DynamicParticle* aParticle2 = 
                                                   >> 423     new G4DynamicParticle(theMuonMinus,MuMinusDirection,EMinus-Mmuon);
422   aParticleChange.AddSecondary(aParticle2);       424   aParticleChange.AddSecondary(aParticle2);
423   //  Reset NbOfInteractionLengthLeft and retu    425   //  Reset NbOfInteractionLengthLeft and return aParticleChange
424   return G4VDiscreteProcess::PostStepDoIt( aTr    426   return G4VDiscreteProcess::PostStepDoIt( aTrack, aStep );
425 }                                                 427 }
426                                                   428 
427 //....oooOO0OOooo........oooOO0OOooo........oo    429 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
428                                                   430 
429 const G4Element* G4GammaConversionToMuons::Sel    431 const G4Element* G4GammaConversionToMuons::SelectRandomAtom(
430       const G4DynamicParticle* aDynamicGamma,     432       const G4DynamicParticle* aDynamicGamma,
431       const G4Material* aMaterial)                433       const G4Material* aMaterial)
432 {                                                 434 {
433   // select randomly 1 element within the mate    435   // select randomly 1 element within the material, invoked by PostStepDoIt
434                                                   436 
435   const std::size_t NumberOfElements      = aM << 437   const G4int NumberOfElements            = aMaterial->GetNumberOfElements();
436   const G4ElementVector* theElementVector = aM    438   const G4ElementVector* theElementVector = aMaterial->GetElementVector();
437   const G4Element* elm = (*theElementVector)[0    439   const G4Element* elm = (*theElementVector)[0];
438                                                   440 
439   if (NumberOfElements > 1) {                  << 441   if (NumberOfElements > 1) { 
440     G4double e = std::max(aDynamicGamma->GetKi << 442     const G4double* NbOfAtomsPerVolume = aMaterial->GetVecNbOfAtomsPerVolume();
441     const G4double* natom = aMaterial->GetVecN << 443 
                                                   >> 444     G4double PartialSumSigma = 0.;
                                                   >> 445     G4double rval = G4UniformRand()/MeanFreePath;
442                                                   446 
443     G4double sum = 0.;                         << 447     for (G4int i=0; i<NumberOfElements; ++i)
444     for (std::size_t i=0; i<NumberOfElements;  << 448     { 
445       elm = (*theElementVector)[i];               449       elm = (*theElementVector)[i];
446       sum += natom[i]*ComputeCrossSectionPerAt << 450       PartialSumSigma += NbOfAtomsPerVolume[i]
447       temp[i] = sum;                           << 451   *GetCrossSectionPerAtom(aDynamicGamma, elm);
448     }                                          << 452       if (rval <= PartialSumSigma) { break; }
449     sum *= G4UniformRand();                    << 
450     for (std::size_t i=0; i<NumberOfElements;  << 
451       if(sum <= temp[i]) {                     << 
452         elm = (*theElementVector)[i];          << 
453         break;                                 << 
454       }                                        << 
455     }                                             453     }
456   }                                               454   }
457   return elm;                                     455   return elm;
458 }                                                 456 }
459                                                   457 
460 //....oooOO0OOooo........oooOO0OOooo........oo    458 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
461                                                   459 
462 void G4GammaConversionToMuons::PrintInfoDefini    460 void G4GammaConversionToMuons::PrintInfoDefinition()
463 {                                                 461 {
464   G4String comments = "gamma->mu+mu- Bethe Hei << 462   G4String comments ="gamma->mu+mu- Bethe Heitler process, SubType= ";
465   G4cout << G4endl << GetProcessName() << ":   << 463   G4cout << G4endl << GetProcessName() << ":  " << comments
                                                   >> 464    << GetProcessSubType() << G4endl;
466   G4cout << "        good cross section parame    465   G4cout << "        good cross section parametrization from "
467          << G4BestUnit(LowestEnergyLimit, "Ene << 466          << G4BestUnit(LowestEnergyLimit,"Energy")
468          << " GeV for all Z." << G4endl;       << 467          << " to " << HighestEnergyLimit/GeV << " GeV for all Z." << G4endl;
469   G4cout << "        cross section factor: " < << 
470 }                                                 468 }
471                                                   469 
472 //....oooOO0OOooo........oooOO0OOooo........oo    470 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
473                                                   471