Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4NeutronBetaDecayChannel class implementat 26 // G4NeutronBetaDecayChannel class implementation 27 // 27 // 28 // Author: H.Kurashige, 18 September 2001 << 28 // Author: H.Kurashige, 18 September 2001 29 // ------------------------------------------- 29 // -------------------------------------------------------------------- 30 30 31 #include "G4NeutronBetaDecayChannel.hh" << 32 << 33 #include "G4DecayProducts.hh" << 34 #include "G4LorentzRotation.hh" << 35 #include "G4LorentzVector.hh" << 36 #include "G4ParticleDefinition.hh" 31 #include "G4ParticleDefinition.hh" 37 #include "G4PhysicalConstants.hh" 32 #include "G4PhysicalConstants.hh" 38 #include "G4RotationMatrix.hh" << 39 #include "G4SystemOfUnits.hh" 33 #include "G4SystemOfUnits.hh" >> 34 #include "G4DecayProducts.hh" 40 #include "G4VDecayChannel.hh" 35 #include "G4VDecayChannel.hh" >> 36 #include "G4NeutronBetaDecayChannel.hh" 41 #include "Randomize.hh" 37 #include "Randomize.hh" >> 38 #include "G4RotationMatrix.hh" >> 39 #include "G4LorentzVector.hh" >> 40 #include "G4LorentzRotation.hh" 42 41 43 G4NeutronBetaDecayChannel::G4NeutronBetaDecayC << 42 G4NeutronBetaDecayChannel::G4NeutronBetaDecayChannel() >> 43 : G4VDecayChannel() >> 44 { >> 45 } >> 46 >> 47 G4NeutronBetaDecayChannel:: >> 48 G4NeutronBetaDecayChannel(const G4String& theParentName, >> 49 G4double theBR) 44 : G4VDecayChannel("Neutron Decay") 50 : G4VDecayChannel("Neutron Decay") 45 { 51 { 46 // set names for daughter particles 52 // set names for daughter particles 47 if (theParentName == "neutron") { << 53 if (theParentName == "neutron") >> 54 { 48 SetBR(theBR); 55 SetBR(theBR); 49 SetParent("neutron"); 56 SetParent("neutron"); 50 SetNumberOfDaughters(3); 57 SetNumberOfDaughters(3); 51 SetDaughter(0, "e-"); 58 SetDaughter(0, "e-"); 52 SetDaughter(1, "anti_nu_e"); 59 SetDaughter(1, "anti_nu_e"); 53 SetDaughter(2, "proton"); 60 SetDaughter(2, "proton"); 54 } 61 } 55 else if (theParentName == "anti_neutron") { << 62 else if (theParentName == "anti_neutron") >> 63 { 56 SetBR(theBR); 64 SetBR(theBR); 57 SetParent("anti_neutron"); 65 SetParent("anti_neutron"); 58 SetNumberOfDaughters(3); 66 SetNumberOfDaughters(3); 59 SetDaughter(0, "e+"); 67 SetDaughter(0, "e+"); 60 SetDaughter(1, "nu_e"); 68 SetDaughter(1, "nu_e"); 61 SetDaughter(2, "anti_proton"); 69 SetDaughter(2, "anti_proton"); 62 } 70 } 63 else { << 71 else >> 72 { 64 #ifdef G4VERBOSE 73 #ifdef G4VERBOSE 65 if (GetVerboseLevel() > 0) { << 74 if (GetVerboseLevel()>0) >> 75 { 66 G4cout << "G4NeutronBetaDecayChannel:: c 76 G4cout << "G4NeutronBetaDecayChannel:: constructor :"; 67 G4cout << " parent particle is not neutr 77 G4cout << " parent particle is not neutron but "; 68 G4cout << theParentName << G4endl; 78 G4cout << theParentName << G4endl; 69 } 79 } 70 #endif 80 #endif 71 } 81 } 72 } 82 } 73 83 74 G4NeutronBetaDecayChannel::G4NeutronBetaDecayC << 84 G4NeutronBetaDecayChannel::~G4NeutronBetaDecayChannel() >> 85 { >> 86 } >> 87 >> 88 G4NeutronBetaDecayChannel:: >> 89 G4NeutronBetaDecayChannel(const G4NeutronBetaDecayChannel& right) 75 : G4VDecayChannel(right) 90 : G4VDecayChannel(right) 76 {} << 91 { >> 92 } 77 93 78 G4NeutronBetaDecayChannel& << 94 G4NeutronBetaDecayChannel& G4NeutronBetaDecayChannel:: 79 G4NeutronBetaDecayChannel::operator=(const G4N << 95 operator=(const G4NeutronBetaDecayChannel& right) 80 { 96 { 81 if (this != &right) { << 97 if (this != &right) >> 98 { 82 kinematics_name = right.kinematics_name; 99 kinematics_name = right.kinematics_name; 83 verboseLevel = right.verboseLevel; 100 verboseLevel = right.verboseLevel; 84 rbranch = right.rbranch; 101 rbranch = right.rbranch; 85 102 86 // copy parent name 103 // copy parent name 87 delete parent_name; 104 delete parent_name; 88 parent_name = new G4String(*right.parent_n 105 parent_name = new G4String(*right.parent_name); 89 106 90 // clear daughters_name array 107 // clear daughters_name array 91 ClearDaughtersName(); 108 ClearDaughtersName(); 92 109 93 // recreate array 110 // recreate array 94 numberOfDaughters = right.numberOfDaughter 111 numberOfDaughters = right.numberOfDaughters; 95 if (numberOfDaughters > 0) { << 112 if ( numberOfDaughters >0 ) >> 113 { 96 daughters_name = new G4String*[numberOfD 114 daughters_name = new G4String*[numberOfDaughters]; 97 // copy daughters name 115 // copy daughters name 98 for (G4int index = 0; index < numberOfDa << 116 for (G4int index=0; index<numberOfDaughters; ++index) >> 117 { 99 daughters_name[index] = new G4String(* 118 daughters_name[index] = new G4String(*right.daughters_name[index]); 100 } 119 } 101 } 120 } 102 } 121 } 103 return *this; 122 return *this; 104 } 123 } 105 124 106 G4DecayProducts* G4NeutronBetaDecayChannel::De << 125 G4DecayProducts* G4NeutronBetaDecayChannel::DecayIt(G4double) 107 { 126 { 108 // This class describes free neutron beta d 127 // This class describes free neutron beta decay kinematics. 109 // This version neglects neutron/electron p << 128 // This version neglects neutron/electron polarization 110 // without Coulomb effect 129 // without Coulomb effect 111 130 112 #ifdef G4VERBOSE 131 #ifdef G4VERBOSE 113 if (GetVerboseLevel() > 1) G4cout << "G4Neut << 132 if (GetVerboseLevel()>1) G4cout << "G4NeutronBetaDecayChannel::DecayIt "; 114 #endif 133 #endif 115 134 116 CheckAndFillParent(); 135 CheckAndFillParent(); 117 CheckAndFillDaughters(); 136 CheckAndFillDaughters(); 118 << 137 119 // parent mass 138 // parent mass 120 G4double parentmass = G4MT_parent->GetPDGMas 139 G4double parentmass = G4MT_parent->GetPDGMass(); 121 140 122 // daughters'mass 141 // daughters'mass 123 G4double daughtermass[3]; << 142 G4double daughtermass[3]; 124 G4double sumofdaughtermass = 0.0; 143 G4double sumofdaughtermass = 0.0; 125 for (G4int index = 0; index < 3; ++index) { << 144 for (G4int index=0; index<3; ++index) >> 145 { 126 daughtermass[index] = G4MT_daughters[index 146 daughtermass[index] = G4MT_daughters[index]->GetPDGMass(); 127 sumofdaughtermass += daughtermass[index]; 147 sumofdaughtermass += daughtermass[index]; 128 } 148 } 129 G4double xmax = parentmass - sumofdaughterma << 149 G4double xmax = parentmass-sumofdaughtermass; 130 150 131 // create parent G4DynamicParticle at rest 151 // create parent G4DynamicParticle at rest 132 G4ThreeVector dummy; 152 G4ThreeVector dummy; 133 auto parentparticle = new G4DynamicParticle( << 153 G4DynamicParticle* parentparticle >> 154 = new G4DynamicParticle( G4MT_parent, dummy, 0.0); 134 155 135 // create G4Decayproducts 156 // create G4Decayproducts 136 auto products = new G4DecayProducts(*parentp << 157 G4DecayProducts *products = new G4DecayProducts(*parentparticle); 137 delete parentparticle; 158 delete parentparticle; 138 159 139 // calculate daughter momentum 160 // calculate daughter momentum 140 G4double daughtermomentum[3]; 161 G4double daughtermomentum[3]; 141 162 142 // calcurate electron energy 163 // calcurate electron energy 143 G4double x; // Ee << 164 G4double x; // Ee 144 G4double p; // Pe << 165 G4double p; // Pe 145 G4double dm = daughtermass[0]; // Me << 166 G4double dm = daughtermass[0]; //Me 146 G4double w; // cosine of e-nu angle << 167 G4double w; // cosine of e-nu angle 147 G4double r; << 168 G4double r; 148 G4double r0; 169 G4double r0; 149 const std::size_t MAX_LOOP = 10000; << 170 const std::size_t MAX_LOOP=10000; 150 for (std::size_t loop_counter = 0; loop_coun << 171 for (std::size_t loop_counter=0; loop_counter<MAX_LOOP; ++loop_counter) 151 x = xmax * G4UniformRand(); << 172 { 152 p = std::sqrt(x * (x + 2.0 * dm)); << 173 x = xmax*G4UniformRand(); 153 w = 1.0 - 2.0 * G4UniformRand(); << 174 p = std::sqrt(x*(x+2.0*dm)); 154 r = p * (x + dm) * (xmax - x) * (xmax - x) << 175 w = 1.0-2.0*G4UniformRand(); 155 r0 = G4UniformRand() * (xmax + dm) * (xmax << 176 r = p*(x+dm)*(xmax-x)*(xmax-x)*(1.0+aENuCorr*p/(x+dm)*w); 156 if (r > r0) break; << 177 r0 = G4UniformRand()*(xmax+dm)*(xmax+dm)*xmax*xmax*(1.0+aENuCorr); 157 } << 178 if (r > r0) break; >> 179 } 158 180 159 // create daughter G4DynamicParticle << 181 // create daughter G4DynamicParticle 160 // rotation materix to lab frame 182 // rotation materix to lab frame 161 // 183 // 162 G4double costheta = 2. * G4UniformRand() - 1 << 184 G4double costheta = 2.*G4UniformRand()-1.0; 163 G4double theta = std::acos(costheta) * rad; << 185 G4double theta = std::acos(costheta)*rad; 164 G4double phi = twopi * G4UniformRand() * rad << 186 G4double phi = twopi*G4UniformRand()*rad; 165 G4RotationMatrix rm; 187 G4RotationMatrix rm; 166 rm.rotateY(theta); 188 rm.rotateY(theta); 167 rm.rotateZ(phi); 189 rm.rotateZ(phi); 168 190 169 // daughter 0 (electron) in Z direction 191 // daughter 0 (electron) in Z direction 170 daughtermomentum[0] = p; 192 daughtermomentum[0] = p; 171 G4ThreeVector direction0(0.0, 0.0, 1.0); 193 G4ThreeVector direction0(0.0, 0.0, 1.0); 172 direction0 = rm * direction0; 194 direction0 = rm * direction0; 173 auto daughterparticle0 = << 195 G4DynamicParticle* daughterparticle0 174 new G4DynamicParticle(G4MT_daughters[0], d << 196 = new G4DynamicParticle(G4MT_daughters[0], direction0*daughtermomentum[0]); 175 products->PushProducts(daughterparticle0); 197 products->PushProducts(daughterparticle0); 176 198 177 // daughter 1 (nutrino) in XZ plane 199 // daughter 1 (nutrino) in XZ plane 178 G4double eNu; // Enu << 200 G4double eNu; // Enu 179 eNu = (parentmass - daughtermass[2]) * (pare << 201 eNu = (parentmass-daughtermass[2]) 180 - 2. * parentmass * (x + dm); << 202 * (parentmass+daughtermass[2])+(dm*dm)-2.*parentmass*(x+dm); 181 eNu /= 2. * (parentmass + p * w - (x + dm)); << 203 eNu /= 2.*(parentmass+p*w-(x+dm)); 182 G4double cosn = w; 204 G4double cosn = w; 183 G4double phin = twopi * G4UniformRand() * ra << 205 G4double phin = twopi*G4UniformRand()*rad; 184 G4double sinn = std::sqrt((1.0 - cosn) * (1. << 206 G4double sinn = std::sqrt((1.0-cosn)*(1.0+cosn)); 185 207 186 G4ThreeVector direction1(sinn * std::cos(phi << 208 G4ThreeVector direction1(sinn*std::cos(phin), sinn*std::sin(phin), cosn); 187 direction1 = rm * direction1; 209 direction1 = rm * direction1; 188 auto daughterparticle1 = new G4DynamicPartic << 210 G4DynamicParticle* daughterparticle1 >> 211 = new G4DynamicParticle( G4MT_daughters[1], direction1*eNu); 189 products->PushProducts(daughterparticle1); 212 products->PushProducts(daughterparticle1); 190 213 191 // daughter 2 (proton) at REST 214 // daughter 2 (proton) at REST 192 G4double eP; // Eproton << 215 G4double eP; // Eproton 193 eP = parentmass - eNu - (x + dm) - daughterm << 216 eP = parentmass-eNu-(x+dm)-daughtermass[2]; 194 G4double pPx = -eNu * sinn; << 217 G4double pPx = -eNu*sinn; 195 G4double pPz = -p - eNu * cosn; << 218 G4double pPz = -p-eNu*cosn; 196 G4double pP = std::sqrt(eP * (eP + 2. * daug << 219 G4double pP = std::sqrt(eP*(eP+2.*daughtermass[2])); 197 G4ThreeVector direction2(pPx / pP * std::cos << 220 G4ThreeVector direction2(pPx/pP*std::cos(phin), >> 221 pPx/pP*std::sin(phin), pPz/pP); 198 direction2 = rm * direction2; 222 direction2 = rm * direction2; 199 auto daughterparticle2 = new G4DynamicPartic << 223 G4DynamicParticle* daughterparticle2 >> 224 = new G4DynamicParticle( G4MT_daughters[2], direction2*pP); 200 products->PushProducts(daughterparticle2); 225 products->PushProducts(daughterparticle2); 201 226 202 // output message 227 // output message 203 #ifdef G4VERBOSE 228 #ifdef G4VERBOSE 204 if (GetVerboseLevel() > 1) { << 229 if (GetVerboseLevel()>1) >> 230 { 205 G4cout << "G4NeutronBetaDecayChannel::Deca 231 G4cout << "G4NeutronBetaDecayChannel::DecayIt "; 206 G4cout << " create decay products in rest << 232 G4cout << " create decay products in rest frame " <<G4endl; 207 products->DumpInfo(); 233 products->DumpInfo(); 208 } 234 } 209 #endif 235 #endif 210 return products; 236 return products; 211 } 237 } 212 238