Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4KL3DecayChannel class implementation << 27 // 26 // 28 // Author: H.Kurashige, 30 May 1997 << 27 // $Id: G4KL3DecayChannel.cc,v 1.10 2010-10-30 07:55:00 kurasige Exp $ 29 // ------------------------------------------- << 28 // GEANT4 tag $Name: not supported by cvs2svn $ 30 << 29 // 31 #include "G4KL3DecayChannel.hh" << 30 // >> 31 // ------------------------------------------------------------ >> 32 // GEANT 4 class header file >> 33 // >> 34 // History: first implementation, based on object model of >> 35 // 30 May 1997 H.Kurashige >> 36 // ------------------------------------------------------------ 32 37 33 #include "G4DecayProducts.hh" << 34 #include "G4LorentzRotation.hh" << 35 #include "G4LorentzVector.hh" << 36 #include "G4ParticleDefinition.hh" 38 #include "G4ParticleDefinition.hh" 37 #include "G4PhysicalConstants.hh" << 39 #include "G4DecayProducts.hh" 38 #include "G4SystemOfUnits.hh" << 39 #include "G4VDecayChannel.hh" 40 #include "G4VDecayChannel.hh" >> 41 #include "G4KL3DecayChannel.hh" 40 #include "Randomize.hh" 42 #include "Randomize.hh" >> 43 #include "G4LorentzVector.hh" >> 44 #include "G4LorentzRotation.hh" >> 45 41 46 42 G4KL3DecayChannel::G4KL3DecayChannel(const G4S << 47 G4KL3DecayChannel::G4KL3DecayChannel( 43 const G4S << 48 const G4String& theParentName, 44 const G4S << 49 G4double theBR, 45 : G4VDecayChannel("KL3 Decay", theParentName << 50 const G4String& thePionName, 46 theNutrinoName) << 51 const G4String& theLeptonName, >> 52 const G4String& theNutrinoName) >> 53 :G4VDecayChannel("KL3 Decay",theParentName, >> 54 theBR, 3, >> 55 thePionName,theLeptonName,theNutrinoName) 47 { 56 { 48 static const G4String K_plus("kaon+"); 57 static const G4String K_plus("kaon+"); 49 static const G4String K_minus("kaon-"); 58 static const G4String K_minus("kaon-"); 50 static const G4String K_L("kaon0L"); 59 static const G4String K_L("kaon0L"); 51 static const G4String Mu_plus("mu+"); 60 static const G4String Mu_plus("mu+"); 52 static const G4String Mu_minus("mu-"); 61 static const G4String Mu_minus("mu-"); 53 static const G4String E_plus("e+"); 62 static const G4String E_plus("e+"); 54 static const G4String E_minus("e-"); 63 static const G4String E_minus("e-"); >> 64 >> 65 massK = 0.0; >> 66 daughterM[idPi] = 0.0; >> 67 daughterM[idLepton] = 0.0; >> 68 daughterM[idNutrino] = 0.0; 55 69 56 // check modes 70 // check modes 57 if (((theParentName == K_plus) && (theLepton << 71 if ( ((theParentName == K_plus)&&(theLeptonName == E_plus)) || 58 || ((theParentName == K_minus) && (theLe << 72 ((theParentName == K_minus)&&(theLeptonName == E_minus)) ) { 59 { << 60 // K+- (Ke3) 73 // K+- (Ke3) 61 pLambda = 0.0286; 74 pLambda = 0.0286; 62 pXi0 = -0.35; << 75 pXi0 = -0.35; 63 } << 76 } else if ( ((theParentName == K_plus)&&(theLeptonName == Mu_plus)) || 64 else if (((theParentName == K_plus) && (theL << 77 ((theParentName == K_minus)&&(theLeptonName == Mu_minus)) ) { 65 || ((theParentName == K_minus) && ( << 66 { << 67 // K+- (Kmu3) 78 // K+- (Kmu3) 68 pLambda = 0.033; 79 pLambda = 0.033; 69 pXi0 = -0.35; << 80 pXi0 = -0.35; 70 } << 81 } else if ( (theParentName == K_L) && 71 else if ((theParentName == K_L) && ((theLept << 82 ((theLeptonName == E_plus) ||(theLeptonName == E_minus)) ){ 72 // K0L (Ke3) 83 // K0L (Ke3) 73 pLambda = 0.0300; 84 pLambda = 0.0300; 74 pXi0 = -0.11; << 85 pXi0 = -0.11; 75 } << 86 } else if ( (theParentName == K_L) && 76 else if ((theParentName == K_L) && ((theLept << 87 ((theLeptonName == Mu_plus) ||(theLeptonName == Mu_minus)) ){ 77 // K0L (Kmu3) 88 // K0L (Kmu3) 78 pLambda = 0.034; 89 pLambda = 0.034; 79 pXi0 = -0.11; << 90 pXi0 = -0.11; 80 } << 91 } else { 81 else { << 82 #ifdef G4VERBOSE 92 #ifdef G4VERBOSE 83 if (GetVerboseLevel() > 2) { << 93 if (GetVerboseLevel()>2) { 84 G4cout << "G4KL3DecayChannel:: construct 94 G4cout << "G4KL3DecayChannel:: constructor :"; 85 G4cout << "illegal arguments " << G4endl << 95 G4cout << "illegal arguments " << G4endl;; 86 ; << 87 DumpInfo(); 96 DumpInfo(); 88 } 97 } 89 #endif 98 #endif 90 // set values for K0L (Ke3) temporarily 99 // set values for K0L (Ke3) temporarily 91 pLambda = 0.0300; 100 pLambda = 0.0300; 92 pXi0 = -0.11; << 101 pXi0 = -0.11; 93 } 102 } 94 } 103 } 95 104 96 G4KL3DecayChannel& G4KL3DecayChannel::operator << 105 G4KL3DecayChannel::~G4KL3DecayChannel() 97 { 106 { 98 if (this != &right) { << 99 kinematics_name = right.kinematics_name; << 100 verboseLevel = right.verboseLevel; << 101 rbranch = right.rbranch; << 102 << 103 // copy parent name << 104 parent_name = new G4String(*right.parent_n << 105 << 106 // clear daughters_name array << 107 ClearDaughtersName(); << 108 << 109 // recreate array << 110 numberOfDaughters = right.numberOfDaughter << 111 if (numberOfDaughters > 0) { << 112 if (daughters_name != nullptr) ClearDaug << 113 daughters_name = new G4String*[numberOfD << 114 // copy daughters name << 115 for (G4int index = 0; index < numberOfDa << 116 daughters_name[index] = new G4String(* << 117 } << 118 } << 119 pLambda = right.pLambda; << 120 pXi0 = right.pXi0; << 121 } << 122 return *this; << 123 } 107 } 124 108 125 G4DecayProducts* G4KL3DecayChannel::DecayIt(G4 << 109 G4DecayProducts* G4KL3DecayChannel::DecayIt(G4double) 126 { 110 { 127 // this version neglects muon polarization << 111 // this version neglects muon polarization 128 // assumes the pure V-A couplin 112 // assumes the pure V-A coupling 129 // gives incorrect energy spect << 113 // gives incorrect energy spectrum for Nutrinos 130 #ifdef G4VERBOSE 114 #ifdef G4VERBOSE 131 if (GetVerboseLevel() > 1) G4cout << "G4KL3D << 115 if (GetVerboseLevel()>1) G4cout << "G4KL3DecayChannel::DecayIt " << G4endl; 132 #endif 116 #endif 133 117 134 // fill parent particle and its mass 118 // fill parent particle and its mass 135 CheckAndFillParent(); << 119 if (parent == 0) { 136 G4double massK = G4MT_parent->GetPDGMass(); << 120 FillParent(); >> 121 } >> 122 massK = parent->GetPDGMass(); 137 123 138 // fill daughter particles and their mass 124 // fill daughter particles and their mass 139 CheckAndFillDaughters(); << 125 if (daughters == 0) { 140 G4double daughterM[3]; << 126 FillDaughters(); 141 daughterM[idPi] = G4MT_daughters[idPi]->GetP << 127 } 142 daughterM[idLepton] = G4MT_daughters[idLepto << 128 daughterM[idPi] = daughters[idPi]->GetPDGMass(); 143 daughterM[idNutrino] = G4MT_daughters[idNutr << 129 daughterM[idLepton] = daughters[idLepton]->GetPDGMass(); >> 130 daughterM[idNutrino] = daughters[idNutrino]->GetPDGMass(); 144 131 145 // determine momentum/energy of daughters ac << 132 // determine momentum/energy of daughters >> 133 // according to DalitzDensity 146 G4double daughterP[3], daughterE[3]; 134 G4double daughterP[3], daughterE[3]; 147 G4double w; 135 G4double w; 148 G4double r; 136 G4double r; 149 const size_t MAX_LOOP = 10000; << 137 do { 150 for (std::size_t loop_counter = 0; loop_coun << 151 r = G4UniformRand(); 138 r = G4UniformRand(); 152 PhaseSpace(massK, &daughterM[0], &daughter 139 PhaseSpace(massK, &daughterM[0], &daughterE[0], &daughterP[0]); 153 w = DalitzDensity(massK, daughterE[idPi], << 140 w = DalitzDensity(daughterE[idPi],daughterE[idLepton],daughterE[idNutrino]); 154 daughterM[idPi], daughte << 141 } while ( r > w); 155 if (r <= w) break; << 156 } << 157 142 158 // output message 143 // output message 159 #ifdef G4VERBOSE 144 #ifdef G4VERBOSE 160 if (GetVerboseLevel() > 1) { << 145 if (GetVerboseLevel()>1) { 161 G4cout << *daughters_name[0] << ":" << dau << 146 G4cout << *daughters_name[0] << ":" << daughterP[0]/GeV << "[GeV/c]" <<G4endl; 162 G4cout << *daughters_name[1] << ":" << dau << 147 G4cout << *daughters_name[1] << ":" << daughterP[1]/GeV << "[GeV/c]" <<G4endl; 163 G4cout << *daughters_name[2] << ":" << dau << 148 G4cout << *daughters_name[2] << ":" << daughterP[2]/GeV << "[GeV/c]" <<G4endl; 164 } 149 } 165 #endif 150 #endif 166 << 151 //create parent G4DynamicParticle at rest 167 // create parent G4DynamicParticle at rest << 152 G4ThreeVector* direction = new G4ThreeVector(1.0,0.0,0.0); 168 auto direction = new G4ThreeVector(1.0, 0.0, << 153 G4DynamicParticle * parentparticle = new G4DynamicParticle( parent, *direction, 0.0); 169 auto parentparticle = new G4DynamicParticle( << 170 delete direction; 154 delete direction; 171 155 172 // create G4Decayproducts << 156 //create G4Decayproducts 173 auto products = new G4DecayProducts(*parentp << 157 G4DecayProducts *products = new G4DecayProducts(*parentparticle); 174 delete parentparticle; 158 delete parentparticle; 175 159 176 // create daughter G4DynamicParticle << 160 //create daughter G4DynamicParticle 177 G4double costheta, sintheta, phi, sinphi, co << 161 G4double costheta, sintheta, phi, sinphi, cosphi; 178 G4double costhetan, sinthetan, phin, sinphin 162 G4double costhetan, sinthetan, phin, sinphin, cosphin; 179 << 163 180 // pion 164 // pion 181 costheta = 2. * G4UniformRand() - 1.0; << 165 costheta = 2.*G4UniformRand()-1.0; 182 sintheta = std::sqrt((1.0 - costheta) * (1.0 << 166 sintheta = std::sqrt((1.0-costheta)*(1.0+costheta)); 183 phi = twopi * G4UniformRand() * rad; << 167 phi = twopi*G4UniformRand()*rad; 184 sinphi = std::sin(phi); 168 sinphi = std::sin(phi); 185 cosphi = std::cos(phi); 169 cosphi = std::cos(phi); 186 direction = new G4ThreeVector(sintheta * cos << 170 direction = new G4ThreeVector(sintheta*cosphi,sintheta*sinphi,costheta); 187 G4ThreeVector momentum0 = (*direction) * dau << 171 G4ThreeVector momentum0 = (*direction)*daughterP[0]; 188 auto daughterparticle = new G4DynamicParticl << 172 G4DynamicParticle * daughterparticle >> 173 = new G4DynamicParticle( daughters[0], momentum0); 189 products->PushProducts(daughterparticle); 174 products->PushProducts(daughterparticle); 190 175 191 // neutrino 176 // neutrino 192 costhetan = << 177 costhetan = (daughterP[1]*daughterP[1]-daughterP[2]*daughterP[2]-daughterP[0]*daughterP[0])/(2.0*daughterP[2]*daughterP[0]); 193 (daughterP[1] * daughterP[1] - daughterP[2 << 178 sinthetan = std::sqrt((1.0-costhetan)*(1.0+costhetan)); 194 / (2.0 * daughterP[2] * daughterP[0]); << 179 phin = twopi*G4UniformRand()*rad; 195 sinthetan = std::sqrt((1.0 - costhetan) * (1 << 196 phin = twopi * G4UniformRand() * rad; << 197 sinphin = std::sin(phin); 180 sinphin = std::sin(phin); 198 cosphin = std::cos(phin); 181 cosphin = std::cos(phin); 199 direction->setX(sinthetan * cosphin * costhe << 182 direction->setX( sinthetan*cosphin*costheta*cosphi - sinthetan*sinphin*sinphi + costhetan*sintheta*cosphi); 200 + costhetan * sintheta * cos << 183 direction->setY( sinthetan*cosphin*costheta*sinphi + sinthetan*sinphin*cosphi + costhetan*sintheta*sinphi); 201 direction->setY(sinthetan * cosphin * costhe << 184 direction->setZ( -sinthetan*cosphin*sintheta + costhetan*costheta); 202 + costhetan * sintheta * sin << 203 direction->setZ(-sinthetan * cosphin * sinth << 204 185 205 G4ThreeVector momentum2 = (*direction) * dau << 186 G4ThreeVector momentum2 = (*direction)*daughterP[2]; 206 daughterparticle = new G4DynamicParticle(G4M << 187 daughterparticle = new G4DynamicParticle( daughters[2], momentum2); 207 products->PushProducts(daughterparticle); 188 products->PushProducts(daughterparticle); 208 189 209 // lepton << 190 //lepton 210 G4ThreeVector momentum1 = (momentum0 + momen 191 G4ThreeVector momentum1 = (momentum0 + momentum2) * (-1.0); 211 daughterparticle = new G4DynamicParticle(G4M << 192 daughterparticle = >> 193 new G4DynamicParticle( daughters[1], momentum1); 212 products->PushProducts(daughterparticle); 194 products->PushProducts(daughterparticle); 213 195 214 #ifdef G4VERBOSE 196 #ifdef G4VERBOSE 215 if (GetVerboseLevel() > 1) { << 197 if (GetVerboseLevel()>1) { 216 G4cout << "G4KL3DecayChannel::DecayIt "; << 198 G4cout << "G4KL3DecayChannel::DecayIt "; 217 G4cout << " create decay products in rest << 199 G4cout << " create decay products in rest frame " <<G4endl; 218 G4cout << " decay products address=" << p << 200 G4cout << " decay products address=" << products << G4endl; 219 products->DumpInfo(); << 201 products->DumpInfo(); 220 } 202 } 221 #endif 203 #endif 222 delete direction; 204 delete direction; 223 return products; 205 return products; 224 } 206 } 225 207 226 void G4KL3DecayChannel::PhaseSpace(G4double pa << 208 void G4KL3DecayChannel::PhaseSpace(G4double parentM, >> 209 const G4double* M, >> 210 G4double* E, >> 211 G4double* P ) >> 212 // algorism of this code is originally written in GDECA3 of GEANT3 227 { 213 { 228 // Algorithm in this code was originally wri << 214 229 << 215 //sum of daughters'mass 230 // sum of daughters'mass << 231 G4double sumofdaughtermass = 0.0; 216 G4double sumofdaughtermass = 0.0; 232 G4int index; 217 G4int index; 233 const G4int N_DAUGHTER = 3; << 218 for (index=0; index<3; index++){ 234 << 235 for (index = 0; index < N_DAUGHTER; ++index) << 236 sumofdaughtermass += M[index]; 219 sumofdaughtermass += M[index]; 237 } 220 } 238 221 239 // calculate daughter momentum. Generate two << 222 //calculate daughter momentum >> 223 // Generate two 240 G4double rd1, rd2, rd; 224 G4double rd1, rd2, rd; 241 G4double momentummax = 0.0, momentumsum = 0. << 225 G4double momentummax=0.0, momentumsum = 0.0; 242 G4double energy; 226 G4double energy; 243 const size_t MAX_LOOP = 10000; << 227 244 for (std::size_t loop_counter = 0; loop_coun << 228 do { 245 rd1 = G4UniformRand(); 229 rd1 = G4UniformRand(); 246 rd2 = G4UniformRand(); 230 rd2 = G4UniformRand(); 247 if (rd2 > rd1) { 231 if (rd2 > rd1) { 248 rd = rd1; << 232 rd = rd1; 249 rd1 = rd2; 233 rd1 = rd2; 250 rd2 = rd; 234 rd2 = rd; 251 } << 235 } 252 momentummax = 0.0; 236 momentummax = 0.0; 253 momentumsum = 0.0; 237 momentumsum = 0.0; 254 // daughter 0 238 // daughter 0 255 energy = rd2 * (parentM - sumofdaughtermas << 239 energy = rd2*(parentM - sumofdaughtermass); 256 P[0] = std::sqrt(energy * energy + 2.0 * e << 240 P[0] = std::sqrt(energy*energy + 2.0*energy*M[0]); 257 E[0] = energy; 241 E[0] = energy; 258 if (P[0] > momentummax) momentummax = P[0] << 242 if ( P[0] >momentummax )momentummax = P[0]; 259 momentumsum += P[0]; << 243 momentumsum += P[0]; 260 // daughter 1 244 // daughter 1 261 energy = (1. - rd1) * (parentM - sumofdaug << 245 energy = (1.-rd1)*(parentM - sumofdaughtermass); 262 P[1] = std::sqrt(energy * energy + 2.0 * e << 246 P[1] = std::sqrt(energy*energy + 2.0*energy*M[1]); 263 E[1] = energy; 247 E[1] = energy; 264 if (P[1] > momentummax) momentummax = P[1] << 248 if ( P[1] >momentummax )momentummax = P[1]; 265 momentumsum += P[1]; << 249 momentumsum += P[1]; 266 // daughter 2 250 // daughter 2 267 energy = (rd1 - rd2) * (parentM - sumofdau << 251 energy = (rd1-rd2)*(parentM - sumofdaughtermass); 268 P[2] = std::sqrt(energy * energy + 2.0 * e << 252 P[2] = std::sqrt(energy*energy + 2.0*energy*M[2]); 269 E[2] = energy; 253 E[2] = energy; 270 if (P[2] > momentummax) momentummax = P[2] << 254 if ( P[2] >momentummax )momentummax = P[2]; 271 momentumsum += P[2]; << 255 momentumsum += P[2]; 272 if (momentummax <= momentumsum - momentumm << 256 } while (momentummax > momentumsum - momentummax ); 273 } << 257 274 #ifdef G4VERBOSE 258 #ifdef G4VERBOSE 275 if (GetVerboseLevel() > 2) { << 259 if (GetVerboseLevel()>2) { 276 G4cout << "G4KL3DecayChannel::PhaseSpace << 260 G4cout << "G4KL3DecayChannel::PhaseSpace "; 277 G4cout << "Kon mass:" << parentM / GeV << << 261 G4cout << "Kon mass:" << parentM/GeV << "GeV/c/c" << G4endl; 278 for (index = 0; index < 3; ++index) { << 262 for (index=0; index<3; index++){ 279 G4cout << index << " : " << M[index] / G << 263 G4cout << index << " : " << M[index]/GeV << "GeV/c/c "; 280 G4cout << " : " << E[index] / GeV << "Ge << 264 G4cout << " : " << E[index]/GeV << "GeV "; 281 G4cout << " : " << P[index] / GeV << "Ge << 265 G4cout << " : " << P[index]/GeV << "GeV/c " << G4endl; 282 } << 266 } 283 } 267 } 284 #endif 268 #endif 285 } 269 } 286 270 287 G4double G4KL3DecayChannel::DalitzDensity(G4do << 271 288 G4do << 272 G4double G4KL3DecayChannel::DalitzDensity(G4double Epi, G4double El, G4double Enu) 289 { 273 { 290 // KL3 decay - Dalitz Plot Density, see Chou << 274 // KL3 decay Dalitz Plot Density 291 // Arguments << 275 // see Chounet et al Phys. Rep. 4, 201 >> 276 // arguments 292 // Epi: kinetic enregy of pion 277 // Epi: kinetic enregy of pion 293 // El: kinetic enregy of lepton (e or mu 278 // El: kinetic enregy of lepton (e or mu) 294 // Enu: kinetic energy of nutrino 279 // Enu: kinetic energy of nutrino 295 // Constants << 280 // constants 296 // pLambda : linear energy dependence of 281 // pLambda : linear energy dependence of f+ 297 // pXi0 : = f+(0)/f- 282 // pXi0 : = f+(0)/f- 298 // pNorm : normalization factor 283 // pNorm : normalization factor 299 // Variables << 284 // variables 300 // Epi: total energy of pion 285 // Epi: total energy of pion 301 // El: total energy of lepton (e or mu) 286 // El: total energy of lepton (e or mu) 302 // Enu: total energy of nutrino 287 // Enu: total energy of nutrino 303 288 304 // calculate total energy << 289 // mass of daughters >> 290 G4double massPi = daughterM[idPi]; >> 291 G4double massL = daughterM[idLepton]; >> 292 G4double massNu = daughterM[idNutrino]; >> 293 >> 294 // calcurate total energy 305 Epi = Epi + massPi; 295 Epi = Epi + massPi; 306 El = El + massL; << 296 El = El + massL; 307 Enu = Enu + massNu; 297 Enu = Enu + massNu; >> 298 >> 299 G4double Epi_max = (massK*massK+massPi*massPi-massL*massL)/2.0/massK; >> 300 G4double E = Epi_max - Epi; >> 301 G4double q2 = massK*massK + massPi*massPi - 2.0*massK*Epi; 308 302 309 G4double Epi_max = (massK * massK + massPi * << 303 G4double F = 1.0 + pLambda*q2/massPi/massPi; 310 G4double E = Epi_max - Epi; << 311 G4double q2 = massK * massK + massPi * massP << 312 << 313 G4double F = 1.0 + pLambda * q2 / massPi / m << 314 G4double Fmax = 1.0; 304 G4double Fmax = 1.0; 315 if (pLambda > 0.0) Fmax = (1.0 + pLambda * ( << 305 if (pLambda >0.0) Fmax = (1.0 + pLambda*(massK*massK/massPi/massPi+1.0)); 316 << 317 G4double Xi = pXi0 * (1.0 + pLambda * q2 / m << 318 306 319 G4double coeffA = massK * (2.0 * El * Enu - << 307 G4double Xi = pXi0*(1.0 + pLambda*q2/massPi/massPi); 320 G4double coeffB = massL * massL * (Enu - E / << 321 G4double coeffC = massL * massL * E / 4.0; << 322 308 323 G4double RhoMax = (Fmax * Fmax) * (massK * m << 309 G4double coeffA = massK*(2.0*El*Enu-massK*E)+massL*massL*(E/4.0-Enu); >> 310 G4double coeffB = massL*massL*(Enu-E/2.0); >> 311 G4double coeffC = massL*massL*E/4.0; 324 312 325 G4double Rho = (F * F) * (coeffA + coeffB * << 313 G4double RhoMax = (Fmax*Fmax)*(massK*massK*massK/8.0); 326 314 >> 315 G4double Rho = (F*F)*(coeffA + coeffB*Xi + coeffC*Xi*Xi); >> 316 327 #ifdef G4VERBOSE 317 #ifdef G4VERBOSE 328 if (GetVerboseLevel() > 2) { << 318 if (GetVerboseLevel()>2) { 329 G4cout << "G4KL3DecayChannel::DalitzDensit << 319 G4cout << "G4KL3DecayChannel::DalitzDensity " <<G4endl; 330 G4cout << " Pi[" << massPi / GeV << "GeV/c << 320 G4cout << " Pi[" << massPi/GeV <<"GeV/c/c] :" << Epi/GeV << "GeV" <<G4endl; 331 G4cout << " L[" << massL / GeV << "GeV/c/c << 321 G4cout << " L[" << massL/GeV <<"GeV/c/c] :" << El/GeV << "GeV" <<G4endl; 332 G4cout << " Nu[" << massNu / GeV << "GeV/c << 322 G4cout << " Nu[" << massNu/GeV <<"GeV/c/c] :" << Enu/GeV << "GeV" <<G4endl; 333 G4cout << " F :" << F << " Fmax :" << Fmax << 323 G4cout << " F :" << F << " Fmax :" << Fmax << " Xi :" << Xi << G4endl; 334 G4cout << " A :" << coeffA << " B :" << c << 324 G4cout << " A :" << coeffA << " B :" << coeffB << " C :"<< coeffC <<G4endl; 335 G4cout << " Rho :" << Rho << " RhoMax :" << 325 G4cout << " Rho :" << Rho << " RhoMax :" << RhoMax << G4endl; 336 } 326 } 337 #endif 327 #endif 338 return (Rho / RhoMax); << 328 return (Rho/RhoMax); 339 } 329 } >> 330 >> 331 340 332