Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4VCSGfaceted implementation; a virtual cla << 26 // the GEANT4 collaboration. 27 // that is built entirely out of G4VCSGface fa << 27 // >> 28 // By copying, distributing or modifying the Program (or any work >> 29 // based on the Program) you indicate your acceptance of this statement, >> 30 // and all its terms. >> 31 // >> 32 // $Id: G4VCSGfaceted.cc,v 1.29 2010-09-23 10:27:38 gcosmo Exp $ >> 33 // GEANT4 tag $Name: not supported by cvs2svn $ >> 34 // >> 35 // >> 36 // -------------------------------------------------------------------- >> 37 // GEANT 4 class source file >> 38 // >> 39 // >> 40 // G4VCSGfaceted.cc >> 41 // >> 42 // Implementation of the virtual class of a CSG type shape that is built >> 43 // entirely out of G4VCSGface faces. 28 // 44 // 29 // Author: David C. Williams (davidw@scipp.ucs << 30 // ------------------------------------------- 45 // -------------------------------------------------------------------- 31 46 32 #include "G4VCSGfaceted.hh" 47 #include "G4VCSGfaceted.hh" 33 #include "G4VCSGface.hh" 48 #include "G4VCSGface.hh" 34 #include "G4SolidExtentList.hh" 49 #include "G4SolidExtentList.hh" 35 50 36 #include "G4VoxelLimits.hh" 51 #include "G4VoxelLimits.hh" 37 #include "G4AffineTransform.hh" 52 #include "G4AffineTransform.hh" 38 53 39 #include "Randomize.hh" 54 #include "Randomize.hh" 40 55 41 #include "G4Polyhedron.hh" 56 #include "G4Polyhedron.hh" 42 #include "G4VGraphicsScene.hh" 57 #include "G4VGraphicsScene.hh" >> 58 #include "G4NURBS.hh" >> 59 #include "G4NURBSbox.hh" 43 #include "G4VisExtent.hh" 60 #include "G4VisExtent.hh" 44 61 45 #include "G4AutoLock.hh" << 46 << 47 namespace << 48 { << 49 G4Mutex polyhedronMutex = G4MUTEX_INITIALIZE << 50 } << 51 << 52 // 62 // 53 // Constructor 63 // Constructor 54 // 64 // 55 G4VCSGfaceted::G4VCSGfaceted( const G4String& 65 G4VCSGfaceted::G4VCSGfaceted( const G4String& name ) 56 : G4VSolid(name), 66 : G4VSolid(name), >> 67 numFace(0), faces(0), fCubicVolume(0.), fSurfaceArea(0.), fpPolyhedron(0), 57 fStatistics(1000000), fCubVolEpsilon(0.001 68 fStatistics(1000000), fCubVolEpsilon(0.001), fAreaAccuracy(-1.) 58 { 69 { 59 } 70 } 60 71 61 72 62 // 73 // 63 // Fake default constructor - sets only member 74 // Fake default constructor - sets only member data and allocates memory 64 // for usage restri 75 // for usage restricted to object persistency. 65 // 76 // 66 G4VCSGfaceted::G4VCSGfaceted( __void__& a ) 77 G4VCSGfaceted::G4VCSGfaceted( __void__& a ) 67 : G4VSolid(a), 78 : G4VSolid(a), >> 79 numFace(0), faces(0), fCubicVolume(0.), fSurfaceArea(0.), fpPolyhedron(0), 68 fStatistics(1000000), fCubVolEpsilon(0.001 80 fStatistics(1000000), fCubVolEpsilon(0.001), fAreaAccuracy(-1.) 69 { 81 { 70 } 82 } 71 83 72 // 84 // 73 // Destructor 85 // Destructor 74 // 86 // 75 G4VCSGfaceted::~G4VCSGfaceted() 87 G4VCSGfaceted::~G4VCSGfaceted() 76 { 88 { 77 DeleteStuff(); 89 DeleteStuff(); 78 delete fpPolyhedron; fpPolyhedron = nullptr; << 90 delete fpPolyhedron; 79 } 91 } 80 92 81 93 82 // 94 // 83 // Copy constructor 95 // Copy constructor 84 // 96 // 85 G4VCSGfaceted::G4VCSGfaceted( const G4VCSGface << 97 G4VCSGfaceted::G4VCSGfaceted( const G4VCSGfaceted &source ) 86 : G4VSolid( source ) 98 : G4VSolid( source ) 87 { 99 { 88 fStatistics = source.fStatistics; 100 fStatistics = source.fStatistics; 89 fCubVolEpsilon = source.fCubVolEpsilon; 101 fCubVolEpsilon = source.fCubVolEpsilon; 90 fAreaAccuracy = source.fAreaAccuracy; 102 fAreaAccuracy = source.fAreaAccuracy; 91 103 92 CopyStuff( source ); 104 CopyStuff( source ); 93 } 105 } 94 106 95 107 96 // 108 // 97 // Assignment operator 109 // Assignment operator 98 // 110 // 99 G4VCSGfaceted& G4VCSGfaceted::operator=( const << 111 const G4VCSGfaceted &G4VCSGfaceted::operator=( const G4VCSGfaceted &source ) 100 { 112 { 101 if (&source == this) { return *this; } 113 if (&source == this) { return *this; } 102 114 103 // Copy base class data 115 // Copy base class data 104 // 116 // 105 G4VSolid::operator=(source); 117 G4VSolid::operator=(source); 106 118 107 // Copy data 119 // Copy data 108 // 120 // 109 fStatistics = source.fStatistics; 121 fStatistics = source.fStatistics; 110 fCubVolEpsilon = source.fCubVolEpsilon; 122 fCubVolEpsilon = source.fCubVolEpsilon; 111 fAreaAccuracy = source.fAreaAccuracy; 123 fAreaAccuracy = source.fAreaAccuracy; 112 124 113 DeleteStuff(); 125 DeleteStuff(); 114 CopyStuff( source ); 126 CopyStuff( source ); 115 127 116 return *this; 128 return *this; 117 } 129 } 118 130 119 131 120 // 132 // 121 // CopyStuff (protected) 133 // CopyStuff (protected) 122 // 134 // 123 // Copy the contents of source 135 // Copy the contents of source 124 // 136 // 125 void G4VCSGfaceted::CopyStuff( const G4VCSGfac << 137 void G4VCSGfaceted::CopyStuff( const G4VCSGfaceted &source ) 126 { 138 { 127 numFace = source.numFace; 139 numFace = source.numFace; 128 if (numFace == 0) { return; } // odd, but 140 if (numFace == 0) { return; } // odd, but permissable? 129 141 130 faces = new G4VCSGface*[numFace]; 142 faces = new G4VCSGface*[numFace]; 131 143 132 G4VCSGface **face = faces, 144 G4VCSGface **face = faces, 133 **sourceFace = source.faces; 145 **sourceFace = source.faces; 134 do // Loop checking, 13.08.2015, G.Cosmo << 146 do 135 { 147 { 136 *face = (*sourceFace)->Clone(); 148 *face = (*sourceFace)->Clone(); 137 } while( ++sourceFace, ++face < faces+numFac 149 } while( ++sourceFace, ++face < faces+numFace ); 138 fCubicVolume = source.fCubicVolume; 150 fCubicVolume = source.fCubicVolume; 139 fSurfaceArea = source.fSurfaceArea; 151 fSurfaceArea = source.fSurfaceArea; 140 fRebuildPolyhedron = false; << 152 fpPolyhedron = 0; 141 fpPolyhedron = nullptr; << 142 } 153 } 143 154 144 155 145 // 156 // 146 // DeleteStuff (protected) 157 // DeleteStuff (protected) 147 // 158 // 148 // Delete all allocated objects 159 // Delete all allocated objects 149 // 160 // 150 void G4VCSGfaceted::DeleteStuff() 161 void G4VCSGfaceted::DeleteStuff() 151 { 162 { 152 if (numFace != 0) << 163 if (numFace) 153 { 164 { 154 G4VCSGface **face = faces; 165 G4VCSGface **face = faces; 155 do // Loop checking, 13.08.2015, G.Cosm << 166 do 156 { 167 { 157 delete *face; 168 delete *face; 158 } while( ++face < faces + numFace ); 169 } while( ++face < faces + numFace ); 159 170 160 delete [] faces; 171 delete [] faces; 161 } 172 } 162 delete fpPolyhedron; fpPolyhedron = nullptr; << 163 } 173 } 164 174 165 175 166 // 176 // 167 // CalculateExtent 177 // CalculateExtent 168 // 178 // 169 G4bool G4VCSGfaceted::CalculateExtent( const E 179 G4bool G4VCSGfaceted::CalculateExtent( const EAxis axis, 170 const G << 180 const G4VoxelLimits &voxelLimit, 171 const G << 181 const G4AffineTransform &transform, 172 G << 182 G4double &min, 173 G << 183 G4double &max ) const 174 { 184 { 175 G4SolidExtentList extentList( axis, voxelLi 185 G4SolidExtentList extentList( axis, voxelLimit ); 176 186 177 // 187 // 178 // Loop over all faces, checking min/max ext 188 // Loop over all faces, checking min/max extent as we go. 179 // 189 // 180 G4VCSGface **face = faces; 190 G4VCSGface **face = faces; 181 do // Loop checking, 13.08.2015, G.Cosmo << 191 do 182 { 192 { 183 (*face)->CalculateExtent( axis, voxelLimit 193 (*face)->CalculateExtent( axis, voxelLimit, transform, extentList ); 184 } while( ++face < faces + numFace ); 194 } while( ++face < faces + numFace ); 185 195 186 // 196 // 187 // Return min/max value 197 // Return min/max value 188 // 198 // 189 return extentList.GetExtent( min, max ); 199 return extentList.GetExtent( min, max ); 190 } 200 } 191 201 192 202 193 // 203 // 194 // Inside 204 // Inside 195 // 205 // 196 // It could be a good idea to override this vi 206 // It could be a good idea to override this virtual 197 // member to add first a simple test (such as 207 // member to add first a simple test (such as spherical 198 // test or whatnot) and to call this version o 208 // test or whatnot) and to call this version only if 199 // the simplier test fails. 209 // the simplier test fails. 200 // 210 // 201 EInside G4VCSGfaceted::Inside( const G4ThreeVe << 211 EInside G4VCSGfaceted::Inside( const G4ThreeVector &p ) const 202 { 212 { 203 EInside answer=kOutside; 213 EInside answer=kOutside; 204 G4VCSGface **face = faces; 214 G4VCSGface **face = faces; 205 G4double best = kInfinity; 215 G4double best = kInfinity; 206 do // Loop checking, 13.08.2015, G.Cosmo << 216 do 207 { 217 { 208 G4double distance; 218 G4double distance; 209 EInside result = (*face)->Inside( p, kCarT 219 EInside result = (*face)->Inside( p, kCarTolerance/2, &distance ); 210 if (result == kSurface) { return kSurface; 220 if (result == kSurface) { return kSurface; } 211 if (distance < best) 221 if (distance < best) 212 { 222 { 213 best = distance; 223 best = distance; 214 answer = result; 224 answer = result; 215 } 225 } 216 } while( ++face < faces + numFace ); 226 } while( ++face < faces + numFace ); 217 227 218 return answer; 228 return answer; 219 } 229 } 220 230 221 231 222 // 232 // 223 // SurfaceNormal 233 // SurfaceNormal 224 // 234 // 225 G4ThreeVector G4VCSGfaceted::SurfaceNormal( co 235 G4ThreeVector G4VCSGfaceted::SurfaceNormal( const G4ThreeVector& p ) const 226 { 236 { 227 G4ThreeVector answer; 237 G4ThreeVector answer; 228 G4VCSGface **face = faces; 238 G4VCSGface **face = faces; 229 G4double best = kInfinity; 239 G4double best = kInfinity; 230 do // Loop checking, 13.08.2015, G.Cosmo << 240 do 231 { 241 { 232 G4double distance = kInfinity; << 242 G4double distance; 233 G4ThreeVector normal = (*face)->Normal( p, 243 G4ThreeVector normal = (*face)->Normal( p, &distance ); 234 if (distance < best) 244 if (distance < best) 235 { 245 { 236 best = distance; 246 best = distance; 237 answer = normal; 247 answer = normal; 238 } 248 } 239 } while( ++face < faces + numFace ); 249 } while( ++face < faces + numFace ); 240 250 241 return answer; 251 return answer; 242 } 252 } 243 253 244 254 245 // 255 // 246 // DistanceToIn(p,v) 256 // DistanceToIn(p,v) 247 // 257 // 248 G4double G4VCSGfaceted::DistanceToIn( const G4 << 258 G4double G4VCSGfaceted::DistanceToIn( const G4ThreeVector &p, 249 const G4 << 259 const G4ThreeVector &v ) const 250 { 260 { 251 G4double distance = kInfinity; 261 G4double distance = kInfinity; 252 G4double distFromSurface = kInfinity; 262 G4double distFromSurface = kInfinity; 253 G4VCSGface **face = faces; 263 G4VCSGface **face = faces; 254 G4VCSGface *bestFace = *face; 264 G4VCSGface *bestFace = *face; 255 do // Loop checking, 13.08.2015, G.Cosmo << 265 do 256 { 266 { 257 G4double faceDistance, 267 G4double faceDistance, 258 faceDistFromSurface; 268 faceDistFromSurface; 259 G4ThreeVector faceNormal; 269 G4ThreeVector faceNormal; 260 G4bool faceAllBehind; 270 G4bool faceAllBehind; 261 if ((*face)->Intersect( p, v, false, kCarT 271 if ((*face)->Intersect( p, v, false, kCarTolerance/2, 262 faceDistance, faceDistFromSurf 272 faceDistance, faceDistFromSurface, 263 faceNormal, faceAllBehind ) ) 273 faceNormal, faceAllBehind ) ) 264 { 274 { 265 // 275 // 266 // Intersecting face 276 // Intersecting face 267 // 277 // 268 if (faceDistance < distance) 278 if (faceDistance < distance) 269 { 279 { 270 distance = faceDistance; 280 distance = faceDistance; 271 distFromSurface = faceDistFromSurface; 281 distFromSurface = faceDistFromSurface; 272 bestFace = *face; 282 bestFace = *face; 273 if (distFromSurface <= 0) { return 0; 283 if (distFromSurface <= 0) { return 0; } 274 } 284 } 275 } 285 } 276 } while( ++face < faces + numFace ); 286 } while( ++face < faces + numFace ); 277 287 278 if (distance < kInfinity && distFromSurface< 288 if (distance < kInfinity && distFromSurface<kCarTolerance/2) 279 { 289 { 280 if (bestFace->Distance(p,false) < kCarTole 290 if (bestFace->Distance(p,false) < kCarTolerance/2) { distance = 0; } 281 } 291 } 282 292 283 return distance; 293 return distance; 284 } 294 } 285 295 286 296 287 // 297 // 288 // DistanceToIn(p) 298 // DistanceToIn(p) 289 // 299 // 290 G4double G4VCSGfaceted::DistanceToIn( const G4 << 300 G4double G4VCSGfaceted::DistanceToIn( const G4ThreeVector &p ) const 291 { 301 { 292 return DistanceTo( p, false ); 302 return DistanceTo( p, false ); 293 } 303 } 294 304 295 305 296 // 306 // 297 // DistanceToOut(p,v) 307 // DistanceToOut(p,v) 298 // 308 // 299 G4double G4VCSGfaceted::DistanceToOut( const G << 309 G4double G4VCSGfaceted::DistanceToOut( const G4ThreeVector &p, 300 const G << 310 const G4ThreeVector &v, 301 const G 311 const G4bool calcNorm, 302 G << 312 G4bool *validNorm, 303 G << 313 G4ThreeVector *n ) const 304 { 314 { 305 G4bool allBehind = true; 315 G4bool allBehind = true; 306 G4double distance = kInfinity; 316 G4double distance = kInfinity; 307 G4double distFromSurface = kInfinity; 317 G4double distFromSurface = kInfinity; 308 G4ThreeVector normal; 318 G4ThreeVector normal; 309 319 310 G4VCSGface **face = faces; 320 G4VCSGface **face = faces; 311 G4VCSGface *bestFace = *face; 321 G4VCSGface *bestFace = *face; 312 do // Loop checking, 13.08.2015, G.Cosmo << 322 do 313 { 323 { 314 G4double faceDistance, 324 G4double faceDistance, 315 faceDistFromSurface; 325 faceDistFromSurface; 316 G4ThreeVector faceNormal; 326 G4ThreeVector faceNormal; 317 G4bool faceAllBehind; 327 G4bool faceAllBehind; 318 if ((*face)->Intersect( p, v, true, kCarTo 328 if ((*face)->Intersect( p, v, true, kCarTolerance/2, 319 faceDistance, faceDistFromSurf 329 faceDistance, faceDistFromSurface, 320 faceNormal, faceAllBehind ) ) 330 faceNormal, faceAllBehind ) ) 321 { 331 { 322 // 332 // 323 // Intersecting face 333 // Intersecting face 324 // 334 // 325 if ( (distance < kInfinity) || (!faceAll 335 if ( (distance < kInfinity) || (!faceAllBehind) ) { allBehind = false; } 326 if (faceDistance < distance) 336 if (faceDistance < distance) 327 { 337 { 328 distance = faceDistance; 338 distance = faceDistance; 329 distFromSurface = faceDistFromSurface; 339 distFromSurface = faceDistFromSurface; 330 normal = faceNormal; 340 normal = faceNormal; 331 bestFace = *face; 341 bestFace = *face; 332 if (distFromSurface <= 0.) { break; } << 342 if (distFromSurface <= 0) { break; } 333 } 343 } 334 } 344 } 335 } while( ++face < faces + numFace ); 345 } while( ++face < faces + numFace ); 336 346 337 if (distance < kInfinity) 347 if (distance < kInfinity) 338 { 348 { 339 if (distFromSurface <= 0.) << 349 if (distFromSurface <= 0) 340 { 350 { 341 distance = 0.; << 351 distance = 0; 342 } 352 } 343 else if (distFromSurface<kCarTolerance/2) 353 else if (distFromSurface<kCarTolerance/2) 344 { 354 { 345 if (bestFace->Distance(p,true) < kCarTol << 355 if (bestFace->Distance(p,true) < kCarTolerance/2) { distance = 0; } 346 } 356 } 347 357 348 if (calcNorm) 358 if (calcNorm) 349 { 359 { 350 *validNorm = allBehind; 360 *validNorm = allBehind; 351 *n = normal; 361 *n = normal; 352 } 362 } 353 } 363 } 354 else 364 else 355 { 365 { 356 if (Inside(p) == kSurface) { distance = 0 << 366 if (Inside(p) == kSurface) { distance = 0; } 357 if (calcNorm) { *validNorm = false; } 367 if (calcNorm) { *validNorm = false; } 358 } 368 } 359 369 360 return distance; 370 return distance; 361 } 371 } 362 372 363 373 364 // 374 // 365 // DistanceToOut(p) 375 // DistanceToOut(p) 366 // 376 // 367 G4double G4VCSGfaceted::DistanceToOut( const G << 377 G4double G4VCSGfaceted::DistanceToOut( const G4ThreeVector &p ) const 368 { 378 { 369 return DistanceTo( p, true ); 379 return DistanceTo( p, true ); 370 } 380 } 371 381 372 382 373 // 383 // 374 // DistanceTo 384 // DistanceTo 375 // 385 // 376 // Protected routine called by DistanceToIn an 386 // Protected routine called by DistanceToIn and DistanceToOut 377 // 387 // 378 G4double G4VCSGfaceted::DistanceTo( const G4Th << 388 G4double G4VCSGfaceted::DistanceTo( const G4ThreeVector &p, 379 const G4bo 389 const G4bool outgoing ) const 380 { 390 { 381 G4VCSGface **face = faces; 391 G4VCSGface **face = faces; 382 G4double best = kInfinity; 392 G4double best = kInfinity; 383 do // Loop checking, 13.08.2015, G.Cosmo << 393 do 384 { 394 { 385 G4double distance = (*face)->Distance( p, 395 G4double distance = (*face)->Distance( p, outgoing ); 386 if (distance < best) { best = distance; } 396 if (distance < best) { best = distance; } 387 } while( ++face < faces + numFace ); 397 } while( ++face < faces + numFace ); 388 398 389 return (best < 0.5*kCarTolerance) ? 0. : bes << 399 return (best < 0.5*kCarTolerance) ? 0 : best; 390 } 400 } 391 401 392 402 393 // 403 // 394 // DescribeYourselfTo 404 // DescribeYourselfTo 395 // 405 // 396 void G4VCSGfaceted::DescribeYourselfTo( G4VGra 406 void G4VCSGfaceted::DescribeYourselfTo( G4VGraphicsScene& scene ) const 397 { 407 { 398 scene.AddSolid( *this ); 408 scene.AddSolid( *this ); 399 } 409 } 400 410 401 411 402 // 412 // 403 // GetExtent 413 // GetExtent 404 // 414 // 405 // Define the sides of the box into which our 415 // Define the sides of the box into which our solid instance would fit. 406 // 416 // 407 G4VisExtent G4VCSGfaceted::GetExtent() const 417 G4VisExtent G4VCSGfaceted::GetExtent() const 408 { 418 { 409 static const G4ThreeVector xMax(1,0,0), xMin 419 static const G4ThreeVector xMax(1,0,0), xMin(-1,0,0), 410 yMax(0,1,0), yMin 420 yMax(0,1,0), yMin(0,-1,0), 411 zMax(0,0,1), zMin 421 zMax(0,0,1), zMin(0,0,-1); 412 static const G4ThreeVector *axes[6] = 422 static const G4ThreeVector *axes[6] = 413 { &xMin, &xMax, &yMin, &yMax, &zMin, &zMa 423 { &xMin, &xMax, &yMin, &yMax, &zMin, &zMax }; 414 424 415 G4double answers[6] = 425 G4double answers[6] = 416 {-kInfinity, -kInfinity, -kInfinity, -kIn 426 {-kInfinity, -kInfinity, -kInfinity, -kInfinity, -kInfinity, -kInfinity}; 417 427 418 G4VCSGface **face = faces; 428 G4VCSGface **face = faces; 419 do // Loop checking, 13.08.2015, G.Cosmo << 429 do 420 { 430 { 421 const G4ThreeVector **axis = axes+5 ; 431 const G4ThreeVector **axis = axes+5 ; 422 G4double* answer = answers+5; << 432 G4double *answer = answers+5; 423 do // Loop checking, 13.08.2015, G.Cosm << 433 do 424 { 434 { 425 G4double testFace = (*face)->Extent( **a 435 G4double testFace = (*face)->Extent( **axis ); 426 if (testFace > *answer) { *answer = tes 436 if (testFace > *answer) { *answer = testFace; } 427 } 437 } 428 while( --axis, --answer >= answers ); 438 while( --axis, --answer >= answers ); 429 439 430 } while( ++face < faces + numFace ); 440 } while( ++face < faces + numFace ); 431 441 432 return { -answers[0], answers[1], << 442 return G4VisExtent( -answers[0], answers[1], 433 -answers[2], answers[3], << 443 -answers[2], answers[3], 434 -answers[4], answers[5] }; << 444 -answers[4], answers[5] ); 435 } 445 } 436 446 437 447 438 // 448 // 439 // GetEntityType 449 // GetEntityType 440 // 450 // 441 G4GeometryType G4VCSGfaceted::GetEntityType() 451 G4GeometryType G4VCSGfaceted::GetEntityType() const 442 { 452 { 443 return {"G4CSGfaceted"}; << 453 return G4String("G4CSGfaceted"); 444 } 454 } 445 455 446 456 447 // 457 // 448 // Stream object contents to an output stream 458 // Stream object contents to an output stream 449 // 459 // 450 std::ostream& G4VCSGfaceted::StreamInfo( std:: 460 std::ostream& G4VCSGfaceted::StreamInfo( std::ostream& os ) const 451 { 461 { 452 os << "------------------------------------- 462 os << "-----------------------------------------------------------\n" 453 << " *** Dump for solid - " << GetName 463 << " *** Dump for solid - " << GetName() << " ***\n" 454 << " ================================= 464 << " ===================================================\n" 455 << " Solid type: G4VCSGfaceted\n" 465 << " Solid type: G4VCSGfaceted\n" 456 << " Parameters: \n" 466 << " Parameters: \n" 457 << " number of faces: " << numFace << 467 << " number of faces: " << numFace << "\n" 458 << "------------------------------------- 468 << "-----------------------------------------------------------\n"; 459 469 460 return os; 470 return os; 461 } 471 } 462 472 463 473 464 // 474 // 465 // GetCubVolStatistics 475 // GetCubVolStatistics 466 // 476 // 467 G4int G4VCSGfaceted::GetCubVolStatistics() con 477 G4int G4VCSGfaceted::GetCubVolStatistics() const 468 { 478 { 469 return fStatistics; 479 return fStatistics; 470 } 480 } 471 481 472 482 473 // 483 // 474 // GetCubVolEpsilon 484 // GetCubVolEpsilon 475 // 485 // 476 G4double G4VCSGfaceted::GetCubVolEpsilon() con 486 G4double G4VCSGfaceted::GetCubVolEpsilon() const 477 { 487 { 478 return fCubVolEpsilon; 488 return fCubVolEpsilon; 479 } 489 } 480 490 481 491 482 // 492 // 483 // SetCubVolStatistics 493 // SetCubVolStatistics 484 // 494 // 485 void G4VCSGfaceted::SetCubVolStatistics(G4int 495 void G4VCSGfaceted::SetCubVolStatistics(G4int st) 486 { 496 { 487 fCubicVolume=0.; 497 fCubicVolume=0.; 488 fStatistics=st; 498 fStatistics=st; 489 } 499 } 490 500 491 501 492 // 502 // 493 // SetCubVolEpsilon 503 // SetCubVolEpsilon 494 // 504 // 495 void G4VCSGfaceted::SetCubVolEpsilon(G4double 505 void G4VCSGfaceted::SetCubVolEpsilon(G4double ep) 496 { 506 { 497 fCubicVolume=0.; 507 fCubicVolume=0.; 498 fCubVolEpsilon=ep; 508 fCubVolEpsilon=ep; 499 } 509 } 500 510 501 511 502 // 512 // 503 // GetAreaStatistics 513 // GetAreaStatistics 504 // 514 // 505 G4int G4VCSGfaceted::GetAreaStatistics() const 515 G4int G4VCSGfaceted::GetAreaStatistics() const 506 { 516 { 507 return fStatistics; 517 return fStatistics; 508 } 518 } 509 519 510 520 511 // 521 // 512 // GetAreaAccuracy 522 // GetAreaAccuracy 513 // 523 // 514 G4double G4VCSGfaceted::GetAreaAccuracy() cons 524 G4double G4VCSGfaceted::GetAreaAccuracy() const 515 { 525 { 516 return fAreaAccuracy; 526 return fAreaAccuracy; 517 } 527 } 518 528 519 529 520 // 530 // 521 // SetAreaStatistics 531 // SetAreaStatistics 522 // 532 // 523 void G4VCSGfaceted::SetAreaStatistics(G4int st 533 void G4VCSGfaceted::SetAreaStatistics(G4int st) 524 { 534 { 525 fSurfaceArea=0.; 535 fSurfaceArea=0.; 526 fStatistics=st; 536 fStatistics=st; 527 } 537 } 528 538 529 539 530 // 540 // 531 // SetAreaAccuracy 541 // SetAreaAccuracy 532 // 542 // 533 void G4VCSGfaceted::SetAreaAccuracy(G4double e 543 void G4VCSGfaceted::SetAreaAccuracy(G4double ep) 534 { 544 { 535 fSurfaceArea=0.; 545 fSurfaceArea=0.; 536 fAreaAccuracy=ep; 546 fAreaAccuracy=ep; 537 } 547 } 538 548 539 549 540 // 550 // 541 // GetCubicVolume 551 // GetCubicVolume 542 // 552 // 543 G4double G4VCSGfaceted::GetCubicVolume() 553 G4double G4VCSGfaceted::GetCubicVolume() 544 { 554 { 545 if(fCubicVolume != 0.) {;} 555 if(fCubicVolume != 0.) {;} 546 else { fCubicVolume = EstimateCubicVolume( 556 else { fCubicVolume = EstimateCubicVolume(fStatistics,fCubVolEpsilon); } 547 return fCubicVolume; 557 return fCubicVolume; 548 } 558 } 549 559 550 560 551 // 561 // 552 // GetSurfaceArea 562 // GetSurfaceArea 553 // 563 // 554 G4double G4VCSGfaceted::GetSurfaceArea() 564 G4double G4VCSGfaceted::GetSurfaceArea() 555 { 565 { 556 if(fSurfaceArea != 0.) {;} 566 if(fSurfaceArea != 0.) {;} 557 else { fSurfaceArea = EstimateSurfaceArea( 567 else { fSurfaceArea = EstimateSurfaceArea(fStatistics,fAreaAccuracy); } 558 return fSurfaceArea; 568 return fSurfaceArea; 559 } 569 } 560 570 561 571 562 // 572 // 563 // GetPolyhedron 573 // GetPolyhedron 564 // 574 // 565 G4Polyhedron* G4VCSGfaceted::GetPolyhedron () 575 G4Polyhedron* G4VCSGfaceted::GetPolyhedron () const 566 { 576 { 567 if (fpPolyhedron == nullptr || << 577 if (!fpPolyhedron || 568 fRebuildPolyhedron || << 569 fpPolyhedron->GetNumberOfRotationStepsAt 578 fpPolyhedron->GetNumberOfRotationStepsAtTimeOfCreation() != 570 fpPolyhedron->GetNumberOfRotationSteps() 579 fpPolyhedron->GetNumberOfRotationSteps()) 571 { 580 { 572 G4AutoLock l(&polyhedronMutex); << 573 delete fpPolyhedron; 581 delete fpPolyhedron; 574 fpPolyhedron = CreatePolyhedron(); 582 fpPolyhedron = CreatePolyhedron(); 575 fRebuildPolyhedron = false; << 576 l.unlock(); << 577 } 583 } 578 return fpPolyhedron; 584 return fpPolyhedron; 579 } 585 } 580 586 581 587 582 // 588 // 583 // GetPointOnSurfaceGeneric proportional to Ar 589 // GetPointOnSurfaceGeneric proportional to Areas of faces 584 // in case of GenericPolycone or GenericPolyhe 590 // in case of GenericPolycone or GenericPolyhedra 585 // 591 // 586 G4ThreeVector G4VCSGfaceted::GetPointOnSurface 592 G4ThreeVector G4VCSGfaceted::GetPointOnSurfaceGeneric( ) const 587 { 593 { 588 // Preparing variables 594 // Preparing variables 589 // 595 // 590 G4ThreeVector answer=G4ThreeVector(0.,0.,0.) 596 G4ThreeVector answer=G4ThreeVector(0.,0.,0.); 591 G4VCSGface **face = faces; 597 G4VCSGface **face = faces; 592 G4double area = 0.; << 598 G4double area = 0; 593 G4int i; 599 G4int i; 594 std::vector<G4double> areas; 600 std::vector<G4double> areas; 595 601 596 // First step: calculate surface areas 602 // First step: calculate surface areas 597 // 603 // 598 do // Loop checking, 13.08.2015, G.Cosmo << 604 do 599 { 605 { 600 G4double result = (*face)->SurfaceArea( ); 606 G4double result = (*face)->SurfaceArea( ); 601 areas.push_back(result); 607 areas.push_back(result); 602 area=area+result; 608 area=area+result; 603 } while( ++face < faces + numFace ); 609 } while( ++face < faces + numFace ); 604 610 605 // Second Step: choose randomly one surface 611 // Second Step: choose randomly one surface 606 // 612 // 607 G4VCSGface **face1 = faces; 613 G4VCSGface **face1 = faces; 608 G4double chose = area*G4UniformRand(); 614 G4double chose = area*G4UniformRand(); 609 G4double Achose1, Achose2; 615 G4double Achose1, Achose2; 610 Achose1=0.; Achose2=0.; << 616 Achose1=0; Achose2=0.; 611 i=0; 617 i=0; 612 618 613 do 619 do 614 { 620 { 615 Achose2+=areas[i]; 621 Achose2+=areas[i]; 616 if(chose>=Achose1 && chose<Achose2) 622 if(chose>=Achose1 && chose<Achose2) 617 { 623 { 618 G4ThreeVector point; 624 G4ThreeVector point; 619 point= (*face1)->GetPointOnFace(); 625 point= (*face1)->GetPointOnFace(); 620 return point; 626 return point; 621 } 627 } 622 ++i; << 628 i++; 623 Achose1=Achose2; 629 Achose1=Achose2; 624 } while( ++face1 < faces + numFace ); 630 } while( ++face1 < faces + numFace ); 625 631 626 return answer; 632 return answer; 627 } 633 } 628 634