Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4VCSGfaceted implementation; a virtual cla << 26 // the GEANT4 collaboration. 27 // that is built entirely out of G4VCSGface fa << 27 // >> 28 // By copying, distributing or modifying the Program (or any work >> 29 // based on the Program) you indicate your acceptance of this statement, >> 30 // and all its terms. >> 31 // >> 32 // $Id: G4VCSGfaceted.cc,v 1.25 2008/05/22 10:22:52 gcosmo Exp $ >> 33 // GEANT4 tag $Name: geant4-09-02 $ >> 34 // >> 35 // >> 36 // -------------------------------------------------------------------- >> 37 // GEANT 4 class source file >> 38 // >> 39 // >> 40 // G4VCSGfaceted.cc >> 41 // >> 42 // Implementation of the virtual class of a CSG type shape that is built >> 43 // entirely out of G4VCSGface faces. 28 // 44 // 29 // Author: David C. Williams (davidw@scipp.ucs << 30 // ------------------------------------------- 45 // -------------------------------------------------------------------- 31 46 32 #include "G4VCSGfaceted.hh" 47 #include "G4VCSGfaceted.hh" 33 #include "G4VCSGface.hh" 48 #include "G4VCSGface.hh" 34 #include "G4SolidExtentList.hh" 49 #include "G4SolidExtentList.hh" 35 50 36 #include "G4VoxelLimits.hh" 51 #include "G4VoxelLimits.hh" 37 #include "G4AffineTransform.hh" 52 #include "G4AffineTransform.hh" 38 53 39 #include "Randomize.hh" 54 #include "Randomize.hh" 40 55 41 #include "G4Polyhedron.hh" 56 #include "G4Polyhedron.hh" 42 #include "G4VGraphicsScene.hh" 57 #include "G4VGraphicsScene.hh" >> 58 #include "G4NURBS.hh" >> 59 #include "G4NURBSbox.hh" 43 #include "G4VisExtent.hh" 60 #include "G4VisExtent.hh" 44 61 45 #include "G4AutoLock.hh" << 46 << 47 namespace << 48 { << 49 G4Mutex polyhedronMutex = G4MUTEX_INITIALIZE << 50 } << 51 << 52 // 62 // 53 // Constructor 63 // Constructor 54 // 64 // 55 G4VCSGfaceted::G4VCSGfaceted( const G4String& 65 G4VCSGfaceted::G4VCSGfaceted( const G4String& name ) 56 : G4VSolid(name), 66 : G4VSolid(name), >> 67 numFace(0), faces(0), fCubicVolume(0.), fSurfaceArea(0.), fpPolyhedron(0), 57 fStatistics(1000000), fCubVolEpsilon(0.001 68 fStatistics(1000000), fCubVolEpsilon(0.001), fAreaAccuracy(-1.) 58 { 69 { 59 } 70 } 60 71 61 72 62 // 73 // 63 // Fake default constructor - sets only member 74 // Fake default constructor - sets only member data and allocates memory 64 // for usage restri 75 // for usage restricted to object persistency. 65 // 76 // 66 G4VCSGfaceted::G4VCSGfaceted( __void__& a ) 77 G4VCSGfaceted::G4VCSGfaceted( __void__& a ) 67 : G4VSolid(a), 78 : G4VSolid(a), >> 79 numFace(0), faces(0), fCubicVolume(0.), fSurfaceArea(0.), fpPolyhedron(0), 68 fStatistics(1000000), fCubVolEpsilon(0.001 80 fStatistics(1000000), fCubVolEpsilon(0.001), fAreaAccuracy(-1.) 69 { 81 { 70 } 82 } 71 83 72 // 84 // 73 // Destructor 85 // Destructor 74 // 86 // 75 G4VCSGfaceted::~G4VCSGfaceted() 87 G4VCSGfaceted::~G4VCSGfaceted() 76 { 88 { 77 DeleteStuff(); 89 DeleteStuff(); 78 delete fpPolyhedron; fpPolyhedron = nullptr; << 90 delete fpPolyhedron; 79 } 91 } 80 92 81 93 82 // 94 // 83 // Copy constructor 95 // Copy constructor 84 // 96 // 85 G4VCSGfaceted::G4VCSGfaceted( const G4VCSGface << 97 G4VCSGfaceted::G4VCSGfaceted( const G4VCSGfaceted &source ) 86 : G4VSolid( source ) 98 : G4VSolid( source ) 87 { 99 { 88 fStatistics = source.fStatistics; << 89 fCubVolEpsilon = source.fCubVolEpsilon; << 90 fAreaAccuracy = source.fAreaAccuracy; << 91 << 92 CopyStuff( source ); 100 CopyStuff( source ); 93 } 101 } 94 102 95 103 96 // 104 // 97 // Assignment operator 105 // Assignment operator 98 // 106 // 99 G4VCSGfaceted& G4VCSGfaceted::operator=( const << 107 const G4VCSGfaceted &G4VCSGfaceted::operator=( const G4VCSGfaceted &source ) 100 { 108 { 101 if (&source == this) { return *this; } 109 if (&source == this) { return *this; } 102 110 103 // Copy base class data << 104 // << 105 G4VSolid::operator=(source); << 106 << 107 // Copy data << 108 // << 109 fStatistics = source.fStatistics; << 110 fCubVolEpsilon = source.fCubVolEpsilon; << 111 fAreaAccuracy = source.fAreaAccuracy; << 112 << 113 DeleteStuff(); 111 DeleteStuff(); 114 CopyStuff( source ); 112 CopyStuff( source ); 115 113 116 return *this; 114 return *this; 117 } 115 } 118 116 119 117 120 // 118 // 121 // CopyStuff (protected) 119 // CopyStuff (protected) 122 // 120 // 123 // Copy the contents of source 121 // Copy the contents of source 124 // 122 // 125 void G4VCSGfaceted::CopyStuff( const G4VCSGfac << 123 void G4VCSGfaceted::CopyStuff( const G4VCSGfaceted &source ) 126 { 124 { 127 numFace = source.numFace; 125 numFace = source.numFace; 128 if (numFace == 0) { return; } // odd, but 126 if (numFace == 0) { return; } // odd, but permissable? 129 127 130 faces = new G4VCSGface*[numFace]; 128 faces = new G4VCSGface*[numFace]; 131 129 132 G4VCSGface **face = faces, 130 G4VCSGface **face = faces, 133 **sourceFace = source.faces; 131 **sourceFace = source.faces; 134 do // Loop checking, 13.08.2015, G.Cosmo << 132 do 135 { 133 { 136 *face = (*sourceFace)->Clone(); 134 *face = (*sourceFace)->Clone(); 137 } while( ++sourceFace, ++face < faces+numFac 135 } while( ++sourceFace, ++face < faces+numFace ); 138 fCubicVolume = source.fCubicVolume; 136 fCubicVolume = source.fCubicVolume; 139 fSurfaceArea = source.fSurfaceArea; << 137 fpPolyhedron = source.fpPolyhedron; 140 fRebuildPolyhedron = false; << 141 fpPolyhedron = nullptr; << 142 } 138 } 143 139 144 140 145 // 141 // 146 // DeleteStuff (protected) 142 // DeleteStuff (protected) 147 // 143 // 148 // Delete all allocated objects 144 // Delete all allocated objects 149 // 145 // 150 void G4VCSGfaceted::DeleteStuff() 146 void G4VCSGfaceted::DeleteStuff() 151 { 147 { 152 if (numFace != 0) << 148 if (numFace) 153 { 149 { 154 G4VCSGface **face = faces; 150 G4VCSGface **face = faces; 155 do // Loop checking, 13.08.2015, G.Cosm << 151 do 156 { 152 { 157 delete *face; 153 delete *face; 158 } while( ++face < faces + numFace ); 154 } while( ++face < faces + numFace ); 159 155 160 delete [] faces; 156 delete [] faces; 161 } 157 } 162 delete fpPolyhedron; fpPolyhedron = nullptr; << 163 } 158 } 164 159 165 160 166 // 161 // 167 // CalculateExtent 162 // CalculateExtent 168 // 163 // 169 G4bool G4VCSGfaceted::CalculateExtent( const E 164 G4bool G4VCSGfaceted::CalculateExtent( const EAxis axis, 170 const G << 165 const G4VoxelLimits &voxelLimit, 171 const G << 166 const G4AffineTransform &transform, 172 G << 167 G4double &min, 173 G << 168 G4double &max ) const 174 { 169 { 175 G4SolidExtentList extentList( axis, voxelLi 170 G4SolidExtentList extentList( axis, voxelLimit ); 176 171 177 // 172 // 178 // Loop over all faces, checking min/max ext 173 // Loop over all faces, checking min/max extent as we go. 179 // 174 // 180 G4VCSGface **face = faces; 175 G4VCSGface **face = faces; 181 do // Loop checking, 13.08.2015, G.Cosmo << 176 do 182 { 177 { 183 (*face)->CalculateExtent( axis, voxelLimit 178 (*face)->CalculateExtent( axis, voxelLimit, transform, extentList ); 184 } while( ++face < faces + numFace ); 179 } while( ++face < faces + numFace ); 185 180 186 // 181 // 187 // Return min/max value 182 // Return min/max value 188 // 183 // 189 return extentList.GetExtent( min, max ); 184 return extentList.GetExtent( min, max ); 190 } 185 } 191 186 192 187 193 // 188 // 194 // Inside 189 // Inside 195 // 190 // 196 // It could be a good idea to override this vi 191 // It could be a good idea to override this virtual 197 // member to add first a simple test (such as 192 // member to add first a simple test (such as spherical 198 // test or whatnot) and to call this version o 193 // test or whatnot) and to call this version only if 199 // the simplier test fails. 194 // the simplier test fails. 200 // 195 // 201 EInside G4VCSGfaceted::Inside( const G4ThreeVe << 196 EInside G4VCSGfaceted::Inside( const G4ThreeVector &p ) const 202 { 197 { 203 EInside answer=kOutside; 198 EInside answer=kOutside; 204 G4VCSGface **face = faces; 199 G4VCSGface **face = faces; 205 G4double best = kInfinity; 200 G4double best = kInfinity; 206 do // Loop checking, 13.08.2015, G.Cosmo << 201 do 207 { 202 { 208 G4double distance; 203 G4double distance; 209 EInside result = (*face)->Inside( p, kCarT 204 EInside result = (*face)->Inside( p, kCarTolerance/2, &distance ); 210 if (result == kSurface) { return kSurface; 205 if (result == kSurface) { return kSurface; } 211 if (distance < best) 206 if (distance < best) 212 { 207 { 213 best = distance; 208 best = distance; 214 answer = result; 209 answer = result; 215 } 210 } 216 } while( ++face < faces + numFace ); 211 } while( ++face < faces + numFace ); 217 212 218 return answer; 213 return answer; 219 } 214 } 220 215 221 216 222 // 217 // 223 // SurfaceNormal 218 // SurfaceNormal 224 // 219 // 225 G4ThreeVector G4VCSGfaceted::SurfaceNormal( co 220 G4ThreeVector G4VCSGfaceted::SurfaceNormal( const G4ThreeVector& p ) const 226 { 221 { 227 G4ThreeVector answer; 222 G4ThreeVector answer; 228 G4VCSGface **face = faces; 223 G4VCSGface **face = faces; 229 G4double best = kInfinity; 224 G4double best = kInfinity; 230 do // Loop checking, 13.08.2015, G.Cosmo << 225 do 231 { 226 { 232 G4double distance = kInfinity; << 227 G4double distance; 233 G4ThreeVector normal = (*face)->Normal( p, 228 G4ThreeVector normal = (*face)->Normal( p, &distance ); 234 if (distance < best) 229 if (distance < best) 235 { 230 { 236 best = distance; 231 best = distance; 237 answer = normal; 232 answer = normal; 238 } 233 } 239 } while( ++face < faces + numFace ); 234 } while( ++face < faces + numFace ); 240 235 241 return answer; 236 return answer; 242 } 237 } 243 238 244 239 245 // 240 // 246 // DistanceToIn(p,v) 241 // DistanceToIn(p,v) 247 // 242 // 248 G4double G4VCSGfaceted::DistanceToIn( const G4 << 243 G4double G4VCSGfaceted::DistanceToIn( const G4ThreeVector &p, 249 const G4 << 244 const G4ThreeVector &v ) const 250 { 245 { 251 G4double distance = kInfinity; 246 G4double distance = kInfinity; 252 G4double distFromSurface = kInfinity; 247 G4double distFromSurface = kInfinity; >> 248 G4VCSGface *bestFace=0; 253 G4VCSGface **face = faces; 249 G4VCSGface **face = faces; 254 G4VCSGface *bestFace = *face; << 250 do 255 do // Loop checking, 13.08.2015, G.Cosmo << 256 { 251 { 257 G4double faceDistance, 252 G4double faceDistance, 258 faceDistFromSurface; 253 faceDistFromSurface; 259 G4ThreeVector faceNormal; 254 G4ThreeVector faceNormal; 260 G4bool faceAllBehind; 255 G4bool faceAllBehind; 261 if ((*face)->Intersect( p, v, false, kCarT 256 if ((*face)->Intersect( p, v, false, kCarTolerance/2, 262 faceDistance, faceDistFromSurf 257 faceDistance, faceDistFromSurface, 263 faceNormal, faceAllBehind ) ) 258 faceNormal, faceAllBehind ) ) 264 { 259 { 265 // 260 // 266 // Intersecting face 261 // Intersecting face 267 // 262 // 268 if (faceDistance < distance) 263 if (faceDistance < distance) 269 { 264 { 270 distance = faceDistance; 265 distance = faceDistance; 271 distFromSurface = faceDistFromSurface; 266 distFromSurface = faceDistFromSurface; 272 bestFace = *face; 267 bestFace = *face; 273 if (distFromSurface <= 0) { return 0; 268 if (distFromSurface <= 0) { return 0; } 274 } 269 } 275 } 270 } 276 } while( ++face < faces + numFace ); 271 } while( ++face < faces + numFace ); 277 272 278 if (distance < kInfinity && distFromSurface< 273 if (distance < kInfinity && distFromSurface<kCarTolerance/2) 279 { 274 { 280 if (bestFace->Distance(p,false) < kCarTole 275 if (bestFace->Distance(p,false) < kCarTolerance/2) { distance = 0; } 281 } 276 } 282 277 283 return distance; 278 return distance; 284 } 279 } 285 280 286 281 287 // 282 // 288 // DistanceToIn(p) 283 // DistanceToIn(p) 289 // 284 // 290 G4double G4VCSGfaceted::DistanceToIn( const G4 << 285 G4double G4VCSGfaceted::DistanceToIn( const G4ThreeVector &p ) const 291 { 286 { 292 return DistanceTo( p, false ); 287 return DistanceTo( p, false ); 293 } 288 } 294 289 295 290 296 // 291 // 297 // DistanceToOut(p,v) 292 // DistanceToOut(p,v) 298 // 293 // 299 G4double G4VCSGfaceted::DistanceToOut( const G << 294 G4double G4VCSGfaceted::DistanceToOut( const G4ThreeVector &p, 300 const G << 295 const G4ThreeVector &v, 301 const G 296 const G4bool calcNorm, 302 G << 297 G4bool *validNorm, 303 G << 298 G4ThreeVector *n ) const 304 { 299 { 305 G4bool allBehind = true; 300 G4bool allBehind = true; 306 G4double distance = kInfinity; 301 G4double distance = kInfinity; 307 G4double distFromSurface = kInfinity; 302 G4double distFromSurface = kInfinity; 308 G4ThreeVector normal; 303 G4ThreeVector normal; >> 304 G4VCSGface *bestFace=0; 309 305 310 G4VCSGface **face = faces; 306 G4VCSGface **face = faces; 311 G4VCSGface *bestFace = *face; << 307 do 312 do // Loop checking, 13.08.2015, G.Cosmo << 313 { 308 { 314 G4double faceDistance, 309 G4double faceDistance, 315 faceDistFromSurface; 310 faceDistFromSurface; 316 G4ThreeVector faceNormal; 311 G4ThreeVector faceNormal; 317 G4bool faceAllBehind; 312 G4bool faceAllBehind; 318 if ((*face)->Intersect( p, v, true, kCarTo 313 if ((*face)->Intersect( p, v, true, kCarTolerance/2, 319 faceDistance, faceDistFromSurf 314 faceDistance, faceDistFromSurface, 320 faceNormal, faceAllBehind ) ) 315 faceNormal, faceAllBehind ) ) 321 { 316 { 322 // 317 // 323 // Intersecting face 318 // Intersecting face 324 // 319 // 325 if ( (distance < kInfinity) || (!faceAll 320 if ( (distance < kInfinity) || (!faceAllBehind) ) { allBehind = false; } 326 if (faceDistance < distance) 321 if (faceDistance < distance) 327 { 322 { 328 distance = faceDistance; 323 distance = faceDistance; 329 distFromSurface = faceDistFromSurface; 324 distFromSurface = faceDistFromSurface; 330 normal = faceNormal; 325 normal = faceNormal; 331 bestFace = *face; 326 bestFace = *face; 332 if (distFromSurface <= 0.) { break; } << 327 if (distFromSurface <= 0) { break; } 333 } 328 } 334 } 329 } 335 } while( ++face < faces + numFace ); 330 } while( ++face < faces + numFace ); 336 331 337 if (distance < kInfinity) 332 if (distance < kInfinity) 338 { 333 { 339 if (distFromSurface <= 0.) << 334 if (distFromSurface <= 0) 340 { 335 { 341 distance = 0.; << 336 distance = 0; 342 } 337 } 343 else if (distFromSurface<kCarTolerance/2) 338 else if (distFromSurface<kCarTolerance/2) 344 { 339 { 345 if (bestFace->Distance(p,true) < kCarTol << 340 if (bestFace->Distance(p,true) < kCarTolerance/2) { distance = 0; } 346 } 341 } 347 342 348 if (calcNorm) 343 if (calcNorm) 349 { 344 { 350 *validNorm = allBehind; 345 *validNorm = allBehind; 351 *n = normal; 346 *n = normal; 352 } 347 } 353 } 348 } 354 else 349 else 355 { 350 { 356 if (Inside(p) == kSurface) { distance = 0 << 351 if (Inside(p) == kSurface) { distance = 0; } 357 if (calcNorm) { *validNorm = false; } 352 if (calcNorm) { *validNorm = false; } 358 } 353 } 359 354 360 return distance; 355 return distance; 361 } 356 } 362 357 363 358 364 // 359 // 365 // DistanceToOut(p) 360 // DistanceToOut(p) 366 // 361 // 367 G4double G4VCSGfaceted::DistanceToOut( const G << 362 G4double G4VCSGfaceted::DistanceToOut( const G4ThreeVector &p ) const 368 { 363 { 369 return DistanceTo( p, true ); 364 return DistanceTo( p, true ); 370 } 365 } 371 366 372 367 373 // 368 // 374 // DistanceTo 369 // DistanceTo 375 // 370 // 376 // Protected routine called by DistanceToIn an 371 // Protected routine called by DistanceToIn and DistanceToOut 377 // 372 // 378 G4double G4VCSGfaceted::DistanceTo( const G4Th << 373 G4double G4VCSGfaceted::DistanceTo( const G4ThreeVector &p, 379 const G4bo 374 const G4bool outgoing ) const 380 { 375 { 381 G4VCSGface **face = faces; 376 G4VCSGface **face = faces; 382 G4double best = kInfinity; 377 G4double best = kInfinity; 383 do // Loop checking, 13.08.2015, G.Cosmo << 378 do 384 { 379 { 385 G4double distance = (*face)->Distance( p, 380 G4double distance = (*face)->Distance( p, outgoing ); 386 if (distance < best) { best = distance; } 381 if (distance < best) { best = distance; } 387 } while( ++face < faces + numFace ); 382 } while( ++face < faces + numFace ); 388 383 389 return (best < 0.5*kCarTolerance) ? 0. : bes << 384 return (best < 0.5*kCarTolerance) ? 0 : best; 390 } 385 } 391 386 392 387 393 // 388 // 394 // DescribeYourselfTo 389 // DescribeYourselfTo 395 // 390 // 396 void G4VCSGfaceted::DescribeYourselfTo( G4VGra 391 void G4VCSGfaceted::DescribeYourselfTo( G4VGraphicsScene& scene ) const 397 { 392 { 398 scene.AddSolid( *this ); 393 scene.AddSolid( *this ); 399 } 394 } 400 395 401 396 402 // 397 // 403 // GetExtent 398 // GetExtent 404 // 399 // 405 // Define the sides of the box into which our 400 // Define the sides of the box into which our solid instance would fit. 406 // 401 // 407 G4VisExtent G4VCSGfaceted::GetExtent() const 402 G4VisExtent G4VCSGfaceted::GetExtent() const 408 { 403 { 409 static const G4ThreeVector xMax(1,0,0), xMin 404 static const G4ThreeVector xMax(1,0,0), xMin(-1,0,0), 410 yMax(0,1,0), yMin 405 yMax(0,1,0), yMin(0,-1,0), 411 zMax(0,0,1), zMin 406 zMax(0,0,1), zMin(0,0,-1); 412 static const G4ThreeVector *axes[6] = 407 static const G4ThreeVector *axes[6] = 413 { &xMin, &xMax, &yMin, &yMax, &zMin, &zMa 408 { &xMin, &xMax, &yMin, &yMax, &zMin, &zMax }; 414 409 415 G4double answers[6] = 410 G4double answers[6] = 416 {-kInfinity, -kInfinity, -kInfinity, -kIn 411 {-kInfinity, -kInfinity, -kInfinity, -kInfinity, -kInfinity, -kInfinity}; 417 412 418 G4VCSGface **face = faces; 413 G4VCSGface **face = faces; 419 do // Loop checking, 13.08.2015, G.Cosmo << 414 do 420 { 415 { 421 const G4ThreeVector **axis = axes+5 ; 416 const G4ThreeVector **axis = axes+5 ; 422 G4double* answer = answers+5; << 417 G4double *answer = answers+5; 423 do // Loop checking, 13.08.2015, G.Cosm << 418 do 424 { 419 { 425 G4double testFace = (*face)->Extent( **a 420 G4double testFace = (*face)->Extent( **axis ); 426 if (testFace > *answer) { *answer = tes 421 if (testFace > *answer) { *answer = testFace; } 427 } 422 } 428 while( --axis, --answer >= answers ); 423 while( --axis, --answer >= answers ); 429 424 430 } while( ++face < faces + numFace ); 425 } while( ++face < faces + numFace ); 431 426 432 return { -answers[0], answers[1], << 427 return G4VisExtent( -answers[0], answers[1], 433 -answers[2], answers[3], << 428 -answers[2], answers[3], 434 -answers[4], answers[5] }; << 429 -answers[4], answers[5] ); 435 } 430 } 436 431 437 432 438 // 433 // 439 // GetEntityType 434 // GetEntityType 440 // 435 // 441 G4GeometryType G4VCSGfaceted::GetEntityType() 436 G4GeometryType G4VCSGfaceted::GetEntityType() const 442 { 437 { 443 return {"G4CSGfaceted"}; << 438 return G4String("G4CSGfaceted"); 444 } 439 } 445 440 446 441 447 // 442 // 448 // Stream object contents to an output stream 443 // Stream object contents to an output stream 449 // 444 // 450 std::ostream& G4VCSGfaceted::StreamInfo( std:: 445 std::ostream& G4VCSGfaceted::StreamInfo( std::ostream& os ) const 451 { 446 { 452 os << "------------------------------------- 447 os << "-----------------------------------------------------------\n" 453 << " *** Dump for solid - " << GetName 448 << " *** Dump for solid - " << GetName() << " ***\n" 454 << " ================================= 449 << " ===================================================\n" 455 << " Solid type: G4VCSGfaceted\n" 450 << " Solid type: G4VCSGfaceted\n" 456 << " Parameters: \n" 451 << " Parameters: \n" 457 << " number of faces: " << numFace << 452 << " number of faces: " << numFace << "\n" 458 << "------------------------------------- 453 << "-----------------------------------------------------------\n"; 459 454 460 return os; 455 return os; 461 } 456 } 462 457 463 458 464 // 459 // 465 // GetCubVolStatistics 460 // GetCubVolStatistics 466 // 461 // 467 G4int G4VCSGfaceted::GetCubVolStatistics() con 462 G4int G4VCSGfaceted::GetCubVolStatistics() const 468 { 463 { 469 return fStatistics; 464 return fStatistics; 470 } 465 } 471 466 472 467 473 // 468 // 474 // GetCubVolEpsilon 469 // GetCubVolEpsilon 475 // 470 // 476 G4double G4VCSGfaceted::GetCubVolEpsilon() con 471 G4double G4VCSGfaceted::GetCubVolEpsilon() const 477 { 472 { 478 return fCubVolEpsilon; 473 return fCubVolEpsilon; 479 } 474 } 480 475 481 476 482 // 477 // 483 // SetCubVolStatistics 478 // SetCubVolStatistics 484 // 479 // 485 void G4VCSGfaceted::SetCubVolStatistics(G4int 480 void G4VCSGfaceted::SetCubVolStatistics(G4int st) 486 { 481 { 487 fCubicVolume=0.; 482 fCubicVolume=0.; 488 fStatistics=st; 483 fStatistics=st; 489 } 484 } 490 485 491 486 492 // 487 // 493 // SetCubVolEpsilon 488 // SetCubVolEpsilon 494 // 489 // 495 void G4VCSGfaceted::SetCubVolEpsilon(G4double 490 void G4VCSGfaceted::SetCubVolEpsilon(G4double ep) 496 { 491 { 497 fCubicVolume=0.; 492 fCubicVolume=0.; 498 fCubVolEpsilon=ep; 493 fCubVolEpsilon=ep; 499 } 494 } 500 495 501 496 502 // 497 // 503 // GetAreaStatistics 498 // GetAreaStatistics 504 // 499 // 505 G4int G4VCSGfaceted::GetAreaStatistics() const 500 G4int G4VCSGfaceted::GetAreaStatistics() const 506 { 501 { 507 return fStatistics; 502 return fStatistics; 508 } 503 } 509 504 510 505 511 // 506 // 512 // GetAreaAccuracy 507 // GetAreaAccuracy 513 // 508 // 514 G4double G4VCSGfaceted::GetAreaAccuracy() cons 509 G4double G4VCSGfaceted::GetAreaAccuracy() const 515 { 510 { 516 return fAreaAccuracy; 511 return fAreaAccuracy; 517 } 512 } 518 513 519 514 520 // 515 // 521 // SetAreaStatistics 516 // SetAreaStatistics 522 // 517 // 523 void G4VCSGfaceted::SetAreaStatistics(G4int st 518 void G4VCSGfaceted::SetAreaStatistics(G4int st) 524 { 519 { 525 fSurfaceArea=0.; 520 fSurfaceArea=0.; 526 fStatistics=st; 521 fStatistics=st; 527 } 522 } 528 523 529 524 530 // 525 // 531 // SetAreaAccuracy 526 // SetAreaAccuracy 532 // 527 // 533 void G4VCSGfaceted::SetAreaAccuracy(G4double e 528 void G4VCSGfaceted::SetAreaAccuracy(G4double ep) 534 { 529 { 535 fSurfaceArea=0.; 530 fSurfaceArea=0.; 536 fAreaAccuracy=ep; 531 fAreaAccuracy=ep; 537 } 532 } 538 533 539 534 540 // 535 // 541 // GetCubicVolume 536 // GetCubicVolume 542 // 537 // 543 G4double G4VCSGfaceted::GetCubicVolume() 538 G4double G4VCSGfaceted::GetCubicVolume() 544 { 539 { 545 if(fCubicVolume != 0.) {;} 540 if(fCubicVolume != 0.) {;} 546 else { fCubicVolume = EstimateCubicVolume( 541 else { fCubicVolume = EstimateCubicVolume(fStatistics,fCubVolEpsilon); } 547 return fCubicVolume; 542 return fCubicVolume; 548 } 543 } 549 544 550 545 551 // 546 // 552 // GetSurfaceArea 547 // GetSurfaceArea 553 // 548 // 554 G4double G4VCSGfaceted::GetSurfaceArea() 549 G4double G4VCSGfaceted::GetSurfaceArea() 555 { 550 { 556 if(fSurfaceArea != 0.) {;} 551 if(fSurfaceArea != 0.) {;} 557 else { fSurfaceArea = EstimateSurfaceArea( << 552 else { fSurfaceArea = EstimateCubicVolume(fStatistics,fAreaAccuracy); } 558 return fSurfaceArea; 553 return fSurfaceArea; 559 } 554 } 560 555 561 556 562 // 557 // 563 // GetPolyhedron 558 // GetPolyhedron 564 // 559 // 565 G4Polyhedron* G4VCSGfaceted::GetPolyhedron () 560 G4Polyhedron* G4VCSGfaceted::GetPolyhedron () const 566 { 561 { 567 if (fpPolyhedron == nullptr || << 562 if (!fpPolyhedron || 568 fRebuildPolyhedron || << 569 fpPolyhedron->GetNumberOfRotationStepsAt 563 fpPolyhedron->GetNumberOfRotationStepsAtTimeOfCreation() != 570 fpPolyhedron->GetNumberOfRotationSteps() 564 fpPolyhedron->GetNumberOfRotationSteps()) 571 { 565 { 572 G4AutoLock l(&polyhedronMutex); << 573 delete fpPolyhedron; 566 delete fpPolyhedron; 574 fpPolyhedron = CreatePolyhedron(); 567 fpPolyhedron = CreatePolyhedron(); 575 fRebuildPolyhedron = false; << 576 l.unlock(); << 577 } 568 } 578 return fpPolyhedron; 569 return fpPolyhedron; 579 } 570 } 580 571 581 572 582 // 573 // 583 // GetPointOnSurfaceGeneric proportional to Ar 574 // GetPointOnSurfaceGeneric proportional to Areas of faces 584 // in case of GenericPolycone or GenericPolyhe 575 // in case of GenericPolycone or GenericPolyhedra 585 // 576 // 586 G4ThreeVector G4VCSGfaceted::GetPointOnSurface 577 G4ThreeVector G4VCSGfaceted::GetPointOnSurfaceGeneric( ) const 587 { 578 { 588 // Preparing variables 579 // Preparing variables 589 // 580 // 590 G4ThreeVector answer=G4ThreeVector(0.,0.,0.) 581 G4ThreeVector answer=G4ThreeVector(0.,0.,0.); 591 G4VCSGface **face = faces; 582 G4VCSGface **face = faces; 592 G4double area = 0.; << 583 G4double area = 0; 593 G4int i; 584 G4int i; 594 std::vector<G4double> areas; 585 std::vector<G4double> areas; 595 586 596 // First step: calculate surface areas 587 // First step: calculate surface areas 597 // 588 // 598 do // Loop checking, 13.08.2015, G.Cosmo << 589 do 599 { 590 { 600 G4double result = (*face)->SurfaceArea( ); 591 G4double result = (*face)->SurfaceArea( ); 601 areas.push_back(result); 592 areas.push_back(result); 602 area=area+result; 593 area=area+result; 603 } while( ++face < faces + numFace ); 594 } while( ++face < faces + numFace ); 604 595 605 // Second Step: choose randomly one surface 596 // Second Step: choose randomly one surface 606 // 597 // 607 G4VCSGface **face1 = faces; 598 G4VCSGface **face1 = faces; 608 G4double chose = area*G4UniformRand(); 599 G4double chose = area*G4UniformRand(); 609 G4double Achose1, Achose2; 600 G4double Achose1, Achose2; 610 Achose1=0.; Achose2=0.; << 601 Achose1=0; Achose2=0.; 611 i=0; 602 i=0; 612 603 613 do 604 do 614 { 605 { 615 Achose2+=areas[i]; 606 Achose2+=areas[i]; 616 if(chose>=Achose1 && chose<Achose2) 607 if(chose>=Achose1 && chose<Achose2) 617 { 608 { 618 G4ThreeVector point; 609 G4ThreeVector point; 619 point= (*face1)->GetPointOnFace(); 610 point= (*face1)->GetPointOnFace(); 620 return point; 611 return point; 621 } 612 } 622 ++i; << 613 i++; 623 Achose1=Achose2; 614 Achose1=Achose2; 624 } while( ++face1 < faces + numFace ); 615 } while( ++face1 < faces + numFace ); 625 616 626 return answer; 617 return answer; 627 } 618 } 628 619