Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // G4VCSGfaceted implementation; a virtual cla << 23 // the GEANT4 collaboration. 27 // that is built entirely out of G4VCSGface fa << 24 // >> 25 // By copying, distributing or modifying the Program (or any work >> 26 // based on the Program) you indicate your acceptance of this statement, >> 27 // and all its terms. >> 28 // >> 29 // $Id: G4VCSGfaceted.cc,v 1.16 2005/03/23 17:16:31 allison Exp $ >> 30 // GEANT4 tag $Name: geant4-07-01-patch-01 $ >> 31 // >> 32 // >> 33 // -------------------------------------------------------------------- >> 34 // GEANT 4 class source file >> 35 // >> 36 // >> 37 // G4VCSGfaceted.cc >> 38 // >> 39 // Implementation of the virtual class of a CSG type shape that is built >> 40 // entirely out of G4VCSGface faces. 28 // 41 // 29 // Author: David C. Williams (davidw@scipp.ucs << 30 // ------------------------------------------- 42 // -------------------------------------------------------------------- 31 43 32 #include "G4VCSGfaceted.hh" 44 #include "G4VCSGfaceted.hh" 33 #include "G4VCSGface.hh" 45 #include "G4VCSGface.hh" 34 #include "G4SolidExtentList.hh" 46 #include "G4SolidExtentList.hh" 35 47 36 #include "G4VoxelLimits.hh" 48 #include "G4VoxelLimits.hh" 37 #include "G4AffineTransform.hh" 49 #include "G4AffineTransform.hh" 38 50 39 #include "Randomize.hh" << 40 << 41 #include "G4Polyhedron.hh" 51 #include "G4Polyhedron.hh" 42 #include "G4VGraphicsScene.hh" 52 #include "G4VGraphicsScene.hh" >> 53 #include "G4NURBS.hh" >> 54 #include "G4NURBSbox.hh" 43 #include "G4VisExtent.hh" 55 #include "G4VisExtent.hh" 44 56 45 #include "G4AutoLock.hh" << 46 << 47 namespace << 48 { << 49 G4Mutex polyhedronMutex = G4MUTEX_INITIALIZE << 50 } << 51 << 52 // 57 // 53 // Constructor 58 // Constructor 54 // 59 // 55 G4VCSGfaceted::G4VCSGfaceted( const G4String& << 60 G4VCSGfaceted::G4VCSGfaceted( G4String name ) 56 : G4VSolid(name), 61 : G4VSolid(name), 57 fStatistics(1000000), fCubVolEpsilon(0.001 << 62 numFace(0), faces(0), fCubicVolume(0.), fpPolyhedron(0), >> 63 fCubVolStatistics(1000000), fCubVolEpsilon(0.001) 58 { 64 { 59 } 65 } 60 66 61 67 62 // 68 // 63 // Fake default constructor - sets only member << 64 // for usage restri << 65 // << 66 G4VCSGfaceted::G4VCSGfaceted( __void__& a ) << 67 : G4VSolid(a), << 68 fStatistics(1000000), fCubVolEpsilon(0.001 << 69 { << 70 } << 71 << 72 // << 73 // Destructor 69 // Destructor 74 // 70 // 75 G4VCSGfaceted::~G4VCSGfaceted() 71 G4VCSGfaceted::~G4VCSGfaceted() 76 { 72 { 77 DeleteStuff(); 73 DeleteStuff(); 78 delete fpPolyhedron; fpPolyhedron = nullptr; << 74 delete fpPolyhedron; 79 } 75 } 80 76 81 77 82 // 78 // 83 // Copy constructor 79 // Copy constructor 84 // 80 // 85 G4VCSGfaceted::G4VCSGfaceted( const G4VCSGface << 81 G4VCSGfaceted::G4VCSGfaceted( const G4VCSGfaceted &source ) 86 : G4VSolid( source ) 82 : G4VSolid( source ) 87 { 83 { 88 fStatistics = source.fStatistics; << 89 fCubVolEpsilon = source.fCubVolEpsilon; << 90 fAreaAccuracy = source.fAreaAccuracy; << 91 << 92 CopyStuff( source ); 84 CopyStuff( source ); 93 } 85 } 94 86 95 87 96 // 88 // 97 // Assignment operator 89 // Assignment operator 98 // 90 // 99 G4VCSGfaceted& G4VCSGfaceted::operator=( const << 91 const G4VCSGfaceted &G4VCSGfaceted::operator=( const G4VCSGfaceted &source ) 100 { 92 { 101 if (&source == this) { return *this; } << 93 if (&source == this) return *this; 102 94 103 // Copy base class data << 104 // << 105 G4VSolid::operator=(source); << 106 << 107 // Copy data << 108 // << 109 fStatistics = source.fStatistics; << 110 fCubVolEpsilon = source.fCubVolEpsilon; << 111 fAreaAccuracy = source.fAreaAccuracy; << 112 << 113 DeleteStuff(); 95 DeleteStuff(); 114 CopyStuff( source ); 96 CopyStuff( source ); 115 97 116 return *this; 98 return *this; 117 } 99 } 118 100 119 101 120 // 102 // 121 // CopyStuff (protected) 103 // CopyStuff (protected) 122 // 104 // 123 // Copy the contents of source 105 // Copy the contents of source 124 // 106 // 125 void G4VCSGfaceted::CopyStuff( const G4VCSGfac << 107 void G4VCSGfaceted::CopyStuff( const G4VCSGfaceted &source ) 126 { 108 { 127 numFace = source.numFace; 109 numFace = source.numFace; 128 if (numFace == 0) { return; } // odd, but << 110 if (numFace == 0) return; // odd, but permissable? 129 111 130 faces = new G4VCSGface*[numFace]; 112 faces = new G4VCSGface*[numFace]; 131 113 132 G4VCSGface **face = faces, 114 G4VCSGface **face = faces, 133 **sourceFace = source.faces; 115 **sourceFace = source.faces; 134 do // Loop checking, 13.08.2015, G.Cosmo << 116 do { 135 { << 136 *face = (*sourceFace)->Clone(); 117 *face = (*sourceFace)->Clone(); 137 } while( ++sourceFace, ++face < faces+numFac 118 } while( ++sourceFace, ++face < faces+numFace ); 138 fCubicVolume = source.fCubicVolume; 119 fCubicVolume = source.fCubicVolume; 139 fSurfaceArea = source.fSurfaceArea; << 120 fpPolyhedron = source.fpPolyhedron; 140 fRebuildPolyhedron = false; << 141 fpPolyhedron = nullptr; << 142 } 121 } 143 122 144 123 145 // 124 // 146 // DeleteStuff (protected) 125 // DeleteStuff (protected) 147 // 126 // 148 // Delete all allocated objects 127 // Delete all allocated objects 149 // 128 // 150 void G4VCSGfaceted::DeleteStuff() 129 void G4VCSGfaceted::DeleteStuff() 151 { 130 { 152 if (numFace != 0) << 131 if (numFace) 153 { 132 { 154 G4VCSGface **face = faces; 133 G4VCSGface **face = faces; 155 do // Loop checking, 13.08.2015, G.Cosm << 134 do { 156 { << 157 delete *face; 135 delete *face; 158 } while( ++face < faces + numFace ); 136 } while( ++face < faces + numFace ); 159 137 160 delete [] faces; 138 delete [] faces; 161 } 139 } 162 delete fpPolyhedron; fpPolyhedron = nullptr; << 163 } 140 } 164 141 165 142 166 // 143 // 167 // CalculateExtent 144 // CalculateExtent 168 // 145 // 169 G4bool G4VCSGfaceted::CalculateExtent( const E 146 G4bool G4VCSGfaceted::CalculateExtent( const EAxis axis, 170 const G << 147 const G4VoxelLimits &voxelLimit, 171 const G << 148 const G4AffineTransform &transform, 172 G << 149 G4double &min, 173 G << 150 G4double &max ) const 174 { 151 { 175 G4SolidExtentList extentList( axis, voxelLi 152 G4SolidExtentList extentList( axis, voxelLimit ); 176 153 177 // 154 // 178 // Loop over all faces, checking min/max ext 155 // Loop over all faces, checking min/max extent as we go. 179 // 156 // 180 G4VCSGface **face = faces; 157 G4VCSGface **face = faces; 181 do // Loop checking, 13.08.2015, G.Cosmo << 158 do { 182 { << 183 (*face)->CalculateExtent( axis, voxelLimit 159 (*face)->CalculateExtent( axis, voxelLimit, transform, extentList ); 184 } while( ++face < faces + numFace ); 160 } while( ++face < faces + numFace ); 185 161 186 // 162 // 187 // Return min/max value 163 // Return min/max value 188 // 164 // 189 return extentList.GetExtent( min, max ); 165 return extentList.GetExtent( min, max ); 190 } 166 } 191 167 192 168 193 // 169 // 194 // Inside 170 // Inside 195 // 171 // 196 // It could be a good idea to override this vi 172 // It could be a good idea to override this virtual 197 // member to add first a simple test (such as 173 // member to add first a simple test (such as spherical 198 // test or whatnot) and to call this version o 174 // test or whatnot) and to call this version only if 199 // the simplier test fails. 175 // the simplier test fails. 200 // 176 // 201 EInside G4VCSGfaceted::Inside( const G4ThreeVe << 177 EInside G4VCSGfaceted::Inside( const G4ThreeVector &p ) const 202 { 178 { 203 EInside answer=kOutside; 179 EInside answer=kOutside; 204 G4VCSGface **face = faces; 180 G4VCSGface **face = faces; 205 G4double best = kInfinity; 181 G4double best = kInfinity; 206 do // Loop checking, 13.08.2015, G.Cosmo << 182 do { 207 { << 208 G4double distance; 183 G4double distance; 209 EInside result = (*face)->Inside( p, kCarT 184 EInside result = (*face)->Inside( p, kCarTolerance/2, &distance ); 210 if (result == kSurface) { return kSurface; << 185 if (result == kSurface) return kSurface; 211 if (distance < best) 186 if (distance < best) 212 { 187 { 213 best = distance; 188 best = distance; 214 answer = result; 189 answer = result; 215 } 190 } 216 } while( ++face < faces + numFace ); 191 } while( ++face < faces + numFace ); 217 192 218 return answer; 193 return answer; 219 } 194 } 220 195 221 196 222 // 197 // 223 // SurfaceNormal 198 // SurfaceNormal 224 // 199 // 225 G4ThreeVector G4VCSGfaceted::SurfaceNormal( co 200 G4ThreeVector G4VCSGfaceted::SurfaceNormal( const G4ThreeVector& p ) const 226 { 201 { 227 G4ThreeVector answer; 202 G4ThreeVector answer; 228 G4VCSGface **face = faces; 203 G4VCSGface **face = faces; 229 G4double best = kInfinity; 204 G4double best = kInfinity; 230 do // Loop checking, 13.08.2015, G.Cosmo << 205 do { 231 { << 206 G4double distance; 232 G4double distance = kInfinity; << 233 G4ThreeVector normal = (*face)->Normal( p, 207 G4ThreeVector normal = (*face)->Normal( p, &distance ); 234 if (distance < best) 208 if (distance < best) 235 { 209 { 236 best = distance; 210 best = distance; 237 answer = normal; 211 answer = normal; 238 } 212 } 239 } while( ++face < faces + numFace ); 213 } while( ++face < faces + numFace ); 240 214 241 return answer; 215 return answer; 242 } 216 } 243 217 244 218 245 // 219 // 246 // DistanceToIn(p,v) 220 // DistanceToIn(p,v) 247 // 221 // 248 G4double G4VCSGfaceted::DistanceToIn( const G4 << 222 G4double G4VCSGfaceted::DistanceToIn( const G4ThreeVector &p, 249 const G4 << 223 const G4ThreeVector &v ) const 250 { 224 { 251 G4double distance = kInfinity; 225 G4double distance = kInfinity; 252 G4double distFromSurface = kInfinity; 226 G4double distFromSurface = kInfinity; >> 227 G4VCSGface *bestFace=0; 253 G4VCSGface **face = faces; 228 G4VCSGface **face = faces; 254 G4VCSGface *bestFace = *face; << 229 do { 255 do // Loop checking, 13.08.2015, G.Cosmo << 256 { << 257 G4double faceDistance, 230 G4double faceDistance, 258 faceDistFromSurface; 231 faceDistFromSurface; 259 G4ThreeVector faceNormal; 232 G4ThreeVector faceNormal; 260 G4bool faceAllBehind; 233 G4bool faceAllBehind; 261 if ((*face)->Intersect( p, v, false, kCarT 234 if ((*face)->Intersect( p, v, false, kCarTolerance/2, 262 faceDistance, faceDistFromSurf 235 faceDistance, faceDistFromSurface, 263 faceNormal, faceAllBehind ) ) 236 faceNormal, faceAllBehind ) ) 264 { 237 { 265 // 238 // 266 // Intersecting face 239 // Intersecting face 267 // 240 // 268 if (faceDistance < distance) 241 if (faceDistance < distance) 269 { 242 { 270 distance = faceDistance; 243 distance = faceDistance; 271 distFromSurface = faceDistFromSurface; 244 distFromSurface = faceDistFromSurface; 272 bestFace = *face; 245 bestFace = *face; 273 if (distFromSurface <= 0) { return 0; << 246 if (distFromSurface <= 0) return 0; 274 } 247 } 275 } 248 } 276 } while( ++face < faces + numFace ); 249 } while( ++face < faces + numFace ); 277 250 278 if (distance < kInfinity && distFromSurface< 251 if (distance < kInfinity && distFromSurface<kCarTolerance/2) 279 { 252 { 280 if (bestFace->Distance(p,false) < kCarTole << 253 if (bestFace->Distance(p,false) < kCarTolerance/2) distance = 0; 281 } 254 } 282 255 283 return distance; 256 return distance; 284 } 257 } 285 258 286 259 287 // 260 // 288 // DistanceToIn(p) 261 // DistanceToIn(p) 289 // 262 // 290 G4double G4VCSGfaceted::DistanceToIn( const G4 << 263 G4double G4VCSGfaceted::DistanceToIn( const G4ThreeVector &p ) const 291 { 264 { 292 return DistanceTo( p, false ); 265 return DistanceTo( p, false ); 293 } 266 } 294 267 295 268 296 // 269 // 297 // DistanceToOut(p,v) 270 // DistanceToOut(p,v) 298 // 271 // 299 G4double G4VCSGfaceted::DistanceToOut( const G << 272 G4double G4VCSGfaceted::DistanceToOut( const G4ThreeVector &p, 300 const G << 273 const G4ThreeVector &v, 301 const G 274 const G4bool calcNorm, 302 G << 275 G4bool *validNorm, 303 G << 276 G4ThreeVector *n ) const 304 { 277 { 305 G4bool allBehind = true; 278 G4bool allBehind = true; 306 G4double distance = kInfinity; 279 G4double distance = kInfinity; 307 G4double distFromSurface = kInfinity; 280 G4double distFromSurface = kInfinity; 308 G4ThreeVector normal; 281 G4ThreeVector normal; >> 282 G4VCSGface *bestFace=0; 309 283 310 G4VCSGface **face = faces; 284 G4VCSGface **face = faces; 311 G4VCSGface *bestFace = *face; << 285 do { 312 do // Loop checking, 13.08.2015, G.Cosmo << 313 { << 314 G4double faceDistance, 286 G4double faceDistance, 315 faceDistFromSurface; 287 faceDistFromSurface; 316 G4ThreeVector faceNormal; 288 G4ThreeVector faceNormal; 317 G4bool faceAllBehind; 289 G4bool faceAllBehind; 318 if ((*face)->Intersect( p, v, true, kCarTo 290 if ((*face)->Intersect( p, v, true, kCarTolerance/2, 319 faceDistance, faceDistFromSurf 291 faceDistance, faceDistFromSurface, 320 faceNormal, faceAllBehind ) ) 292 faceNormal, faceAllBehind ) ) 321 { 293 { 322 // 294 // 323 // Intersecting face 295 // Intersecting face 324 // 296 // 325 if ( (distance < kInfinity) || (!faceAll << 297 if ( (distance < kInfinity) || (!faceAllBehind) ) allBehind = false; 326 if (faceDistance < distance) 298 if (faceDistance < distance) 327 { 299 { 328 distance = faceDistance; 300 distance = faceDistance; 329 distFromSurface = faceDistFromSurface; 301 distFromSurface = faceDistFromSurface; 330 normal = faceNormal; 302 normal = faceNormal; 331 bestFace = *face; 303 bestFace = *face; 332 if (distFromSurface <= 0.) { break; } << 304 if (distFromSurface <= 0) break; 333 } 305 } 334 } 306 } 335 } while( ++face < faces + numFace ); 307 } while( ++face < faces + numFace ); 336 308 337 if (distance < kInfinity) 309 if (distance < kInfinity) 338 { 310 { 339 if (distFromSurface <= 0.) << 311 if (distFromSurface <= 0) 340 { << 312 distance = 0; 341 distance = 0.; << 342 } << 343 else if (distFromSurface<kCarTolerance/2) 313 else if (distFromSurface<kCarTolerance/2) 344 { 314 { 345 if (bestFace->Distance(p,true) < kCarTol << 315 if (bestFace->Distance(p,true) < kCarTolerance/2) distance = 0; 346 } 316 } 347 317 348 if (calcNorm) 318 if (calcNorm) 349 { 319 { 350 *validNorm = allBehind; 320 *validNorm = allBehind; 351 *n = normal; 321 *n = normal; 352 } 322 } 353 } 323 } 354 else 324 else 355 { 325 { 356 if (Inside(p) == kSurface) { distance = 0 << 326 if (Inside(p) == kSurface) distance = 0; 357 if (calcNorm) { *validNorm = false; } << 327 if (calcNorm) *validNorm = false; 358 } 328 } 359 329 360 return distance; 330 return distance; 361 } 331 } 362 332 363 333 364 // 334 // 365 // DistanceToOut(p) 335 // DistanceToOut(p) 366 // 336 // 367 G4double G4VCSGfaceted::DistanceToOut( const G << 337 G4double G4VCSGfaceted::DistanceToOut( const G4ThreeVector &p ) const 368 { 338 { 369 return DistanceTo( p, true ); 339 return DistanceTo( p, true ); 370 } 340 } 371 341 372 342 373 // 343 // 374 // DistanceTo 344 // DistanceTo 375 // 345 // 376 // Protected routine called by DistanceToIn an 346 // Protected routine called by DistanceToIn and DistanceToOut 377 // 347 // 378 G4double G4VCSGfaceted::DistanceTo( const G4Th << 348 G4double G4VCSGfaceted::DistanceTo( const G4ThreeVector &p, 379 const G4bo 349 const G4bool outgoing ) const 380 { 350 { 381 G4VCSGface **face = faces; 351 G4VCSGface **face = faces; 382 G4double best = kInfinity; 352 G4double best = kInfinity; 383 do // Loop checking, 13.08.2015, G.Cosmo << 353 do { 384 { << 385 G4double distance = (*face)->Distance( p, 354 G4double distance = (*face)->Distance( p, outgoing ); 386 if (distance < best) { best = distance; } << 355 if (distance < best) best = distance; 387 } while( ++face < faces + numFace ); 356 } while( ++face < faces + numFace ); 388 357 389 return (best < 0.5*kCarTolerance) ? 0. : bes << 358 return (best < 0.5*kCarTolerance) ? 0 : best; 390 } 359 } 391 360 392 361 393 // 362 // 394 // DescribeYourselfTo 363 // DescribeYourselfTo 395 // 364 // 396 void G4VCSGfaceted::DescribeYourselfTo( G4VGra 365 void G4VCSGfaceted::DescribeYourselfTo( G4VGraphicsScene& scene ) const 397 { 366 { 398 scene.AddSolid( *this ); 367 scene.AddSolid( *this ); 399 } 368 } 400 369 401 370 402 // 371 // 403 // GetExtent 372 // GetExtent 404 // 373 // 405 // Define the sides of the box into which our 374 // Define the sides of the box into which our solid instance would fit. 406 // 375 // 407 G4VisExtent G4VCSGfaceted::GetExtent() const 376 G4VisExtent G4VCSGfaceted::GetExtent() const 408 { 377 { 409 static const G4ThreeVector xMax(1,0,0), xMin 378 static const G4ThreeVector xMax(1,0,0), xMin(-1,0,0), 410 yMax(0,1,0), yMin 379 yMax(0,1,0), yMin(0,-1,0), 411 zMax(0,0,1), zMin 380 zMax(0,0,1), zMin(0,0,-1); 412 static const G4ThreeVector *axes[6] = 381 static const G4ThreeVector *axes[6] = 413 { &xMin, &xMax, &yMin, &yMax, &zMin, &zMa 382 { &xMin, &xMax, &yMin, &yMax, &zMin, &zMax }; 414 383 415 G4double answers[6] = 384 G4double answers[6] = 416 {-kInfinity, -kInfinity, -kInfinity, -kIn 385 {-kInfinity, -kInfinity, -kInfinity, -kInfinity, -kInfinity, -kInfinity}; 417 386 418 G4VCSGface **face = faces; 387 G4VCSGface **face = faces; 419 do // Loop checking, 13.08.2015, G.Cosmo << 388 do { 420 { << 421 const G4ThreeVector **axis = axes+5 ; 389 const G4ThreeVector **axis = axes+5 ; 422 G4double* answer = answers+5; << 390 G4double *answer = answers+5; 423 do // Loop checking, 13.08.2015, G.Cosm << 391 do { 424 { << 425 G4double testFace = (*face)->Extent( **a 392 G4double testFace = (*face)->Extent( **axis ); 426 if (testFace > *answer) { *answer = tes << 393 if (testFace > *answer) *answer = testFace; 427 } 394 } 428 while( --axis, --answer >= answers ); 395 while( --axis, --answer >= answers ); 429 396 430 } while( ++face < faces + numFace ); 397 } while( ++face < faces + numFace ); 431 398 432 return { -answers[0], answers[1], << 399 return G4VisExtent( -answers[0], answers[1], 433 -answers[2], answers[3], << 400 -answers[2], answers[3], 434 -answers[4], answers[5] }; << 401 -answers[4], answers[5] ); 435 } 402 } 436 403 437 404 438 // 405 // 439 // GetEntityType 406 // GetEntityType 440 // 407 // 441 G4GeometryType G4VCSGfaceted::GetEntityType() 408 G4GeometryType G4VCSGfaceted::GetEntityType() const 442 { 409 { 443 return {"G4CSGfaceted"}; << 410 return G4String("G4CSGfaceted"); 444 } 411 } 445 412 446 413 447 // 414 // 448 // Stream object contents to an output stream 415 // Stream object contents to an output stream 449 // 416 // 450 std::ostream& G4VCSGfaceted::StreamInfo( std:: 417 std::ostream& G4VCSGfaceted::StreamInfo( std::ostream& os ) const 451 { 418 { 452 os << "------------------------------------- 419 os << "-----------------------------------------------------------\n" 453 << " *** Dump for solid - " << GetName 420 << " *** Dump for solid - " << GetName() << " ***\n" 454 << " ================================= 421 << " ===================================================\n" 455 << " Solid type: G4VCSGfaceted\n" 422 << " Solid type: G4VCSGfaceted\n" 456 << " Parameters: \n" 423 << " Parameters: \n" 457 << " number of faces: " << numFace << 424 << " number of faces: " << numFace << "\n" 458 << "------------------------------------- 425 << "-----------------------------------------------------------\n"; 459 426 460 return os; 427 return os; 461 } 428 } 462 429 463 430 464 // 431 // 465 // GetCubVolStatistics 432 // GetCubVolStatistics 466 // 433 // 467 G4int G4VCSGfaceted::GetCubVolStatistics() con 434 G4int G4VCSGfaceted::GetCubVolStatistics() const 468 { 435 { 469 return fStatistics; << 436 return fCubVolStatistics; 470 } 437 } 471 438 472 439 473 // 440 // 474 // GetCubVolEpsilon 441 // GetCubVolEpsilon 475 // 442 // 476 G4double G4VCSGfaceted::GetCubVolEpsilon() con 443 G4double G4VCSGfaceted::GetCubVolEpsilon() const 477 { 444 { 478 return fCubVolEpsilon; 445 return fCubVolEpsilon; 479 } 446 } 480 447 481 448 482 // 449 // 483 // SetCubVolStatistics 450 // SetCubVolStatistics 484 // 451 // 485 void G4VCSGfaceted::SetCubVolStatistics(G4int 452 void G4VCSGfaceted::SetCubVolStatistics(G4int st) 486 { 453 { 487 fCubicVolume=0.; << 454 fCubVolStatistics=st; 488 fStatistics=st; << 489 } 455 } 490 456 491 457 492 // 458 // 493 // SetCubVolEpsilon 459 // SetCubVolEpsilon 494 // 460 // 495 void G4VCSGfaceted::SetCubVolEpsilon(G4double 461 void G4VCSGfaceted::SetCubVolEpsilon(G4double ep) 496 { 462 { 497 fCubicVolume=0.; << 498 fCubVolEpsilon=ep; 463 fCubVolEpsilon=ep; 499 } 464 } 500 465 501 466 502 // 467 // 503 // GetAreaStatistics << 504 // << 505 G4int G4VCSGfaceted::GetAreaStatistics() const << 506 { << 507 return fStatistics; << 508 } << 509 << 510 << 511 // << 512 // GetAreaAccuracy << 513 // << 514 G4double G4VCSGfaceted::GetAreaAccuracy() cons << 515 { << 516 return fAreaAccuracy; << 517 } << 518 << 519 << 520 // << 521 // SetAreaStatistics << 522 // << 523 void G4VCSGfaceted::SetAreaStatistics(G4int st << 524 { << 525 fSurfaceArea=0.; << 526 fStatistics=st; << 527 } << 528 << 529 << 530 // << 531 // SetAreaAccuracy << 532 // << 533 void G4VCSGfaceted::SetAreaAccuracy(G4double e << 534 { << 535 fSurfaceArea=0.; << 536 fAreaAccuracy=ep; << 537 } << 538 << 539 << 540 // << 541 // GetCubicVolume 468 // GetCubicVolume 542 // 469 // 543 G4double G4VCSGfaceted::GetCubicVolume() 470 G4double G4VCSGfaceted::GetCubicVolume() 544 { 471 { 545 if(fCubicVolume != 0.) {;} << 472 if(fCubicVolume != 0.) ; 546 else { fCubicVolume = EstimateCubicVolume( << 473 else fCubicVolume = EstimateCubicVolume(fCubVolStatistics,fCubVolEpsilon); 547 return fCubicVolume; 474 return fCubicVolume; 548 } 475 } 549 476 550 << 551 // << 552 // GetSurfaceArea << 553 // << 554 G4double G4VCSGfaceted::GetSurfaceArea() << 555 { << 556 if(fSurfaceArea != 0.) {;} << 557 else { fSurfaceArea = EstimateSurfaceArea( << 558 return fSurfaceArea; << 559 } << 560 << 561 << 562 // << 563 // GetPolyhedron << 564 // << 565 G4Polyhedron* G4VCSGfaceted::GetPolyhedron () 477 G4Polyhedron* G4VCSGfaceted::GetPolyhedron () const 566 { 478 { 567 if (fpPolyhedron == nullptr || << 479 if (!fpPolyhedron || 568 fRebuildPolyhedron || << 569 fpPolyhedron->GetNumberOfRotationStepsAt 480 fpPolyhedron->GetNumberOfRotationStepsAtTimeOfCreation() != 570 fpPolyhedron->GetNumberOfRotationSteps() 481 fpPolyhedron->GetNumberOfRotationSteps()) 571 { << 572 G4AutoLock l(&polyhedronMutex); << 573 delete fpPolyhedron; << 574 fpPolyhedron = CreatePolyhedron(); << 575 fRebuildPolyhedron = false; << 576 l.unlock(); << 577 } << 578 return fpPolyhedron; << 579 } << 580 << 581 << 582 // << 583 // GetPointOnSurfaceGeneric proportional to Ar << 584 // in case of GenericPolycone or GenericPolyhe << 585 // << 586 G4ThreeVector G4VCSGfaceted::GetPointOnSurface << 587 { << 588 // Preparing variables << 589 // << 590 G4ThreeVector answer=G4ThreeVector(0.,0.,0.) << 591 G4VCSGface **face = faces; << 592 G4double area = 0.; << 593 G4int i; << 594 std::vector<G4double> areas; << 595 << 596 // First step: calculate surface areas << 597 // << 598 do // Loop checking, 13.08.2015, G.Cosmo << 599 { << 600 G4double result = (*face)->SurfaceArea( ); << 601 areas.push_back(result); << 602 area=area+result; << 603 } while( ++face < faces + numFace ); << 604 << 605 // Second Step: choose randomly one surface << 606 // << 607 G4VCSGface **face1 = faces; << 608 G4double chose = area*G4UniformRand(); << 609 G4double Achose1, Achose2; << 610 Achose1=0.; Achose2=0.; << 611 i=0; << 612 << 613 do << 614 { << 615 Achose2+=areas[i]; << 616 if(chose>=Achose1 && chose<Achose2) << 617 { 482 { 618 G4ThreeVector point; << 483 delete fpPolyhedron; 619 point= (*face1)->GetPointOnFace(); << 484 fpPolyhedron = CreatePolyhedron(); 620 return point; << 621 } 485 } 622 ++i; << 486 return fpPolyhedron; 623 Achose1=Achose2; << 624 } while( ++face1 < faces + numFace ); << 625 << 626 return answer; << 627 } 487 } 628 488