Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // G4VCSGfaceted implementation; a virtual cla << 23 // the GEANT4 collaboration. 27 // that is built entirely out of G4VCSGface fa << 24 // >> 25 // By copying, distributing or modifying the Program (or any work >> 26 // based on the Program) you indicate your acceptance of this statement, >> 27 // and all its terms. >> 28 // >> 29 // $Id: G4VCSGfaceted.cc,v 1.10 2003/06/16 16:54:01 gunter Exp $ >> 30 // GEANT4 tag $Name: geant4-05-02-patch-01 $ >> 31 // >> 32 // >> 33 // -------------------------------------------------------------------- >> 34 // GEANT 4 class source file >> 35 // >> 36 // >> 37 // G4VCSGfaceted.cc >> 38 // >> 39 // Implementation of the virtual class of a CSG type shape that is built >> 40 // entirely out of G4VCSGface faces. 28 // 41 // 29 // Author: David C. Williams (davidw@scipp.ucs << 30 // ------------------------------------------- 42 // -------------------------------------------------------------------- 31 43 32 #include "G4VCSGfaceted.hh" 44 #include "G4VCSGfaceted.hh" 33 #include "G4VCSGface.hh" 45 #include "G4VCSGface.hh" 34 #include "G4SolidExtentList.hh" 46 #include "G4SolidExtentList.hh" 35 47 36 #include "G4VoxelLimits.hh" 48 #include "G4VoxelLimits.hh" 37 #include "G4AffineTransform.hh" 49 #include "G4AffineTransform.hh" 38 50 39 #include "Randomize.hh" << 40 << 41 #include "G4Polyhedron.hh" 51 #include "G4Polyhedron.hh" 42 #include "G4VGraphicsScene.hh" 52 #include "G4VGraphicsScene.hh" >> 53 #include "G4NURBS.hh" >> 54 #include "G4NURBSbox.hh" 43 #include "G4VisExtent.hh" 55 #include "G4VisExtent.hh" 44 56 45 #include "G4AutoLock.hh" << 46 << 47 namespace << 48 { << 49 G4Mutex polyhedronMutex = G4MUTEX_INITIALIZE << 50 } << 51 << 52 // 57 // 53 // Constructor 58 // Constructor 54 // 59 // 55 G4VCSGfaceted::G4VCSGfaceted( const G4String& << 60 G4VCSGfaceted::G4VCSGfaceted( G4String name ) 56 : G4VSolid(name), 61 : G4VSolid(name), 57 fStatistics(1000000), fCubVolEpsilon(0.001 << 62 numFace(0), faces(0) 58 { 63 { 59 } 64 } 60 65 61 66 62 // 67 // 63 // Fake default constructor - sets only member << 64 // for usage restri << 65 // << 66 G4VCSGfaceted::G4VCSGfaceted( __void__& a ) << 67 : G4VSolid(a), << 68 fStatistics(1000000), fCubVolEpsilon(0.001 << 69 { << 70 } << 71 << 72 // << 73 // Destructor 68 // Destructor 74 // 69 // 75 G4VCSGfaceted::~G4VCSGfaceted() 70 G4VCSGfaceted::~G4VCSGfaceted() 76 { 71 { 77 DeleteStuff(); 72 DeleteStuff(); 78 delete fpPolyhedron; fpPolyhedron = nullptr; << 79 } 73 } 80 74 81 75 82 // 76 // 83 // Copy constructor 77 // Copy constructor 84 // 78 // 85 G4VCSGfaceted::G4VCSGfaceted( const G4VCSGface << 79 G4VCSGfaceted::G4VCSGfaceted( const G4VCSGfaceted &source ) 86 : G4VSolid( source ) 80 : G4VSolid( source ) 87 { 81 { 88 fStatistics = source.fStatistics; << 89 fCubVolEpsilon = source.fCubVolEpsilon; << 90 fAreaAccuracy = source.fAreaAccuracy; << 91 << 92 CopyStuff( source ); 82 CopyStuff( source ); 93 } 83 } 94 84 95 85 96 // 86 // 97 // Assignment operator 87 // Assignment operator 98 // 88 // 99 G4VCSGfaceted& G4VCSGfaceted::operator=( const << 89 const G4VCSGfaceted &G4VCSGfaceted::operator=( const G4VCSGfaceted &source ) 100 { 90 { 101 if (&source == this) { return *this; } << 91 if (&source == this) return *this; 102 92 103 // Copy base class data << 104 // << 105 G4VSolid::operator=(source); << 106 << 107 // Copy data << 108 // << 109 fStatistics = source.fStatistics; << 110 fCubVolEpsilon = source.fCubVolEpsilon; << 111 fAreaAccuracy = source.fAreaAccuracy; << 112 << 113 DeleteStuff(); 93 DeleteStuff(); 114 CopyStuff( source ); 94 CopyStuff( source ); 115 95 116 return *this; 96 return *this; 117 } 97 } 118 98 119 99 120 // 100 // 121 // CopyStuff (protected) 101 // CopyStuff (protected) 122 // 102 // 123 // Copy the contents of source 103 // Copy the contents of source 124 // 104 // 125 void G4VCSGfaceted::CopyStuff( const G4VCSGfac << 105 void G4VCSGfaceted::CopyStuff( const G4VCSGfaceted &source ) 126 { 106 { 127 numFace = source.numFace; 107 numFace = source.numFace; 128 if (numFace == 0) { return; } // odd, but << 108 if (numFace == 0) return; // odd, but permissable? 129 109 130 faces = new G4VCSGface*[numFace]; 110 faces = new G4VCSGface*[numFace]; 131 111 132 G4VCSGface **face = faces, 112 G4VCSGface **face = faces, 133 **sourceFace = source.faces; 113 **sourceFace = source.faces; 134 do // Loop checking, 13.08.2015, G.Cosmo << 114 do { 135 { << 136 *face = (*sourceFace)->Clone(); 115 *face = (*sourceFace)->Clone(); 137 } while( ++sourceFace, ++face < faces+numFac 116 } while( ++sourceFace, ++face < faces+numFace ); 138 fCubicVolume = source.fCubicVolume; << 139 fSurfaceArea = source.fSurfaceArea; << 140 fRebuildPolyhedron = false; << 141 fpPolyhedron = nullptr; << 142 } 117 } 143 118 144 119 145 // 120 // 146 // DeleteStuff (protected) 121 // DeleteStuff (protected) 147 // 122 // 148 // Delete all allocated objects 123 // Delete all allocated objects 149 // 124 // 150 void G4VCSGfaceted::DeleteStuff() 125 void G4VCSGfaceted::DeleteStuff() 151 { 126 { 152 if (numFace != 0) << 127 if (numFace) 153 { 128 { 154 G4VCSGface **face = faces; 129 G4VCSGface **face = faces; 155 do // Loop checking, 13.08.2015, G.Cosm << 130 do { 156 { << 157 delete *face; 131 delete *face; 158 } while( ++face < faces + numFace ); 132 } while( ++face < faces + numFace ); 159 133 160 delete [] faces; 134 delete [] faces; 161 } 135 } 162 delete fpPolyhedron; fpPolyhedron = nullptr; << 163 } 136 } 164 137 165 138 166 // 139 // 167 // CalculateExtent 140 // CalculateExtent 168 // 141 // 169 G4bool G4VCSGfaceted::CalculateExtent( const E 142 G4bool G4VCSGfaceted::CalculateExtent( const EAxis axis, 170 const G << 143 const G4VoxelLimits &voxelLimit, 171 const G << 144 const G4AffineTransform &transform, 172 G << 145 G4double &min, 173 G << 146 G4double &max ) const 174 { 147 { 175 G4SolidExtentList extentList( axis, voxelLi 148 G4SolidExtentList extentList( axis, voxelLimit ); 176 149 177 // 150 // 178 // Loop over all faces, checking min/max ext 151 // Loop over all faces, checking min/max extent as we go. 179 // 152 // 180 G4VCSGface **face = faces; 153 G4VCSGface **face = faces; 181 do // Loop checking, 13.08.2015, G.Cosmo << 154 do { 182 { << 183 (*face)->CalculateExtent( axis, voxelLimit 155 (*face)->CalculateExtent( axis, voxelLimit, transform, extentList ); 184 } while( ++face < faces + numFace ); 156 } while( ++face < faces + numFace ); 185 157 186 // 158 // 187 // Return min/max value 159 // Return min/max value 188 // 160 // 189 return extentList.GetExtent( min, max ); 161 return extentList.GetExtent( min, max ); 190 } 162 } 191 163 192 164 193 // 165 // 194 // Inside 166 // Inside 195 // 167 // 196 // It could be a good idea to override this vi 168 // It could be a good idea to override this virtual 197 // member to add first a simple test (such as 169 // member to add first a simple test (such as spherical 198 // test or whatnot) and to call this version o 170 // test or whatnot) and to call this version only if 199 // the simplier test fails. 171 // the simplier test fails. 200 // 172 // 201 EInside G4VCSGfaceted::Inside( const G4ThreeVe << 173 EInside G4VCSGfaceted::Inside( const G4ThreeVector &p ) const 202 { 174 { 203 EInside answer=kOutside; 175 EInside answer=kOutside; 204 G4VCSGface **face = faces; 176 G4VCSGface **face = faces; 205 G4double best = kInfinity; 177 G4double best = kInfinity; 206 do // Loop checking, 13.08.2015, G.Cosmo << 178 do { 207 { << 208 G4double distance; 179 G4double distance; 209 EInside result = (*face)->Inside( p, kCarT 180 EInside result = (*face)->Inside( p, kCarTolerance/2, &distance ); 210 if (result == kSurface) { return kSurface; << 181 if (result == kSurface) return kSurface; 211 if (distance < best) 182 if (distance < best) 212 { 183 { 213 best = distance; 184 best = distance; 214 answer = result; 185 answer = result; 215 } 186 } 216 } while( ++face < faces + numFace ); 187 } while( ++face < faces + numFace ); 217 188 218 return answer; 189 return answer; 219 } 190 } 220 191 221 192 222 // 193 // 223 // SurfaceNormal 194 // SurfaceNormal 224 // 195 // 225 G4ThreeVector G4VCSGfaceted::SurfaceNormal( co 196 G4ThreeVector G4VCSGfaceted::SurfaceNormal( const G4ThreeVector& p ) const 226 { 197 { 227 G4ThreeVector answer; 198 G4ThreeVector answer; 228 G4VCSGface **face = faces; 199 G4VCSGface **face = faces; 229 G4double best = kInfinity; 200 G4double best = kInfinity; 230 do // Loop checking, 13.08.2015, G.Cosmo << 201 do { 231 { << 202 G4double distance; 232 G4double distance = kInfinity; << 233 G4ThreeVector normal = (*face)->Normal( p, 203 G4ThreeVector normal = (*face)->Normal( p, &distance ); 234 if (distance < best) 204 if (distance < best) 235 { 205 { 236 best = distance; 206 best = distance; 237 answer = normal; 207 answer = normal; 238 } 208 } 239 } while( ++face < faces + numFace ); 209 } while( ++face < faces + numFace ); 240 210 241 return answer; 211 return answer; 242 } 212 } 243 213 244 214 245 // 215 // 246 // DistanceToIn(p,v) 216 // DistanceToIn(p,v) 247 // 217 // 248 G4double G4VCSGfaceted::DistanceToIn( const G4 << 218 G4double G4VCSGfaceted::DistanceToIn( const G4ThreeVector &p, 249 const G4 << 219 const G4ThreeVector &v ) const 250 { 220 { 251 G4double distance = kInfinity; 221 G4double distance = kInfinity; 252 G4double distFromSurface = kInfinity; 222 G4double distFromSurface = kInfinity; >> 223 G4VCSGface *bestFace=0; 253 G4VCSGface **face = faces; 224 G4VCSGface **face = faces; 254 G4VCSGface *bestFace = *face; << 225 do { 255 do // Loop checking, 13.08.2015, G.Cosmo << 256 { << 257 G4double faceDistance, 226 G4double faceDistance, 258 faceDistFromSurface; 227 faceDistFromSurface; 259 G4ThreeVector faceNormal; 228 G4ThreeVector faceNormal; 260 G4bool faceAllBehind; 229 G4bool faceAllBehind; 261 if ((*face)->Intersect( p, v, false, kCarT 230 if ((*face)->Intersect( p, v, false, kCarTolerance/2, 262 faceDistance, faceDistFromSurf 231 faceDistance, faceDistFromSurface, 263 faceNormal, faceAllBehind ) ) 232 faceNormal, faceAllBehind ) ) 264 { 233 { 265 // 234 // 266 // Intersecting face 235 // Intersecting face 267 // 236 // 268 if (faceDistance < distance) 237 if (faceDistance < distance) 269 { 238 { 270 distance = faceDistance; 239 distance = faceDistance; 271 distFromSurface = faceDistFromSurface; 240 distFromSurface = faceDistFromSurface; 272 bestFace = *face; 241 bestFace = *face; 273 if (distFromSurface <= 0) { return 0; << 242 if (distFromSurface <= 0) return 0; 274 } 243 } 275 } 244 } 276 } while( ++face < faces + numFace ); 245 } while( ++face < faces + numFace ); 277 246 278 if (distance < kInfinity && distFromSurface< 247 if (distance < kInfinity && distFromSurface<kCarTolerance/2) 279 { 248 { 280 if (bestFace->Distance(p,false) < kCarTole << 249 if (bestFace->Distance(p,false) < kCarTolerance/2) distance = 0; 281 } 250 } 282 251 283 return distance; 252 return distance; 284 } 253 } 285 254 286 255 287 // 256 // 288 // DistanceToIn(p) 257 // DistanceToIn(p) 289 // 258 // 290 G4double G4VCSGfaceted::DistanceToIn( const G4 << 259 G4double G4VCSGfaceted::DistanceToIn( const G4ThreeVector &p ) const 291 { 260 { 292 return DistanceTo( p, false ); 261 return DistanceTo( p, false ); 293 } 262 } 294 263 295 264 296 // 265 // 297 // DistanceToOut(p,v) 266 // DistanceToOut(p,v) 298 // 267 // 299 G4double G4VCSGfaceted::DistanceToOut( const G << 268 G4double G4VCSGfaceted::DistanceToOut( const G4ThreeVector &p, 300 const G << 269 const G4ThreeVector &v, 301 const G 270 const G4bool calcNorm, 302 G << 271 G4bool *validNorm, 303 G << 272 G4ThreeVector *n ) const 304 { 273 { 305 G4bool allBehind = true; 274 G4bool allBehind = true; 306 G4double distance = kInfinity; 275 G4double distance = kInfinity; 307 G4double distFromSurface = kInfinity; 276 G4double distFromSurface = kInfinity; 308 G4ThreeVector normal; 277 G4ThreeVector normal; >> 278 G4VCSGface *bestFace=0; 309 279 310 G4VCSGface **face = faces; 280 G4VCSGface **face = faces; 311 G4VCSGface *bestFace = *face; << 281 do { 312 do // Loop checking, 13.08.2015, G.Cosmo << 313 { << 314 G4double faceDistance, 282 G4double faceDistance, 315 faceDistFromSurface; 283 faceDistFromSurface; 316 G4ThreeVector faceNormal; 284 G4ThreeVector faceNormal; 317 G4bool faceAllBehind; 285 G4bool faceAllBehind; 318 if ((*face)->Intersect( p, v, true, kCarTo 286 if ((*face)->Intersect( p, v, true, kCarTolerance/2, 319 faceDistance, faceDistFromSurf 287 faceDistance, faceDistFromSurface, 320 faceNormal, faceAllBehind ) ) 288 faceNormal, faceAllBehind ) ) 321 { 289 { 322 // 290 // 323 // Intersecting face 291 // Intersecting face 324 // 292 // 325 if ( (distance < kInfinity) || (!faceAll << 293 if ( (distance < kInfinity) || (!faceAllBehind) ) allBehind = false; 326 if (faceDistance < distance) 294 if (faceDistance < distance) 327 { 295 { 328 distance = faceDistance; 296 distance = faceDistance; 329 distFromSurface = faceDistFromSurface; 297 distFromSurface = faceDistFromSurface; 330 normal = faceNormal; 298 normal = faceNormal; 331 bestFace = *face; 299 bestFace = *face; 332 if (distFromSurface <= 0.) { break; } << 300 if (distFromSurface <= 0) break; 333 } 301 } 334 } 302 } 335 } while( ++face < faces + numFace ); 303 } while( ++face < faces + numFace ); 336 304 337 if (distance < kInfinity) 305 if (distance < kInfinity) 338 { 306 { 339 if (distFromSurface <= 0.) << 307 if (distFromSurface <= 0) 340 { << 308 distance = 0; 341 distance = 0.; << 342 } << 343 else if (distFromSurface<kCarTolerance/2) 309 else if (distFromSurface<kCarTolerance/2) 344 { 310 { 345 if (bestFace->Distance(p,true) < kCarTol << 311 if (bestFace->Distance(p,true) < kCarTolerance/2) distance = 0; 346 } 312 } 347 313 348 if (calcNorm) 314 if (calcNorm) 349 { 315 { 350 *validNorm = allBehind; 316 *validNorm = allBehind; 351 *n = normal; 317 *n = normal; 352 } 318 } 353 } 319 } 354 else 320 else 355 { << 321 { 356 if (Inside(p) == kSurface) { distance = 0 << 322 if (calcNorm) *validNorm = false; 357 if (calcNorm) { *validNorm = false; } << 358 } 323 } 359 324 360 return distance; 325 return distance; 361 } 326 } 362 327 363 328 364 // 329 // 365 // DistanceToOut(p) 330 // DistanceToOut(p) 366 // 331 // 367 G4double G4VCSGfaceted::DistanceToOut( const G << 332 G4double G4VCSGfaceted::DistanceToOut( const G4ThreeVector &p ) const 368 { 333 { 369 return DistanceTo( p, true ); 334 return DistanceTo( p, true ); 370 } 335 } 371 336 372 337 373 // 338 // 374 // DistanceTo 339 // DistanceTo 375 // 340 // 376 // Protected routine called by DistanceToIn an 341 // Protected routine called by DistanceToIn and DistanceToOut 377 // 342 // 378 G4double G4VCSGfaceted::DistanceTo( const G4Th << 343 G4double G4VCSGfaceted::DistanceTo( const G4ThreeVector &p, 379 const G4bo 344 const G4bool outgoing ) const 380 { 345 { 381 G4VCSGface **face = faces; 346 G4VCSGface **face = faces; 382 G4double best = kInfinity; 347 G4double best = kInfinity; 383 do // Loop checking, 13.08.2015, G.Cosmo << 348 do { 384 { << 385 G4double distance = (*face)->Distance( p, 349 G4double distance = (*face)->Distance( p, outgoing ); 386 if (distance < best) { best = distance; } << 350 if (distance < best) best = distance; 387 } while( ++face < faces + numFace ); 351 } while( ++face < faces + numFace ); 388 352 389 return (best < 0.5*kCarTolerance) ? 0. : bes << 353 return (best < 0.5*kCarTolerance) ? 0 : best; 390 } 354 } 391 355 392 356 393 // 357 // 394 // DescribeYourselfTo 358 // DescribeYourselfTo 395 // 359 // 396 void G4VCSGfaceted::DescribeYourselfTo( G4VGra 360 void G4VCSGfaceted::DescribeYourselfTo( G4VGraphicsScene& scene ) const 397 { 361 { 398 scene.AddSolid( *this ); << 362 scene.AddThis( *this ); 399 } 363 } 400 364 401 365 402 // 366 // 403 // GetExtent 367 // GetExtent 404 // 368 // 405 // Define the sides of the box into which our 369 // Define the sides of the box into which our solid instance would fit. 406 // 370 // 407 G4VisExtent G4VCSGfaceted::GetExtent() const 371 G4VisExtent G4VCSGfaceted::GetExtent() const 408 { 372 { 409 static const G4ThreeVector xMax(1,0,0), xMin 373 static const G4ThreeVector xMax(1,0,0), xMin(-1,0,0), 410 yMax(0,1,0), yMin 374 yMax(0,1,0), yMin(0,-1,0), 411 zMax(0,0,1), zMin 375 zMax(0,0,1), zMin(0,0,-1); 412 static const G4ThreeVector *axes[6] = 376 static const G4ThreeVector *axes[6] = 413 { &xMin, &xMax, &yMin, &yMax, &zMin, &zMa 377 { &xMin, &xMax, &yMin, &yMax, &zMin, &zMax }; 414 378 415 G4double answers[6] = 379 G4double answers[6] = 416 {-kInfinity, -kInfinity, -kInfinity, -kIn 380 {-kInfinity, -kInfinity, -kInfinity, -kInfinity, -kInfinity, -kInfinity}; 417 381 418 G4VCSGface **face = faces; 382 G4VCSGface **face = faces; 419 do // Loop checking, 13.08.2015, G.Cosmo << 383 do { 420 { << 421 const G4ThreeVector **axis = axes+5 ; 384 const G4ThreeVector **axis = axes+5 ; 422 G4double* answer = answers+5; << 385 G4double *answer = answers+5; 423 do // Loop checking, 13.08.2015, G.Cosm << 386 do { 424 { << 425 G4double testFace = (*face)->Extent( **a 387 G4double testFace = (*face)->Extent( **axis ); 426 if (testFace > *answer) { *answer = tes << 388 if (testFace > *answer) *answer = testFace; 427 } 389 } 428 while( --axis, --answer >= answers ); 390 while( --axis, --answer >= answers ); 429 391 430 } while( ++face < faces + numFace ); 392 } while( ++face < faces + numFace ); 431 393 432 return { -answers[0], answers[1], << 394 return G4VisExtent( -answers[0], answers[1], 433 -answers[2], answers[3], << 395 -answers[2], answers[3], 434 -answers[4], answers[5] }; << 396 -answers[4], answers[5] ); 435 } 397 } 436 398 437 399 438 // 400 // 439 // GetEntityType 401 // GetEntityType 440 // 402 // 441 G4GeometryType G4VCSGfaceted::GetEntityType() 403 G4GeometryType G4VCSGfaceted::GetEntityType() const 442 { 404 { 443 return {"G4CSGfaceted"}; << 405 return G4String("G4CSGfaceted"); 444 } 406 } 445 407 446 408 447 // 409 // 448 // Stream object contents to an output stream 410 // Stream object contents to an output stream 449 // 411 // 450 std::ostream& G4VCSGfaceted::StreamInfo( std:: 412 std::ostream& G4VCSGfaceted::StreamInfo( std::ostream& os ) const 451 { 413 { 452 os << "------------------------------------- 414 os << "-----------------------------------------------------------\n" 453 << " *** Dump for solid - " << GetName 415 << " *** Dump for solid - " << GetName() << " ***\n" 454 << " ================================= 416 << " ===================================================\n" 455 << " Solid type: G4VCSGfaceted\n" 417 << " Solid type: G4VCSGfaceted\n" 456 << " Parameters: \n" 418 << " Parameters: \n" 457 << " number of faces: " << numFace << 419 << " number of faces: " << numFace << "\n" 458 << "------------------------------------- 420 << "-----------------------------------------------------------\n"; 459 421 460 return os; 422 return os; 461 } << 462 << 463 << 464 // << 465 // GetCubVolStatistics << 466 // << 467 G4int G4VCSGfaceted::GetCubVolStatistics() con << 468 { << 469 return fStatistics; << 470 } << 471 << 472 << 473 // << 474 // GetCubVolEpsilon << 475 // << 476 G4double G4VCSGfaceted::GetCubVolEpsilon() con << 477 { << 478 return fCubVolEpsilon; << 479 } << 480 << 481 << 482 // << 483 // SetCubVolStatistics << 484 // << 485 void G4VCSGfaceted::SetCubVolStatistics(G4int << 486 { << 487 fCubicVolume=0.; << 488 fStatistics=st; << 489 } << 490 << 491 << 492 // << 493 // SetCubVolEpsilon << 494 // << 495 void G4VCSGfaceted::SetCubVolEpsilon(G4double << 496 { << 497 fCubicVolume=0.; << 498 fCubVolEpsilon=ep; << 499 } << 500 << 501 << 502 // << 503 // GetAreaStatistics << 504 // << 505 G4int G4VCSGfaceted::GetAreaStatistics() const << 506 { << 507 return fStatistics; << 508 } << 509 << 510 << 511 // << 512 // GetAreaAccuracy << 513 // << 514 G4double G4VCSGfaceted::GetAreaAccuracy() cons << 515 { << 516 return fAreaAccuracy; << 517 } << 518 << 519 << 520 // << 521 // SetAreaStatistics << 522 // << 523 void G4VCSGfaceted::SetAreaStatistics(G4int st << 524 { << 525 fSurfaceArea=0.; << 526 fStatistics=st; << 527 } << 528 << 529 << 530 // << 531 // SetAreaAccuracy << 532 // << 533 void G4VCSGfaceted::SetAreaAccuracy(G4double e << 534 { << 535 fSurfaceArea=0.; << 536 fAreaAccuracy=ep; << 537 } << 538 << 539 << 540 // << 541 // GetCubicVolume << 542 // << 543 G4double G4VCSGfaceted::GetCubicVolume() << 544 { << 545 if(fCubicVolume != 0.) {;} << 546 else { fCubicVolume = EstimateCubicVolume( << 547 return fCubicVolume; << 548 } << 549 << 550 << 551 // << 552 // GetSurfaceArea << 553 // << 554 G4double G4VCSGfaceted::GetSurfaceArea() << 555 { << 556 if(fSurfaceArea != 0.) {;} << 557 else { fSurfaceArea = EstimateSurfaceArea( << 558 return fSurfaceArea; << 559 } << 560 << 561 << 562 // << 563 // GetPolyhedron << 564 // << 565 G4Polyhedron* G4VCSGfaceted::GetPolyhedron () << 566 { << 567 if (fpPolyhedron == nullptr || << 568 fRebuildPolyhedron || << 569 fpPolyhedron->GetNumberOfRotationStepsAt << 570 fpPolyhedron->GetNumberOfRotationSteps() << 571 { << 572 G4AutoLock l(&polyhedronMutex); << 573 delete fpPolyhedron; << 574 fpPolyhedron = CreatePolyhedron(); << 575 fRebuildPolyhedron = false; << 576 l.unlock(); << 577 } << 578 return fpPolyhedron; << 579 } << 580 << 581 << 582 // << 583 // GetPointOnSurfaceGeneric proportional to Ar << 584 // in case of GenericPolycone or GenericPolyhe << 585 // << 586 G4ThreeVector G4VCSGfaceted::GetPointOnSurface << 587 { << 588 // Preparing variables << 589 // << 590 G4ThreeVector answer=G4ThreeVector(0.,0.,0.) << 591 G4VCSGface **face = faces; << 592 G4double area = 0.; << 593 G4int i; << 594 std::vector<G4double> areas; << 595 << 596 // First step: calculate surface areas << 597 // << 598 do // Loop checking, 13.08.2015, G.Cosmo << 599 { << 600 G4double result = (*face)->SurfaceArea( ); << 601 areas.push_back(result); << 602 area=area+result; << 603 } while( ++face < faces + numFace ); << 604 << 605 // Second Step: choose randomly one surface << 606 // << 607 G4VCSGface **face1 = faces; << 608 G4double chose = area*G4UniformRand(); << 609 G4double Achose1, Achose2; << 610 Achose1=0.; Achose2=0.; << 611 i=0; << 612 << 613 do << 614 { << 615 Achose2+=areas[i]; << 616 if(chose>=Achose1 && chose<Achose2) << 617 { << 618 G4ThreeVector point; << 619 point= (*face1)->GetPointOnFace(); << 620 return point; << 621 } << 622 ++i; << 623 Achose1=Achose2; << 624 } while( ++face1 < faces + numFace ); << 625 << 626 return answer; << 627 } 423 } 628 424