Geant4 Cross Reference |
1 // 1 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the result 19 // * technical work of the GEANT4 collaboratio 20 // * By using, copying, modifying or distri 21 // * any work based on the software) you ag 22 // * use in resulting scientific publicati 23 // * acceptance of all terms of the Geant4 Sof 24 // ******************************************* 25 // 26 // Implementation for G4UTet wrapper class 27 // 28 // 1.11.13 G.Cosmo, CERN 29 // ------------------------------------------- 30 31 #include "G4Tet.hh" 32 #include "G4UTet.hh" 33 34 #if ( defined(G4GEOM_USE_USOLIDS) || defined(G 35 36 #include "G4AffineTransform.hh" 37 #include "G4VPVParameterisation.hh" 38 #include "G4BoundingEnvelope.hh" 39 40 using namespace CLHEP; 41 42 ////////////////////////////////////////////// 43 // 44 // Constructor - create a tetrahedron 45 // This class is implemented separately from g 46 // because the simplex geometry can be compute 47 // which may become important in situations im 48 // in which a very large number of G4Tets are 49 // A Tet has all of its geometrical informatio 50 // 51 G4UTet::G4UTet(const G4String& pName, 52 const G4ThreeVector& anchor, 53 const G4ThreeVector& p1, 54 const G4ThreeVector& p2, 55 const G4ThreeVector& p3, G4bool 56 : Base_t(pName, U3Vector(anchor.x(),anchor.y 57 U3Vector(p1.x(), p1.y(), p1. 58 U3Vector(p2.x(), p2.y(), p2. 59 U3Vector(p3.x(), p3.y(), p3. 60 { 61 // Check for degeneracy 62 G4bool degenerate = CheckDegeneracy(anchor, 63 if(degeneracyFlag != nullptr) *degeneracyFla 64 else if (degenerate) 65 { 66 G4Exception("G4UTet::G4UTet()", "GeomSolid 67 "Degenerate tetrahedron not al 68 } 69 70 // Set bounding box 71 for (G4int i = 0; i < 3; ++i) 72 { 73 fBmin[i] = std::min(std::min(std::min(anch 74 fBmax[i] = std::max(std::max(std::max(anch 75 } 76 } 77 78 ////////////////////////////////////////////// 79 // 80 // Fake default constructor - sets only member 81 // for usage restri 82 // 83 G4UTet::G4UTet( __void__& a ) 84 : Base_t(a) 85 { 86 } 87 88 ////////////////////////////////////////////// 89 // 90 // Destructor 91 // 92 G4UTet::~G4UTet() = default; 93 94 ////////////////////////////////////////////// 95 // 96 // Copy constructor 97 // 98 G4UTet::G4UTet(const G4UTet& rhs) 99 : Base_t(rhs) 100 { 101 fBmin = rhs.fBmin; 102 fBmax = rhs.fBmax; 103 } 104 105 106 ////////////////////////////////////////////// 107 // 108 // Assignment operator 109 // 110 G4UTet& G4UTet::operator = (const G4UTet& rhs) 111 { 112 // Check assignment to self 113 if (this == &rhs) { return *this; } 114 115 // Copy base class data 116 Base_t::operator=(rhs); 117 118 // Copy bounding box 119 fBmin = rhs.fBmin; 120 fBmax = rhs.fBmax; 121 122 return *this; 123 } 124 125 ////////////////////////////////////////////// 126 // 127 // Return true if tetrahedron is degenerate 128 // Tetrahedron is concidered as degenerate in 129 // height is less than the degeneracy toleranc 130 // 131 G4bool G4UTet::CheckDegeneracy(const G4ThreeVe 132 const G4ThreeVe 133 const G4ThreeVe 134 const G4ThreeVe 135 { 136 G4double hmin = 4. * kCarTolerance; // degen 137 138 // Calculate volume 139 G4double vol = std::abs((p1 - p0).cross(p2 - 140 141 // Calculate face areas squared 142 G4double ss[4]; 143 ss[0] = ((p1 - p0).cross(p2 - p0)).mag2(); 144 ss[1] = ((p2 - p0).cross(p3 - p0)).mag2(); 145 ss[2] = ((p3 - p0).cross(p1 - p0)).mag2(); 146 ss[3] = ((p2 - p1).cross(p3 - p1)).mag2(); 147 148 // Find face with max area 149 G4int k = 0; 150 for (G4int i = 1; i < 4; ++i) { if (ss[i] > 151 152 // Check: vol^2 / s^2 <= hmin^2 153 return (vol*vol <= ss[k]*hmin*hmin); 154 } 155 156 ////////////////////////////////////////////// 157 // 158 // Dispatch to parameterisation for replicatio 159 // computation & modification. 160 // 161 void G4UTet::ComputeDimensions(G4VPVParameteri 162 const G4int, 163 const G4VPhysic 164 { 165 } 166 167 ////////////////////////////////////////////// 168 // 169 // Make a clone of the object 170 // 171 G4VSolid* G4UTet::Clone() const 172 { 173 return new G4UTet(*this); 174 } 175 176 ////////////////////////////////////////////// 177 // 178 // Modifier 179 // 180 void G4UTet::SetVertices(const G4ThreeVector& 181 const G4ThreeVector& 182 const G4ThreeVector& 183 const G4ThreeVector& 184 G4bool* degeneracyFla 185 { 186 // Check for degeneracy 187 G4bool degenerate = CheckDegeneracy(anchor, 188 if(degeneracyFlag != nullptr) *degeneracyFla 189 else if (degenerate) 190 { 191 G4Exception("G4UTet::SetVertices()", "Geom 192 "Degenerate tetrahedron not al 193 } 194 195 // Change tetrahedron 196 *this = G4UTet(GetName(), anchor, p1, p2, p3 197 } 198 199 ////////////////////////////////////////////// 200 // 201 // Accessors 202 // 203 void G4UTet::GetVertices(G4ThreeVector& anchor 204 G4ThreeVector& p1, 205 G4ThreeVector& p2, 206 G4ThreeVector& p3) co 207 { 208 std::vector<U3Vector> vec(4); 209 Base_t::GetVertices(vec[0], vec[1], vec[2], 210 anchor = G4ThreeVector(vec[0].x(), vec[0].y( 211 p1 = G4ThreeVector(vec[1].x(), vec[1].y(), v 212 p2 = G4ThreeVector(vec[2].x(), vec[2].y(), v 213 p3 = G4ThreeVector(vec[3].x(), vec[3].y(), v 214 } 215 216 std::vector<G4ThreeVector> G4UTet::GetVertices 217 { 218 std::vector<U3Vector> vec(4); 219 Base_t::GetVertices(vec[0], vec[1], vec[2], 220 std::vector<G4ThreeVector> vertices; 221 for (unsigned int i=0; i<4; ++i) 222 { 223 G4ThreeVector v(vec[i].x(), vec[i].y(), ve 224 vertices.push_back(v); 225 } 226 return vertices; 227 } 228 229 ////////////////////////////////////////////// 230 // 231 // Set bounding box 232 // 233 void G4UTet::SetBoundingLimits(const G4ThreeVe 234 const G4ThreeVe 235 { 236 G4ThreeVector fVertex[4]; 237 GetVertices(fVertex[0], fVertex[1], fVertex[ 238 239 G4int iout[4] = { 0, 0, 0, 0 }; 240 for (G4int i = 0; i < 4; ++i) 241 { 242 iout[i] = (G4int)(fVertex[i].x() < pMin.x( 243 fVertex[i].y() < pMin.y( 244 fVertex[i].z() < pMin.z( 245 fVertex[i].x() > pMax.x( 246 fVertex[i].y() > pMax.y( 247 fVertex[i].z() > pMax.z( 248 } 249 if (iout[0] + iout[1] + iout[2] + iout[3] != 250 { 251 std::ostringstream message; 252 message << "Attempt to set bounding box th 253 << GetName() << " !\n" 254 << " Specified bounding box limit 255 << " pmin: " << pMin << "\n" 256 << " pmax: " << pMax << "\n" 257 << " Tetrahedron vertices:\n" 258 << " anchor " << fVertex[0] << 259 << " p1 " << fVertex[1] << 260 << " p2 " << fVertex[2] << 261 << " p3 " << fVertex[3] << 262 G4Exception("G4UTet::SetBoundingLimits()", 263 FatalException, message); 264 } 265 fBmin = pMin; 266 fBmax = pMax; 267 } 268 269 ////////////////////////////////////////////// 270 // 271 // Get bounding box 272 273 void G4UTet::BoundingLimits(G4ThreeVector& pMi 274 { 275 pMin = fBmin; 276 pMax = fBmax; 277 } 278 279 ////////////////////////////////////////////// 280 // 281 // Calculate extent under transform and specif 282 283 G4bool 284 G4UTet::CalculateExtent(const EAxis pAxis, 285 const G4VoxelLimits& p 286 const G4AffineTransfor 287 G4double& pMin, 288 { 289 G4ThreeVector bmin, bmax; 290 291 // Check bounding box (bbox) 292 // 293 BoundingLimits(bmin,bmax); 294 G4BoundingEnvelope bbox(bmin,bmax); 295 296 // Use simple bounding-box to help in the ca 297 // 298 return bbox.CalculateExtent(pAxis,pVoxelLimi 299 300 #if 0 301 // Precise extent computation (disabled by d 302 // 303 G4bool exist; 304 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox 305 { 306 return exist = (pMin < pMax) ? true : fals 307 } 308 309 // Set bounding envelope (benv) and calculat 310 // 311 std::vector<G4ThreeVector> vec = GetVertices 312 313 G4ThreeVectorList anchor(1); 314 anchor[0] = vec[0]; 315 316 G4ThreeVectorList base(3); 317 base[0] = vec[1]; 318 base[1] = vec[2]; 319 base[2] = vec[3]; 320 321 std::vector<const G4ThreeVectorList *> polyg 322 polygons[0] = &anchor; 323 polygons[1] = &base; 324 325 G4BoundingEnvelope benv(bmin,bmax,polygons); 326 return exists = benv.CalculateExtent(pAxis,p 327 #endif 328 } 329 330 ////////////////////////////////////////////// 331 // 332 // CreatePolyhedron 333 // 334 G4Polyhedron* G4UTet::CreatePolyhedron() const 335 { 336 std::vector<U3Vector> vec(4); 337 Base_t::GetVertices(vec[0], vec[1], vec[2], 338 339 G4double xyz[4][3]; 340 const G4int faces[4][4] = {{1,3,2,0},{1,4,3, 341 for (unsigned int i=0; i<4; ++i) 342 { 343 xyz[i][0] = vec[i].x(); 344 xyz[i][1] = vec[i].y(); 345 xyz[i][2] = vec[i].z(); 346 } 347 348 auto ph = new G4Polyhedron; 349 ph->createPolyhedron(4,4,xyz,faces); 350 return ph; 351 } 352 353 #endif // G4GEOM_USE_USOLIDS 354