Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // >> 27 // $Id: G4Para.cc,v 1.39 2006/10/19 15:33:37 gcosmo Exp $ >> 28 // GEANT4 tag $Name: geant4-09-01-patch-03 $ >> 29 // >> 30 // class G4Para >> 31 // 26 // Implementation for G4Para class 32 // Implementation for G4Para class 27 // 33 // 28 // 21.03.95 P.Kent: Modified for `tolerant' ge << 34 // History: >> 35 // >> 36 // 23.10.05 V.Grichine: bug fixed in DistanceToOut(p,v,...) for the v.x()<0 case >> 37 // 28.04.05 V.Grichine: new SurfaceNormal according to J. Apostolakis proposal >> 38 // 30.11.04 V.Grichine: modifications in SurfaceNormal for edges/vertices and >> 39 // in constructor with vertices >> 40 // 14.02.02 V.Grichine: bug fixed in Inside according to proposal of D.Wright >> 41 // 18.11.99 V.Grichine: kUndef was added to ESide 29 // 31.10.96 V.Grichine: Modifications accordin 42 // 31.10.96 V.Grichine: Modifications according G4Box/Tubs before to commit 30 // 28.04.05 V.Grichine: new SurfaceNormal acco << 43 // 21.03.95 P.Kent: Modified for `tolerant' geom 31 // 29.05.17 E.Tcherniaev: complete revision, s << 44 // 32 ////////////////////////////////////////////// 45 //////////////////////////////////////////////////////////////////////////// 33 46 34 #include "G4Para.hh" 47 #include "G4Para.hh" 35 48 36 #if !defined(G4GEOM_USE_UPARA) << 37 << 38 #include "G4VoxelLimits.hh" 49 #include "G4VoxelLimits.hh" 39 #include "G4AffineTransform.hh" 50 #include "G4AffineTransform.hh" 40 #include "G4BoundingEnvelope.hh" << 41 #include "Randomize.hh" 51 #include "Randomize.hh" 42 52 43 #include "G4VPVParameterisation.hh" 53 #include "G4VPVParameterisation.hh" 44 54 45 #include "G4VGraphicsScene.hh" 55 #include "G4VGraphicsScene.hh" >> 56 #include "G4Polyhedron.hh" >> 57 #include "G4NURBS.hh" >> 58 #include "G4NURBSbox.hh" 46 59 47 using namespace CLHEP; 60 using namespace CLHEP; 48 61 49 ////////////////////////////////////////////// << 62 // Private enum: Not for external use 50 // << 63 51 // Constructor - set & check half widths << 64 enum ESide {kUndef,kPX,kMX,kPY,kMY,kPZ,kMZ}; 52 << 53 G4Para::G4Para(const G4String& pName, << 54 G4double pDx, G4double pD << 55 G4double pAlpha, G4double << 56 : G4CSGSolid(pName), halfCarTolerance(0.5*kC << 57 { << 58 SetAllParameters(pDx, pDy, pDz, pAlpha, pThe << 59 fRebuildPolyhedron = false; // default valu << 60 } << 61 << 62 ////////////////////////////////////////////// << 63 // << 64 // Constructor - design of trapezoid based on << 65 << 66 G4Para::G4Para( const G4String& pName, << 67 const G4ThreeVector pt[8] ) << 68 : G4CSGSolid(pName), halfCarTolerance(0.5*kC << 69 { << 70 // Find dimensions and trigonometric values << 71 // << 72 fDx = (pt[3].x() - pt[2].x())*0.5; << 73 fDy = (pt[2].y() - pt[1].y())*0.5; << 74 fDz = pt[7].z(); << 75 CheckParameters(); // check dimensions << 76 << 77 fTalpha = (pt[2].x() + pt[3].x() - pt[1].x() << 78 fTthetaCphi = (pt[4].x() + fDy*fTalpha + fDx << 79 fTthetaSphi = (pt[4].y() + fDy)/fDz; << 80 MakePlanes(); << 81 << 82 // Recompute vertices << 83 // << 84 G4ThreeVector v[8]; << 85 G4double DyTalpha = fDy*fTalpha; << 86 G4double DzTthetaSphi = fDz*fTthetaSphi; << 87 G4double DzTthetaCphi = fDz*fTthetaCphi; << 88 v[0].set(-DzTthetaCphi-DyTalpha-fDx, -DzTthe << 89 v[1].set(-DzTthetaCphi-DyTalpha+fDx, -DzTthe << 90 v[2].set(-DzTthetaCphi+DyTalpha-fDx, -DzTthe << 91 v[3].set(-DzTthetaCphi+DyTalpha+fDx, -DzTthe << 92 v[4].set( DzTthetaCphi-DyTalpha-fDx, DzTthe << 93 v[5].set( DzTthetaCphi-DyTalpha+fDx, DzTthe << 94 v[6].set( DzTthetaCphi+DyTalpha-fDx, DzTthe << 95 v[7].set( DzTthetaCphi+DyTalpha+fDx, DzTthe << 96 << 97 // Compare with original vertices << 98 // << 99 for (G4int i=0; i<8; ++i) << 100 { << 101 G4double delx = std::abs(pt[i].x() - v[i]. << 102 G4double dely = std::abs(pt[i].y() - v[i]. << 103 G4double delz = std::abs(pt[i].z() - v[i]. << 104 G4double discrepancy = std::max(std::max(d << 105 if (discrepancy > 0.1*kCarTolerance) << 106 { << 107 std::ostringstream message; << 108 G4long oldprc = message.precision(16); << 109 message << "Invalid vertice coordinates << 110 << "\nVertix #" << i << ", discr << 111 << "\n original : " << pt[i] << 112 << "\n recomputed : " << v[i]; << 113 G4cout.precision(oldprc); << 114 G4Exception("G4Para::G4Para()", "GeomSol << 115 FatalException, message); << 116 << 117 } << 118 } << 119 } << 120 << 121 ////////////////////////////////////////////// << 122 // << 123 // Fake default constructor - sets only member << 124 // for usage restri << 125 << 126 G4Para::G4Para( __void__& a ) << 127 : G4CSGSolid(a), halfCarTolerance(0.5*kCarTo << 128 { << 129 SetAllParameters(1., 1., 1., 0., 0., 0.); << 130 fRebuildPolyhedron = false; // default value << 131 } << 132 65 133 ////////////////////////////////////////////// << 66 // used internally for normal routine 134 // << 135 // Destructor << 136 67 137 G4Para::~G4Para() = default; << 68 enum ENSide {kNZ,kNX,kNY}; 138 69 139 ////////////////////////////////////////////// << 70 ///////////////////////////////////////////////////////////////////// 140 // 71 // 141 // Copy constructor << 72 // Constructor - check and set half-widths 142 73 143 G4Para::G4Para(const G4Para& rhs) << 74 void G4Para::SetAllParameters( G4double pDx, G4double pDy, G4double pDz, 144 : G4CSGSolid(rhs), halfCarTolerance(rhs.half << 75 G4double pAlpha, G4double pTheta, G4double pPhi ) 145 fDx(rhs.fDx), fDy(rhs.fDy), fDz(rhs.fDz), << 146 fTthetaCphi(rhs.fTthetaCphi),fTthetaSphi(r << 147 { 76 { 148 for (G4int i=0; i<4; ++i) { fPlanes[i] = rhs << 77 if ( pDx > 0 && pDy > 0 && pDz > 0 ) >> 78 { >> 79 fDx = pDx; >> 80 fDy = pDy; >> 81 fDz = pDz; >> 82 fTalpha = std::tan(pAlpha); >> 83 fTthetaCphi = std::tan(pTheta)*std::cos(pPhi); >> 84 fTthetaSphi = std::tan(pTheta)*std::sin(pPhi); >> 85 } >> 86 else >> 87 { >> 88 G4cerr << "ERROR - G4Para()::SetAllParameters(): " << GetName() << G4endl >> 89 << " Invalid dimensions ! - " >> 90 << pDx << ", " << pDy << ", " << pDz << G4endl; >> 91 G4Exception("G4Para::SetAllParameters()", "InvalidSetup", >> 92 FatalException, "Invalid Length Parameters."); >> 93 } >> 94 fCubicVolume = 0.; >> 95 fSurfaceArea = 0.; >> 96 fpPolyhedron = 0; 149 } 97 } 150 98 151 ////////////////////////////////////////////// << 99 /////////////////////////////////////////////////////////////////////////// 152 // 100 // 153 // Assignment operator << 154 101 155 G4Para& G4Para::operator = (const G4Para& rhs) << 102 G4Para::G4Para(const G4String& pName, >> 103 G4double pDx, G4double pDy, G4double pDz, >> 104 G4double pAlpha, G4double pTheta, G4double pPhi) >> 105 : G4CSGSolid(pName) 156 { 106 { 157 // Check assignment to self << 107 if (pDx>0&&pDy>0&&pDz>0) 158 // << 108 { 159 if (this == &rhs) { return *this; } << 109 SetAllParameters( pDx, pDy, pDz, pAlpha, pTheta, pPhi); 160 << 110 } 161 // Copy base class data << 111 else 162 // << 112 { 163 G4CSGSolid::operator=(rhs); << 113 G4cerr << "ERROR - G4Para()::G4Para(): " << GetName() << G4endl 164 << 114 << " Invalid dimensions ! - " 165 // Copy data << 115 << pDx << ", " << pDy << ", " << pDz << G4endl; 166 // << 116 G4Exception("G4Para::G4Para()", "InvalidSetup", 167 halfCarTolerance = rhs.halfCarTolerance; << 117 FatalException, "Invalid Length Parameters."); 168 fDx = rhs.fDx; << 118 } 169 fDy = rhs.fDy; << 170 fDz = rhs.fDz; << 171 fTalpha = rhs.fTalpha; << 172 fTthetaCphi = rhs.fTthetaCphi; << 173 fTthetaSphi = rhs.fTthetaSphi; << 174 for (G4int i=0; i<4; ++i) { fPlanes[i] = rh << 175 << 176 return *this; << 177 } 119 } 178 120 179 ////////////////////////////////////////////// << 121 //////////////////////////////////////////////////////////////////////// 180 // 122 // 181 // Set all parameters, as for constructor - se << 123 // Constructor - Design of trapezoid based on 8 G4ThreeVector parameters, >> 124 // which are its vertices. Checking of planarity with preparation of >> 125 // fPlanes[] and than calculation of other members 182 126 183 void G4Para::SetAllParameters(G4double pDx, G4 << 127 G4Para::G4Para( const G4String& pName, 184 G4double pAlpha, << 128 const G4ThreeVector pt[8] ) >> 129 : G4CSGSolid(pName) 185 { 130 { 186 // Reset data of the base class << 131 if ( pt[0].z()<0 && pt[0].z()==pt[1].z() && pt[0].z()==pt[2].z() && 187 fCubicVolume = 0; << 132 pt[0].z()==pt[3].z() && pt[4].z()>0 && pt[4].z()==pt[5].z() && 188 fSurfaceArea = 0; << 133 pt[4].z()==pt[6].z() && pt[4].z()==pt[7].z() && 189 fRebuildPolyhedron = true; << 134 (pt[0].z()+pt[4].z())==0 && 190 << 135 pt[0].y()==pt[1].y() && pt[2].y()==pt[3].y() && 191 // Set parameters << 136 pt[4].y()==pt[5].y() && pt[6].y()==pt[7].y() && 192 fDx = pDx; << 137 ( pt[0].y() + pt[2].y() + pt[4].y() + pt[6].y() ) == 0 && 193 fDy = pDy; << 138 ( pt[0].x() + pt[1].x() + pt[4].x() + pt[5].x() ) == 0) 194 fDz = pDz; << 139 { 195 fTalpha = std::tan(pAlpha); << 140 fDz = (pt[7]).z() ; 196 fTthetaCphi = std::tan(pTheta)*std::cos(pPhi << 141 197 fTthetaSphi = std::tan(pTheta)*std::sin(pPhi << 142 fDy = ((pt[2]).y()-(pt[1]).y())*0.5 ; 198 << 143 fDx = ((pt[1]).x()-(pt[0]).x())*0.5 ; 199 CheckParameters(); << 144 fDx = ((pt[3]).x()-(pt[2]).x())*0.5 ; 200 MakePlanes(); << 145 fTalpha = ((pt[2]).x()+(pt[3]).x()-(pt[1]).x()-(pt[0]).x())*0.25/fDy ; 201 } << 146 >> 147 // fDy = ((pt[6]).y()-(pt[5]).y())*0.5 ; >> 148 // fDx = ((pt[5]).x()-(pt[4]).x())*0.5 ; >> 149 // fDx = ((pt[7]).x()-(pt[6]).x())*0.5 ; >> 150 // fTalpha = ((pt[6]).x()+(pt[7]).x()-(pt[5]).x()-(pt[4]).x())*0.25/fDy ; 202 151 203 ////////////////////////////////////////////// << 152 fTthetaCphi = ((pt[4]).x()+fDy*fTalpha+fDx)/fDz ; 204 // << 153 fTthetaSphi = ((pt[4]).y()+fDy)/fDz ; 205 // Check dimensions << 206 << 207 void G4Para::CheckParameters() << 208 { << 209 if (fDx < 2*kCarTolerance || << 210 fDy < 2*kCarTolerance || << 211 fDz < 2*kCarTolerance) << 212 { << 213 std::ostringstream message; << 214 message << "Invalid (too small or negative << 215 << GetName() << 216 << "\n X - " << fDx << 217 << "\n Y - " << fDy << 218 << "\n Z - " << fDz; << 219 G4Exception("G4Para::CheckParameters()", " << 220 FatalException, message); << 221 } 154 } >> 155 else >> 156 { >> 157 G4cerr << "ERROR - G4Para()::G4Para(): " << GetName() << G4endl >> 158 << " Invalid dimensions !" << G4endl; >> 159 G4Exception("G4Para::G4Para()", "InvalidSetup", >> 160 FatalException, "Invalid vertice coordinates."); >> 161 } 222 } 162 } 223 163 224 ////////////////////////////////////////////// << 164 /////////////////////////////////////////////////////////////////////// 225 // 165 // 226 // Set side planes << 166 // Fake default constructor - sets only member data and allocates memory 227 << 167 // for usage restricted to object persistency. 228 void G4Para::MakePlanes() << 229 { << 230 G4ThreeVector vx(1, 0, 0); << 231 G4ThreeVector vy(fTalpha, 1, 0); << 232 G4ThreeVector vz(fTthetaCphi, fTthetaSphi, 1 << 233 << 234 // Set -Y & +Y planes << 235 // << 236 G4ThreeVector ynorm = (vx.cross(vz)).unit(); << 237 << 238 fPlanes[0].a = 0.; << 239 fPlanes[0].b = ynorm.y(); << 240 fPlanes[0].c = ynorm.z(); << 241 fPlanes[0].d = fPlanes[0].b*fDy; // point (0 << 242 << 243 fPlanes[1].a = 0.; << 244 fPlanes[1].b = -fPlanes[0].b; << 245 fPlanes[1].c = -fPlanes[0].c; << 246 fPlanes[1].d = fPlanes[0].d; << 247 << 248 // Set -X & +X planes << 249 // << 250 G4ThreeVector xnorm = (vz.cross(vy)).unit(); << 251 << 252 fPlanes[2].a = xnorm.x(); << 253 fPlanes[2].b = xnorm.y(); << 254 fPlanes[2].c = xnorm.z(); << 255 fPlanes[2].d = fPlanes[2].a*fDx; // point (f << 256 << 257 fPlanes[3].a = -fPlanes[2].a; << 258 fPlanes[3].b = -fPlanes[2].b; << 259 fPlanes[3].c = -fPlanes[2].c; << 260 fPlanes[3].d = fPlanes[2].d; << 261 } << 262 << 263 ////////////////////////////////////////////// << 264 // 168 // 265 // Get volume << 169 G4Para::G4Para( __void__& a ) 266 << 170 : G4CSGSolid(a) 267 G4double G4Para::GetCubicVolume() << 268 { 171 { 269 // It is like G4Box, since para transformati << 270 if (fCubicVolume == 0) << 271 { << 272 fCubicVolume = 8*fDx*fDy*fDz; << 273 } << 274 return fCubicVolume; << 275 } 172 } 276 173 277 ////////////////////////////////////////////// 174 ////////////////////////////////////////////////////////////////////////// 278 // 175 // 279 // Get surface area << 280 176 281 G4double G4Para::GetSurfaceArea() << 177 G4Para::~G4Para() 282 { 178 { 283 if(fSurfaceArea == 0) << 284 { << 285 G4ThreeVector vx(fDx, 0, 0); << 286 G4ThreeVector vy(fDy*fTalpha, fDy, 0); << 287 G4ThreeVector vz(fDz*fTthetaCphi, fDz*fTth << 288 << 289 G4double sxy = fDx*fDy; // (vx.cross(vy)). << 290 G4double sxz = (vx.cross(vz)).mag(); << 291 G4double syz = (vy.cross(vz)).mag(); << 292 << 293 fSurfaceArea = 8*(sxy+sxz+syz); << 294 } << 295 return fSurfaceArea; << 296 } 179 } 297 180 298 ////////////////////////////////////////////// 181 ////////////////////////////////////////////////////////////////////////// 299 // 182 // 300 // Dispatch to parameterisation for replicatio 183 // Dispatch to parameterisation for replication mechanism dimension 301 // computation & modification << 184 // computation & modification. 302 185 303 void G4Para::ComputeDimensions( G4VPVPara 186 void G4Para::ComputeDimensions( G4VPVParameterisation* p, 304 const G4int n, 187 const G4int n, 305 const G4VPhysi 188 const G4VPhysicalVolume* pRep ) 306 { 189 { 307 p->ComputeDimensions(*this,n,pRep); 190 p->ComputeDimensions(*this,n,pRep); 308 } 191 } 309 192 310 ////////////////////////////////////////////// << 311 // << 312 // Get bounding box << 313 193 314 void G4Para::BoundingLimits(G4ThreeVector& pMi << 194 ////////////////////////////////////////////////////////////// 315 { << 316 G4double dz = GetZHalfLength(); << 317 G4double dx = GetXHalfLength(); << 318 G4double dy = GetYHalfLength(); << 319 << 320 G4double x0 = dz*fTthetaCphi; << 321 G4double x1 = dy*GetTanAlpha(); << 322 G4double xmin = << 323 std::min( << 324 std::min( << 325 std::min(-x0-x1-dx,-x0+x1-dx),x0-x1-dx),x0 << 326 G4double xmax = << 327 std::max( << 328 std::max( << 329 std::max(-x0-x1+dx,-x0+x1+dx),x0-x1+dx),x0 << 330 << 331 G4double y0 = dz*fTthetaSphi; << 332 G4double ymin = std::min(-y0-dy,y0-dy); << 333 G4double ymax = std::max(-y0+dy,y0+dy); << 334 << 335 pMin.set(xmin,ymin,-dz); << 336 pMax.set(xmax,ymax, dz); << 337 << 338 // Check correctness of the bounding box << 339 // << 340 if (pMin.x() >= pMax.x() || pMin.y() >= pMax << 341 { << 342 std::ostringstream message; << 343 message << "Bad bounding box (min >= max) << 344 << GetName() << " !" << 345 << "\npMin = " << pMin << 346 << "\npMax = " << pMax; << 347 G4Exception("G4Para::BoundingLimits()", "G << 348 JustWarning, message); << 349 DumpInfo(); << 350 } << 351 } << 352 << 353 ////////////////////////////////////////////// << 354 // 195 // 355 // Calculate extent under transform and specif 196 // Calculate extent under transform and specified limit 356 197 357 G4bool G4Para::CalculateExtent( const EAxis pA 198 G4bool G4Para::CalculateExtent( const EAxis pAxis, 358 const G4VoxelL 199 const G4VoxelLimits& pVoxelLimit, 359 const G4Affine 200 const G4AffineTransform& pTransform, 360 G4double& 201 G4double& pMin, G4double& pMax ) const 361 { 202 { 362 G4ThreeVector bmin, bmax; << 203 G4bool flag; 363 G4bool exist; << 364 204 365 // Check bounding box (bbox) << 205 if (!pTransform.IsRotated()) 366 // << 206 { 367 BoundingLimits(bmin,bmax); << 207 // Special case handling for unrotated trapezoids 368 G4BoundingEnvelope bbox(bmin,bmax); << 208 // Compute z/x/y/ mins and maxs respecting limits, with early returns 369 #ifdef G4BBOX_EXTENT << 209 // if outside limits. Then switch() on pAxis 370 return bbox.CalculateExtent(pAxis,pVoxelLimi << 210 371 #endif << 211 G4int i ; 372 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox << 212 G4double xoffset,xMin,xMax; 373 { << 213 G4double yoffset,yMin,yMax; 374 return exist = pMin < pMax; << 214 G4double zoffset,zMin,zMax; 375 } << 215 G4double temp[8] ; // some points for intersection with zMin/zMax >> 216 >> 217 xoffset=pTransform.NetTranslation().x(); >> 218 yoffset=pTransform.NetTranslation().y(); >> 219 zoffset=pTransform.NetTranslation().z(); >> 220 >> 221 G4ThreeVector pt[8]; // vertices after translation >> 222 pt[0]=G4ThreeVector(xoffset-fDz*fTthetaCphi-fDy*fTalpha-fDx, >> 223 yoffset-fDz*fTthetaSphi-fDy,zoffset-fDz); >> 224 pt[1]=G4ThreeVector(xoffset-fDz*fTthetaCphi-fDy*fTalpha+fDx, >> 225 yoffset-fDz*fTthetaSphi-fDy,zoffset-fDz); >> 226 pt[2]=G4ThreeVector(xoffset-fDz*fTthetaCphi+fDy*fTalpha-fDx, >> 227 yoffset-fDz*fTthetaSphi+fDy,zoffset-fDz); >> 228 pt[3]=G4ThreeVector(xoffset-fDz*fTthetaCphi+fDy*fTalpha+fDx, >> 229 yoffset-fDz*fTthetaSphi+fDy,zoffset-fDz); >> 230 pt[4]=G4ThreeVector(xoffset+fDz*fTthetaCphi-fDy*fTalpha-fDx, >> 231 yoffset+fDz*fTthetaSphi-fDy,zoffset+fDz); >> 232 pt[5]=G4ThreeVector(xoffset+fDz*fTthetaCphi-fDy*fTalpha+fDx, >> 233 yoffset+fDz*fTthetaSphi-fDy,zoffset+fDz); >> 234 pt[6]=G4ThreeVector(xoffset+fDz*fTthetaCphi+fDy*fTalpha-fDx, >> 235 yoffset+fDz*fTthetaSphi+fDy,zoffset+fDz); >> 236 pt[7]=G4ThreeVector(xoffset+fDz*fTthetaCphi+fDy*fTalpha+fDx, >> 237 yoffset+fDz*fTthetaSphi+fDy,zoffset+fDz); >> 238 zMin=zoffset-fDz; >> 239 zMax=zoffset+fDz; >> 240 if ( pVoxelLimit.IsZLimited() ) >> 241 { >> 242 if ( (zMin>pVoxelLimit.GetMaxZExtent()+kCarTolerance) >> 243 || (zMax<pVoxelLimit.GetMinZExtent()-kCarTolerance) ) >> 244 { >> 245 return false; >> 246 } >> 247 else >> 248 { >> 249 if (zMin<pVoxelLimit.GetMinZExtent()) >> 250 { >> 251 zMin=pVoxelLimit.GetMinZExtent(); >> 252 } >> 253 if (zMax>pVoxelLimit.GetMaxZExtent()) >> 254 { >> 255 zMax=pVoxelLimit.GetMaxZExtent(); >> 256 } >> 257 } >> 258 } 376 259 377 // Set bounding envelope (benv) and calculat << 260 temp[0] = pt[0].y()+(pt[4].y()-pt[0].y()) 378 // << 261 *(zMin-pt[0].z())/(pt[4].z()-pt[0].z()) ; 379 G4double dz = GetZHalfLength(); << 262 temp[1] = pt[0].y()+(pt[4].y()-pt[0].y()) 380 G4double dx = GetXHalfLength(); << 263 *(zMax-pt[0].z())/(pt[4].z()-pt[0].z()) ; 381 G4double dy = GetYHalfLength(); << 264 temp[2] = pt[2].y()+(pt[6].y()-pt[2].y()) >> 265 *(zMin-pt[2].z())/(pt[6].z()-pt[2].z()) ; >> 266 temp[3] = pt[2].y()+(pt[6].y()-pt[2].y()) >> 267 *(zMax-pt[2].z())/(pt[6].z()-pt[2].z()) ; >> 268 yMax = yoffset - std::fabs(fDz*fTthetaSphi) - fDy - fDy ; >> 269 yMin = -yMax ; >> 270 for(i=0;i<4;i++) >> 271 { >> 272 if(temp[i] > yMax) yMax = temp[i] ; >> 273 if(temp[i] < yMin) yMin = temp[i] ; >> 274 } >> 275 >> 276 if (pVoxelLimit.IsYLimited()) >> 277 { >> 278 if ( (yMin>pVoxelLimit.GetMaxYExtent()+kCarTolerance) >> 279 || (yMax<pVoxelLimit.GetMinYExtent()-kCarTolerance) ) >> 280 { >> 281 return false; >> 282 } >> 283 else >> 284 { >> 285 if (yMin<pVoxelLimit.GetMinYExtent()) >> 286 { >> 287 yMin=pVoxelLimit.GetMinYExtent(); >> 288 } >> 289 if (yMax>pVoxelLimit.GetMaxYExtent()) >> 290 { >> 291 yMax=pVoxelLimit.GetMaxYExtent(); >> 292 } >> 293 } >> 294 } 382 295 383 G4double x0 = dz*fTthetaCphi; << 296 temp[0] = pt[0].x()+(pt[4].x()-pt[0].x()) 384 G4double x1 = dy*GetTanAlpha(); << 297 *(zMin-pt[0].z())/(pt[4].z()-pt[0].z()) ; 385 G4double y0 = dz*fTthetaSphi; << 298 temp[1] = pt[0].x()+(pt[4].x()-pt[0].x()) >> 299 *(zMax-pt[0].z())/(pt[4].z()-pt[0].z()) ; >> 300 temp[2] = pt[2].x()+(pt[6].x()-pt[2].x()) >> 301 *(zMin-pt[2].z())/(pt[6].z()-pt[2].z()) ; >> 302 temp[3] = pt[2].x()+(pt[6].x()-pt[2].x()) >> 303 *(zMax-pt[2].z())/(pt[6].z()-pt[2].z()) ; >> 304 temp[4] = pt[3].x()+(pt[7].x()-pt[3].x()) >> 305 *(zMin-pt[3].z())/(pt[7].z()-pt[3].z()) ; >> 306 temp[5] = pt[3].x()+(pt[7].x()-pt[3].x()) >> 307 *(zMax-pt[3].z())/(pt[7].z()-pt[3].z()) ; >> 308 temp[6] = pt[1].x()+(pt[5].x()-pt[1].x()) >> 309 *(zMin-pt[1].z())/(pt[5].z()-pt[1].z()) ; >> 310 temp[7] = pt[1].x()+(pt[5].x()-pt[1].x()) >> 311 *(zMax-pt[1].z())/(pt[5].z()-pt[1].z()) ; >> 312 >> 313 xMax = xoffset - std::fabs(fDz*fTthetaCphi) - fDx - fDx -fDx - fDx; >> 314 xMin = -xMax ; >> 315 for(i=0;i<8;i++) >> 316 { >> 317 if(temp[i] > xMax) xMax = temp[i] ; >> 318 if(temp[i] < xMin) xMin = temp[i] ; >> 319 } >> 320 // xMax/Min = f(yMax/Min) ? >> 321 if (pVoxelLimit.IsXLimited()) >> 322 { >> 323 if ( (xMin>pVoxelLimit.GetMaxXExtent()+kCarTolerance) >> 324 || (xMax<pVoxelLimit.GetMinXExtent()-kCarTolerance) ) >> 325 { >> 326 return false; >> 327 } >> 328 else >> 329 { >> 330 if (xMin<pVoxelLimit.GetMinXExtent()) >> 331 { >> 332 xMin=pVoxelLimit.GetMinXExtent(); >> 333 } >> 334 if (xMax>pVoxelLimit.GetMaxXExtent()) >> 335 { >> 336 xMax=pVoxelLimit.GetMaxXExtent(); >> 337 } >> 338 } >> 339 } 386 340 387 G4ThreeVectorList baseA(4), baseB(4); << 341 switch (pAxis) 388 baseA[0].set(-x0-x1-dx,-y0-dy,-dz); << 342 { 389 baseA[1].set(-x0-x1+dx,-y0-dy,-dz); << 343 case kXAxis: 390 baseA[2].set(-x0+x1+dx,-y0+dy,-dz); << 344 pMin=xMin; 391 baseA[3].set(-x0+x1-dx,-y0+dy,-dz); << 345 pMax=xMax; >> 346 break; >> 347 case kYAxis: >> 348 pMin=yMin; >> 349 pMax=yMax; >> 350 break; >> 351 case kZAxis: >> 352 pMin=zMin; >> 353 pMax=zMax; >> 354 break; >> 355 default: >> 356 break; >> 357 } 392 358 393 baseB[0].set(+x0-x1-dx, y0-dy, dz); << 359 pMin-=kCarTolerance; 394 baseB[1].set(+x0-x1+dx, y0-dy, dz); << 360 pMax+=kCarTolerance; 395 baseB[2].set(+x0+x1+dx, y0+dy, dz); << 361 flag = true; 396 baseB[3].set(+x0+x1-dx, y0+dy, dz); << 362 } >> 363 else >> 364 { >> 365 // General rotated case - create and clip mesh to boundaries >> 366 >> 367 G4bool existsAfterClip=false; >> 368 G4ThreeVectorList *vertices; 397 369 398 std::vector<const G4ThreeVectorList *> polyg << 370 pMin=+kInfinity; 399 polygons[0] = &baseA; << 371 pMax=-kInfinity; 400 polygons[1] = &baseB; << 401 372 402 G4BoundingEnvelope benv(bmin,bmax,polygons); << 373 // Calculate rotated vertex coordinates 403 exist = benv.CalculateExtent(pAxis,pVoxelLim << 374 404 return exist; << 375 vertices=CreateRotatedVertices(pTransform); >> 376 ClipCrossSection(vertices,0,pVoxelLimit,pAxis,pMin,pMax); >> 377 ClipCrossSection(vertices,4,pVoxelLimit,pAxis,pMin,pMax); >> 378 ClipBetweenSections(vertices,0,pVoxelLimit,pAxis,pMin,pMax); >> 379 >> 380 if (pMin!=kInfinity||pMax!=-kInfinity) >> 381 { >> 382 existsAfterClip=true; >> 383 >> 384 // Add 2*tolerance to avoid precision troubles >> 385 // >> 386 pMin-=kCarTolerance; >> 387 pMax+=kCarTolerance; >> 388 } >> 389 else >> 390 { >> 391 // Check for case where completely enveloping clipping volume >> 392 // If point inside then we are confident that the solid completely >> 393 // envelopes the clipping volume. Hence set min/max extents according >> 394 // to clipping volume extents along the specified axis. >> 395 >> 396 G4ThreeVector clipCentre( >> 397 (pVoxelLimit.GetMinXExtent()+pVoxelLimit.GetMaxXExtent())*0.5, >> 398 (pVoxelLimit.GetMinYExtent()+pVoxelLimit.GetMaxYExtent())*0.5, >> 399 (pVoxelLimit.GetMinZExtent()+pVoxelLimit.GetMaxZExtent())*0.5); >> 400 >> 401 if (Inside(pTransform.Inverse().TransformPoint(clipCentre))!=kOutside) >> 402 { >> 403 existsAfterClip=true; >> 404 pMin=pVoxelLimit.GetMinExtent(pAxis); >> 405 pMax=pVoxelLimit.GetMaxExtent(pAxis); >> 406 } >> 407 } >> 408 delete vertices ; // 'new' in the function called >> 409 flag = existsAfterClip ; >> 410 } >> 411 return flag; 405 } 412 } 406 413 407 ////////////////////////////////////////////// << 414 ///////////////////////////////////////////////////////////////////////////// 408 // << 409 // Determine where is point p, inside/on_surfa << 410 // 415 // >> 416 // Check in p is inside/on surface/outside solid 411 417 412 EInside G4Para::Inside( const G4ThreeVector& p 418 EInside G4Para::Inside( const G4ThreeVector& p ) const 413 { 419 { 414 G4double xx = fPlanes[2].a*p.x()+fPlanes[2]. << 420 G4double xt, yt, yt1; 415 G4double dx = std::abs(xx) + fPlanes[2].d; << 421 EInside in = kOutside; >> 422 >> 423 yt1 = p.y() - fTthetaSphi*p.z(); >> 424 yt = std::fabs(yt1) ; 416 425 417 G4double yy = fPlanes[0].b*p.y()+fPlanes[0]. << 426 // xt = std::fabs( p.x() - fTthetaCphi*p.z() - fTalpha*yt ); 418 G4double dy = std::abs(yy) + fPlanes[0].d; << 419 G4double dxy = std::max(dx,dy); << 420 427 421 G4double dz = std::abs(p.z())-fDz; << 428 xt = std::fabs( p.x() - fTthetaCphi*p.z() - fTalpha*yt1 ); 422 G4double dist = std::max(dxy,dz); << 423 429 424 if (dist > halfCarTolerance) return kOutside << 430 if ( std::fabs( p.z() ) <= fDz - kCarTolerance*0.5) 425 return (dist > -halfCarTolerance) ? kSurface << 431 { >> 432 if (yt <= fDy - kCarTolerance*0.5) >> 433 { >> 434 if ( xt <= fDx - kCarTolerance*0.5 ) in = kInside; >> 435 else if ( xt <= fDx + kCarTolerance*0.5 ) in = kSurface; >> 436 } >> 437 else if ( yt <= fDy + kCarTolerance*0.5) >> 438 { >> 439 if ( xt <= fDx + kCarTolerance*0.5 ) in = kSurface; >> 440 } >> 441 } >> 442 else if ( std::fabs(p.z()) <= fDz + kCarTolerance*0.5 ) >> 443 { >> 444 if ( yt <= fDy + kCarTolerance*0.5) >> 445 { >> 446 if ( xt <= fDx + kCarTolerance*0.5 ) in = kSurface; >> 447 } >> 448 } >> 449 return in; 426 } 450 } 427 451 428 ////////////////////////////////////////////// << 452 /////////////////////////////////////////////////////////////////////////// 429 // 453 // 430 // Determine side where point is, and return c << 454 // Calculate side nearest to p, and return normal >> 455 // If 2+ sides equidistant, first side's normal returned (arbitrarily) 431 456 432 G4ThreeVector G4Para::SurfaceNormal( const G4T 457 G4ThreeVector G4Para::SurfaceNormal( const G4ThreeVector& p ) const 433 { 458 { 434 G4int nsurf = 0; // number of surfaces where << 459 G4ThreeVector norm, sumnorm(0.,0.,0.); >> 460 G4int noSurfaces = 0; >> 461 G4double distx,disty,distz; >> 462 G4double newpx,newpy,xshift; >> 463 G4double calpha,salpha; // Sin/Cos(alpha) - needed to recalc G4Parameter >> 464 G4double tntheta,cosntheta; // tan and cos of normal's theta component >> 465 G4double ycomp; >> 466 G4double delta = 0.5*kCarTolerance; >> 467 >> 468 newpx = p.x()-fTthetaCphi*p.z(); >> 469 newpy = p.y()-fTthetaSphi*p.z(); >> 470 >> 471 calpha = 1/std::sqrt(1+fTalpha*fTalpha); >> 472 if (fTalpha) {salpha = -calpha/fTalpha;} // NOTE: using MINUS std::sin(alpha) >> 473 else {salpha = 0.;} >> 474 >> 475 // xshift = newpx*calpha+newpy*salpha; >> 476 xshift = newpx - newpy*fTalpha; 435 477 436 // Check Z faces << 478 // distx = std::fabs(std::fabs(xshift)-fDx*calpha); 437 // << 479 distx = std::fabs(std::fabs(xshift)-fDx); 438 G4double nz = 0; << 480 disty = std::fabs(std::fabs(newpy)-fDy); 439 G4double dz = std::abs(p.z()) - fDz; << 481 distz = std::fabs(std::fabs(p.z())-fDz); 440 if (std::abs(dz) <= halfCarTolerance) << 441 { << 442 nz = (p.z() < 0) ? -1 : 1; << 443 ++nsurf; << 444 } << 445 482 446 // Check Y faces << 483 tntheta = fTthetaCphi*calpha + fTthetaSphi*salpha; 447 // << 484 cosntheta = 1/std::sqrt(1+tntheta*tntheta); 448 G4double ny = 0; << 485 ycomp = 1/std::sqrt(1+fTthetaSphi*fTthetaSphi); 449 G4double yy = fPlanes[0].b*p.y()+fPlanes[0]. << 486 450 if (std::abs(fPlanes[0].d + yy) <= halfCarTo << 487 G4ThreeVector nX = G4ThreeVector( calpha*cosntheta, 451 { << 488 salpha*cosntheta, 452 ny = fPlanes[0].b; << 489 -tntheta*cosntheta); 453 nz += fPlanes[0].c; << 490 G4ThreeVector nY = G4ThreeVector( 0, ycomp,-fTthetaSphi*ycomp); 454 ++nsurf; << 491 G4ThreeVector nZ = G4ThreeVector( 0, 0, 1.0); 455 } << 492 456 else if (std::abs(fPlanes[1].d - yy) <= half << 493 if (distx <= delta) 457 { 494 { 458 ny = fPlanes[1].b; << 495 noSurfaces ++; 459 nz += fPlanes[1].c; << 496 if ( xshift >= 0.) {sumnorm += nX;} 460 ++nsurf; << 497 else {sumnorm -= nX;} 461 } 498 } 462 << 499 if (disty <= delta) 463 // Check X faces << 464 // << 465 G4double nx = 0; << 466 G4double xx = fPlanes[2].a*p.x()+fPlanes[2]. << 467 if (std::abs(fPlanes[2].d + xx) <= halfCarTo << 468 { 500 { 469 nx = fPlanes[2].a; << 501 noSurfaces ++; 470 ny += fPlanes[2].b; << 502 if ( newpy >= 0.) {sumnorm += nY;} 471 nz += fPlanes[2].c; << 503 else {sumnorm -= nY;} 472 ++nsurf; << 473 } 504 } 474 else if (std::abs(fPlanes[3].d - xx) <= half << 505 if (distz <= delta) 475 { 506 { 476 nx = fPlanes[3].a; << 507 noSurfaces ++; 477 ny += fPlanes[3].b; << 508 if ( p.z() >= 0.) {sumnorm += nZ;} 478 nz += fPlanes[3].c; << 509 else {sumnorm -= nZ;} 479 ++nsurf; << 480 } 510 } 481 << 511 if ( noSurfaces == 0 ) 482 // Return normal << 483 // << 484 if (nsurf == 1) return {nx,ny,nz}; << 485 else if (nsurf != 0) return G4ThreeVector(nx << 486 else << 487 { 512 { 488 // Point is not on the surface << 489 // << 490 #ifdef G4CSGDEBUG 513 #ifdef G4CSGDEBUG 491 std::ostringstream message; << 514 G4Exception("G4Para::SurfaceNormal(p)", "Notification", JustWarning, 492 G4int oldprc = message.precision(16); << 515 "Point p is not on surface !?" ); 493 message << "Point p is not on surface (!?) << 516 #endif 494 << GetName() << G4endl; << 517 norm = ApproxSurfaceNormal(p); 495 message << "Position:\n"; << 496 message << " p.x() = " << p.x()/mm << " << 497 message << " p.y() = " << p.y()/mm << " << 498 message << " p.z() = " << p.z()/mm << " << 499 G4cout.precision(oldprc) ; << 500 G4Exception("G4Para::SurfaceNormal(p)", "G << 501 JustWarning, message ); << 502 DumpInfo(); << 503 #endif << 504 return ApproxSurfaceNormal(p); << 505 } 518 } >> 519 else if ( noSurfaces == 1 ) {norm = sumnorm;} >> 520 else {norm = sumnorm.unit();} >> 521 >> 522 return norm; 506 } 523 } 507 524 508 ////////////////////////////////////////////// << 525 >> 526 //////////////////////////////////////////////////////////////////////// 509 // 527 // 510 // Algorithm for SurfaceNormal() following the 528 // Algorithm for SurfaceNormal() following the original specification 511 // for points not on the surface 529 // for points not on the surface 512 530 513 G4ThreeVector G4Para::ApproxSurfaceNormal( con 531 G4ThreeVector G4Para::ApproxSurfaceNormal( const G4ThreeVector& p ) const 514 { 532 { 515 G4double dist = -DBL_MAX; << 533 ENSide side; 516 G4int iside = 0; << 534 G4ThreeVector norm; 517 for (G4int i=0; i<4; ++i) << 535 G4double distx,disty,distz; >> 536 G4double newpx,newpy,xshift; >> 537 G4double calpha,salpha; // Sin/Cos(alpha) - needed to recalc G4Parameter >> 538 G4double tntheta,cosntheta; // tan and cos of normal's theta component >> 539 G4double ycomp; >> 540 >> 541 newpx=p.x()-fTthetaCphi*p.z(); >> 542 newpy=p.y()-fTthetaSphi*p.z(); >> 543 >> 544 calpha=1/std::sqrt(1+fTalpha*fTalpha); >> 545 if (fTalpha) >> 546 { >> 547 salpha=-calpha/fTalpha; // NOTE: actually use MINUS std::sin(alpha) >> 548 } >> 549 else 518 { 550 { 519 G4double d = fPlanes[i].a*p.x() + << 551 salpha=0; 520 fPlanes[i].b*p.y() + << 521 fPlanes[i].c*p.z() + fPlanes[ << 522 if (d > dist) { dist = d; iside = i; } << 523 } 552 } 524 553 525 G4double distz = std::abs(p.z()) - fDz; << 554 xshift=newpx*calpha+newpy*salpha; 526 if (dist > distz) << 555 527 return { fPlanes[iside].a, fPlanes[iside]. << 556 distx=std::fabs(std::fabs(xshift)-fDx*calpha); >> 557 disty=std::fabs(std::fabs(newpy)-fDy); >> 558 distz=std::fabs(std::fabs(p.z())-fDz); >> 559 >> 560 if (distx<disty) >> 561 { >> 562 if (distx<distz) {side=kNX;} >> 563 else {side=kNZ;} >> 564 } 528 else 565 else 529 return { 0, 0, (G4double)((p.z() < 0) ? -1 << 566 { >> 567 if (disty<distz) {side=kNY;} >> 568 else {side=kNZ;} >> 569 } >> 570 >> 571 switch (side) >> 572 { >> 573 case kNX: >> 574 tntheta=fTthetaCphi*calpha+fTthetaSphi*salpha; >> 575 if (xshift<0) >> 576 { >> 577 cosntheta=-1/std::sqrt(1+tntheta*tntheta); >> 578 } >> 579 else >> 580 { >> 581 cosntheta=1/std::sqrt(1+tntheta*tntheta); >> 582 } >> 583 norm=G4ThreeVector(calpha*cosntheta,salpha*cosntheta,-tntheta*cosntheta); >> 584 break; >> 585 case kNY: >> 586 if (newpy<0) >> 587 { >> 588 ycomp=-1/std::sqrt(1+fTthetaSphi*fTthetaSphi); >> 589 } >> 590 else >> 591 { >> 592 ycomp=1/std::sqrt(1+fTthetaSphi*fTthetaSphi); >> 593 } >> 594 norm=G4ThreeVector(0,ycomp,-fTthetaSphi*ycomp); >> 595 break; >> 596 case kNZ: // Closest to Z >> 597 if (p.z()>=0) >> 598 { >> 599 norm=G4ThreeVector(0,0,1); >> 600 } >> 601 else >> 602 { >> 603 norm=G4ThreeVector(0,0,-1); >> 604 } >> 605 break; >> 606 } >> 607 return norm; 530 } 608 } 531 609 532 ////////////////////////////////////////////// << 610 ////////////////////////////////////////////////////////////////////////////// 533 // 611 // 534 // Calculate distance to shape from outside 612 // Calculate distance to shape from outside 535 // - return kInfinity if no intersection << 613 // - return kInfinity if no intersection 536 << 614 // 537 G4double G4Para::DistanceToIn(const G4ThreeVec << 615 // ALGORITHM: 538 const G4ThreeVec << 616 // For each component, calculate pair of minimum and maximum intersection 539 { << 617 // values for which the particle is in the extent of the shape 540 // Z intersections << 618 // - The smallest (MAX minimum) allowed distance of the pairs is intersect >> 619 // - Z plane intersectin uses tolerance >> 620 // - XZ YZ planes use logic & *SLIGHTLY INCORRECT* tolerance >> 621 // (this saves at least 1 sqrt, 1 multiply and 1 divide... in applicable >> 622 // cases) >> 623 // - Note: XZ and YZ planes each divide space into four regions, >> 624 // characterised by ss1 ss2 >> 625 >> 626 G4double G4Para::DistanceToIn( const G4ThreeVector& p, >> 627 const G4ThreeVector& v ) const >> 628 { >> 629 G4double snxt; // snxt = default return value >> 630 G4double smin,smax; >> 631 G4double tmin,tmax; >> 632 G4double yt,vy,xt,vx; >> 633 G4double max; 541 // 634 // 542 if ((std::abs(p.z()) - fDz) >= -halfCarToler << 635 // Z Intersection range 543 return kInfinity; << 544 G4double invz = (-v.z() == 0) ? DBL_MAX : -1 << 545 G4double dz = (invz < 0) ? fDz : -fDz; << 546 G4double tzmin = (p.z() + dz)*invz; << 547 G4double tzmax = (p.z() - dz)*invz; << 548 << 549 // Y intersections << 550 // 636 // 551 G4double tmin0 = tzmin, tmax0 = tzmax; << 637 if (v.z()>0) 552 G4double cos0 = fPlanes[0].b*v.y() + fPlanes << 553 G4double disy = fPlanes[0].b*p.y() + fPlanes << 554 G4double dis0 = fPlanes[0].d + disy; << 555 if (dis0 >= -halfCarTolerance) << 556 { 638 { 557 if (cos0 >= 0) return kInfinity; << 639 max=fDz-p.z(); 558 G4double tmp = -dis0/cos0; << 640 if (max>kCarTolerance*0.5) 559 if (tmin0 < tmp) tmin0 = tmp; << 641 { >> 642 smax=max/v.z(); >> 643 smin=(-fDz-p.z())/v.z(); >> 644 } >> 645 else >> 646 { >> 647 return snxt=kInfinity; >> 648 } 560 } 649 } 561 else if (cos0 > 0) << 650 else if (v.z()<0) >> 651 { >> 652 max=-fDz-p.z(); >> 653 if (max<-kCarTolerance*0.5) >> 654 { >> 655 smax=max/v.z(); >> 656 smin=(fDz-p.z())/v.z(); >> 657 } >> 658 else >> 659 { >> 660 return snxt=kInfinity; >> 661 } >> 662 } >> 663 else 562 { 664 { 563 G4double tmp = -dis0/cos0; << 665 if (std::fabs(p.z())<=fDz) // Inside 564 if (tmax0 > tmp) tmax0 = tmp; << 666 { >> 667 smin=0; >> 668 smax=kInfinity; >> 669 } >> 670 else >> 671 { >> 672 return snxt=kInfinity; >> 673 } 565 } 674 } >> 675 >> 676 // >> 677 // Y G4Parallel planes intersection >> 678 // >> 679 >> 680 yt=p.y()-fTthetaSphi*p.z(); >> 681 vy=v.y()-fTthetaSphi*v.z(); 566 682 567 G4double tmin1 = tmin0, tmax1 = tmax0; << 683 if (vy>0) 568 G4double cos1 = -cos0; << 569 G4double dis1 = fPlanes[1].d - disy; << 570 if (dis1 >= -halfCarTolerance) << 571 { 684 { 572 if (cos1 >= 0) return kInfinity; << 685 max=fDy-yt; 573 G4double tmp = -dis1/cos1; << 686 if (max>kCarTolerance*0.5) 574 if (tmin1 < tmp) tmin1 = tmp; << 687 { >> 688 tmax=max/vy; >> 689 tmin=(-fDy-yt)/vy; >> 690 } >> 691 else >> 692 { >> 693 return snxt=kInfinity; >> 694 } 575 } 695 } 576 else if (cos1 > 0) << 696 else if (vy<0) 577 { 697 { 578 G4double tmp = -dis1/cos1; << 698 max=-fDy-yt; 579 if (tmax1 > tmp) tmax1 = tmp; << 699 if (max<-kCarTolerance*0.5) >> 700 { >> 701 tmax=max/vy; >> 702 tmin=(fDy-yt)/vy; >> 703 } >> 704 else >> 705 { >> 706 return snxt=kInfinity; >> 707 } >> 708 } >> 709 else >> 710 { >> 711 if (std::fabs(yt)<=fDy) >> 712 { >> 713 tmin=0; >> 714 tmax=kInfinity; >> 715 } >> 716 else >> 717 { >> 718 return snxt=kInfinity; >> 719 } 580 } 720 } 581 721 582 // X intersections << 722 // Re-Calc valid intersection range 583 // 723 // 584 G4double tmin2 = tmin1, tmax2 = tmax1; << 724 if (tmin>smin) smin=tmin; 585 G4double cos2 = fPlanes[2].a*v.x() + fPlanes << 725 if (tmax<smax) smax=tmax; 586 G4double disx = fPlanes[2].a*p.x() + fPlanes << 726 if (smax<=smin) 587 G4double dis2 = fPlanes[2].d + disx; << 588 if (dis2 >= -halfCarTolerance) << 589 { 727 { 590 if (cos2 >= 0) return kInfinity; << 728 return snxt=kInfinity; 591 G4double tmp = -dis2/cos2; << 592 if (tmin2 < tmp) tmin2 = tmp; << 593 } 729 } 594 else if (cos2 > 0) << 730 else 595 { 731 { 596 G4double tmp = -dis2/cos2; << 732 // 597 if (tmax2 > tmp) tmax2 = tmp; << 733 // X G4Parallel planes intersection >> 734 // >> 735 xt=p.x()-fTthetaCphi*p.z()-fTalpha*yt; >> 736 vx=v.x()-fTthetaCphi*v.z()-fTalpha*vy; >> 737 if (vx>0) >> 738 { >> 739 max=fDx-xt; >> 740 if (max>kCarTolerance*0.5) >> 741 { >> 742 tmax=max/vx; >> 743 tmin=(-fDx-xt)/vx; >> 744 } >> 745 else >> 746 { >> 747 return snxt=kInfinity; >> 748 } >> 749 } >> 750 else if (vx<0) >> 751 { >> 752 max=-fDx-xt; >> 753 if (max<-kCarTolerance*0.5) >> 754 { >> 755 tmax=max/vx; >> 756 tmin=(fDx-xt)/vx; >> 757 } >> 758 else >> 759 { >> 760 return snxt=kInfinity; >> 761 } >> 762 } >> 763 else >> 764 { >> 765 if (std::fabs(xt)<=fDx) >> 766 { >> 767 tmin=0; >> 768 tmax=kInfinity; >> 769 } >> 770 else >> 771 { >> 772 return snxt=kInfinity; >> 773 } >> 774 } >> 775 if (tmin>smin) smin=tmin; >> 776 if (tmax<smax) smax=tmax; 598 } 777 } 599 778 600 G4double tmin3 = tmin2, tmax3 = tmax2; << 779 if (smax>0&&smin<smax) 601 G4double cos3 = -cos2; << 602 G4double dis3 = fPlanes[3].d - disx; << 603 if (dis3 >= -halfCarTolerance) << 604 { 780 { 605 if (cos3 >= 0) return kInfinity; << 781 if (smin>0) 606 G4double tmp = -dis3/cos3; << 782 { 607 if (tmin3 < tmp) tmin3 = tmp; << 783 snxt=smin; >> 784 } >> 785 else >> 786 { >> 787 snxt=0; >> 788 } 608 } 789 } 609 else if (cos3 > 0) << 790 else 610 { 791 { 611 G4double tmp = -dis3/cos3; << 792 snxt=kInfinity; 612 if (tmax3 > tmp) tmax3 = tmp; << 613 } 793 } 614 << 794 return snxt; 615 // Find distance << 616 // << 617 G4double tmin = tmin3, tmax = tmax3; << 618 if (tmax <= tmin + halfCarTolerance) return << 619 return (tmin < halfCarTolerance ) ? 0. : tmi << 620 } 795 } 621 796 622 ////////////////////////////////////////////// << 797 //////////////////////////////////////////////////////////////////////////// 623 // 798 // 624 // Calculate exact shortest distance to any bo 799 // Calculate exact shortest distance to any boundary from outside 625 // - returns 0 is point inside << 800 // - Returns 0 is point inside 626 801 627 G4double G4Para::DistanceToIn( const G4ThreeVe 802 G4double G4Para::DistanceToIn( const G4ThreeVector& p ) const 628 { 803 { 629 G4double xx = fPlanes[2].a*p.x()+fPlanes[2]. << 804 G4double safe=0.0; 630 G4double dx = std::abs(xx) + fPlanes[2].d; << 805 G4double distz1,distz2,disty1,disty2,distx1,distx2; >> 806 G4double trany,cosy,tranx,cosx; >> 807 >> 808 // Z planes >> 809 // >> 810 distz1=p.z()-fDz; >> 811 distz2=-fDz-p.z(); >> 812 if (distz1>distz2) >> 813 { >> 814 safe=distz1; >> 815 } >> 816 else >> 817 { >> 818 safe=distz2; >> 819 } 631 820 632 G4double yy = fPlanes[0].b*p.y()+fPlanes[0]. << 821 trany=p.y()-fTthetaSphi*p.z(); // Transformed y into `box' system 633 G4double dy = std::abs(yy) + fPlanes[0].d; << 634 G4double dxy = std::max(dx,dy); << 635 822 636 G4double dz = std::abs(p.z())-fDz; << 823 // Transformed x into `box' system 637 G4double dist = std::max(dxy,dz); << 824 // >> 825 cosy=1.0/std::sqrt(1.0+fTthetaSphi*fTthetaSphi); >> 826 disty1=(trany-fDy)*cosy; >> 827 disty2=(-fDy-trany)*cosy; >> 828 >> 829 if (disty1>safe) safe=disty1; >> 830 if (disty2>safe) safe=disty2; 638 831 639 return (dist > 0) ? dist : 0.; << 832 tranx=p.x()-fTthetaCphi*p.z()-fTalpha*trany; >> 833 cosx=1.0/std::sqrt(1.0+fTalpha*fTalpha+fTthetaCphi*fTthetaCphi); >> 834 distx1=(tranx-fDx)*cosx; >> 835 distx2=(-fDx-tranx)*cosx; >> 836 >> 837 if (distx1>safe) safe=distx1; >> 838 if (distx2>safe) safe=distx2; >> 839 >> 840 if (safe<0) safe=0; >> 841 return safe; 640 } 842 } 641 843 642 ////////////////////////////////////////////// 844 ////////////////////////////////////////////////////////////////////////// 643 // 845 // 644 // Calculate distance to surface of shape from << 846 // Calculate distance to surface of shape from inside 645 // find normal at exit point << 847 // Calculate distance to x/y/z planes - smallest is exiting distance 646 // - when leaving the surface, return 0 << 647 848 648 G4double G4Para::DistanceToOut(const G4ThreeVe 849 G4double G4Para::DistanceToOut(const G4ThreeVector& p, const G4ThreeVector& v, 649 const G4bool ca 850 const G4bool calcNorm, 650 G4bool* v << 851 G4bool *validNorm, G4ThreeVector *n) const 651 { 852 { 652 // Z intersections << 853 ESide side = kUndef; >> 854 G4double snxt; // snxt = return value >> 855 G4double max,tmax; >> 856 G4double yt,vy,xt,vx; >> 857 >> 858 G4double ycomp,calpha,salpha,tntheta,cosntheta; >> 859 >> 860 // >> 861 // Z Intersections 653 // 862 // 654 if ((std::abs(p.z()) - fDz) >= -halfCarToler << 863 >> 864 if (v.z()>0) 655 { 865 { 656 if (calcNorm) << 866 max=fDz-p.z(); >> 867 if (max>kCarTolerance*0.5) 657 { 868 { 658 *validNorm = true; << 869 snxt=max/v.z(); 659 n->set(0, 0, (p.z() < 0) ? -1 : 1); << 870 side=kPZ; >> 871 } >> 872 else >> 873 { >> 874 if (calcNorm) >> 875 { >> 876 *validNorm=true; >> 877 *n=G4ThreeVector(0,0,1); >> 878 } >> 879 return snxt=0; 660 } 880 } 661 return 0.; << 662 } 881 } 663 G4double vz = v.z(); << 882 else if (v.z()<0) 664 G4double tmax = (vz == 0) ? DBL_MAX : (std:: << 665 G4int iside = (vz < 0) ? -4 : -2; // little << 666 << 667 // Y intersections << 668 // << 669 G4double cos0 = fPlanes[0].b*v.y() + fPlanes << 670 if (cos0 > 0) << 671 { 883 { 672 G4double dis0 = fPlanes[0].b*p.y() + fPlan << 884 max=-fDz-p.z(); 673 if (dis0 >= -halfCarTolerance) << 885 if (max<-kCarTolerance*0.5) >> 886 { >> 887 snxt=max/v.z(); >> 888 side=kMZ; >> 889 } >> 890 else 674 { 891 { 675 if (calcNorm) 892 if (calcNorm) 676 { 893 { 677 *validNorm = true; << 894 *validNorm=true; 678 n->set(0, fPlanes[0].b, fPlanes[0].c); << 895 *n=G4ThreeVector(0,0,-1); 679 } 896 } 680 return 0.; << 897 return snxt=0; 681 } 898 } 682 G4double tmp = -dis0/cos0; << 683 if (tmax > tmp) { tmax = tmp; iside = 0; } << 684 } 899 } >> 900 else >> 901 { >> 902 snxt=kInfinity; >> 903 } >> 904 >> 905 // >> 906 // Y plane intersection >> 907 // >> 908 >> 909 yt=p.y()-fTthetaSphi*p.z(); >> 910 vy=v.y()-fTthetaSphi*v.z(); 685 911 686 G4double cos1 = -cos0; << 912 if (vy>0) 687 if (cos1 > 0) << 913 { >> 914 max=fDy-yt; >> 915 if (max>kCarTolerance*0.5) >> 916 { >> 917 tmax=max/vy; >> 918 if (tmax<snxt) >> 919 { >> 920 snxt=tmax; >> 921 side=kPY; >> 922 } >> 923 } >> 924 else >> 925 { >> 926 if (calcNorm) >> 927 { >> 928 *validNorm=true; // Leaving via plus Y >> 929 ycomp=1/std::sqrt(1+fTthetaSphi*fTthetaSphi); >> 930 *n=G4ThreeVector(0,ycomp,-fTthetaSphi*ycomp); >> 931 } >> 932 return snxt=0; >> 933 } >> 934 } >> 935 else if (vy<0) 688 { 936 { 689 G4double dis1 = fPlanes[1].b*p.y() + fPlan << 937 max=-fDy-yt; 690 if (dis1 >= -halfCarTolerance) << 938 if (max<-kCarTolerance*0.5) >> 939 { >> 940 tmax=max/vy; >> 941 if (tmax<snxt) >> 942 { >> 943 snxt=tmax; >> 944 side=kMY; >> 945 } >> 946 } >> 947 else 691 { 948 { 692 if (calcNorm) 949 if (calcNorm) 693 { 950 { 694 *validNorm = true; << 951 *validNorm=true; // Leaving via minus Y 695 n->set(0, fPlanes[1].b, fPlanes[1].c); << 952 ycomp=-1/std::sqrt(1+fTthetaSphi*fTthetaSphi); >> 953 *n=G4ThreeVector(0,ycomp,-fTthetaSphi*ycomp); 696 } 954 } 697 return 0.; << 955 return snxt=0; 698 } 956 } 699 G4double tmp = -dis1/cos1; << 700 if (tmax > tmp) { tmax = tmp; iside = 1; } << 701 } 957 } 702 958 703 // X intersections << 704 // 959 // 705 G4double cos2 = fPlanes[2].a*v.x() + fPlanes << 960 // X plane intersection 706 if (cos2 > 0) << 961 // >> 962 >> 963 xt=p.x()-fTthetaCphi*p.z()-fTalpha*yt; >> 964 vx=v.x()-fTthetaCphi*v.z()-fTalpha*vy; >> 965 if (vx>0) 707 { 966 { 708 G4double dis2 = fPlanes[2].a*p.x()+fPlanes << 967 max=fDx-xt; 709 if (dis2 >= -halfCarTolerance) << 968 if (max>kCarTolerance*0.5) >> 969 { >> 970 tmax=max/vx; >> 971 if (tmax<snxt) >> 972 { >> 973 snxt=tmax; >> 974 side=kPX; >> 975 } >> 976 } >> 977 else 710 { 978 { 711 if (calcNorm) 979 if (calcNorm) 712 { 980 { 713 *validNorm = true; << 981 *validNorm=true; // Leaving via plus X 714 n->set(fPlanes[2].a, fPlanes[2].b, fP << 982 calpha=1/std::sqrt(1+fTalpha*fTalpha); >> 983 if (fTalpha) >> 984 { >> 985 salpha=-calpha/fTalpha; // NOTE: actually use MINUS std::sin(alpha) >> 986 } >> 987 else >> 988 { >> 989 salpha=0; >> 990 } >> 991 tntheta=fTthetaCphi*calpha+fTthetaSphi*salpha; >> 992 cosntheta=1/std::sqrt(1+tntheta*tntheta); >> 993 *n=G4ThreeVector(calpha*cosntheta,salpha*cosntheta,-tntheta*cosntheta); 715 } 994 } 716 return 0.; << 995 return snxt=0; 717 } 996 } 718 G4double tmp = -dis2/cos2; << 719 if (tmax > tmp) { tmax = tmp; iside = 2; } << 720 } 997 } 721 << 998 else if (vx<0) 722 G4double cos3 = -cos2; << 723 if (cos3 > 0) << 724 { 999 { 725 G4double dis3 = fPlanes[3].a*p.x()+fPlanes << 1000 max=-fDx-xt; 726 if (dis3 >= -halfCarTolerance) << 1001 if (max<-kCarTolerance*0.5) >> 1002 { >> 1003 tmax=max/vx; >> 1004 if (tmax<snxt) >> 1005 { >> 1006 snxt=tmax; >> 1007 side=kMX; >> 1008 } >> 1009 } >> 1010 else 727 { 1011 { 728 if (calcNorm) 1012 if (calcNorm) 729 { 1013 { 730 *validNorm = true; << 1014 *validNorm=true; // Leaving via minus X 731 n->set(fPlanes[3].a, fPlanes[3].b, fP << 1015 calpha=1/std::sqrt(1+fTalpha*fTalpha); >> 1016 if (fTalpha) >> 1017 { >> 1018 salpha=-calpha/fTalpha; // NOTE: actually use MINUS std::sin(alpha) >> 1019 } >> 1020 else >> 1021 { >> 1022 salpha=0; >> 1023 } >> 1024 tntheta=fTthetaCphi*calpha+fTthetaSphi*salpha; >> 1025 cosntheta=-1/std::sqrt(1+tntheta*tntheta); >> 1026 *n=G4ThreeVector(calpha*cosntheta,salpha*cosntheta,-tntheta*cosntheta); 732 } 1027 } 733 return 0.; << 1028 return snxt=0; 734 } 1029 } 735 G4double tmp = -dis3/cos3; << 736 if (tmax > tmp) { tmax = tmp; iside = 3; } << 737 } 1030 } 738 1031 739 // Set normal, if required, and return dista << 1032 if (calcNorm) 740 // << 741 if (calcNorm) << 742 { 1033 { 743 *validNorm = true; << 1034 *validNorm=true; 744 if (iside < 0) << 1035 switch (side) 745 n->set(0, 0, iside + 3); // (-4+3)=-1, ( << 1036 { 746 else << 1037 case kMZ: 747 n->set(fPlanes[iside].a, fPlanes[iside]. << 1038 *n=G4ThreeVector(0,0,-1); >> 1039 break; >> 1040 case kPZ: >> 1041 *n=G4ThreeVector(0,0,1); >> 1042 break; >> 1043 case kMY: >> 1044 ycomp=-1/std::sqrt(1+fTthetaSphi*fTthetaSphi); >> 1045 *n=G4ThreeVector(0,ycomp,-fTthetaSphi*ycomp); >> 1046 break; >> 1047 case kPY: >> 1048 ycomp=1/std::sqrt(1+fTthetaSphi*fTthetaSphi); >> 1049 *n=G4ThreeVector(0,ycomp,-fTthetaSphi*ycomp); >> 1050 break; >> 1051 case kMX: >> 1052 calpha=1/std::sqrt(1+fTalpha*fTalpha); >> 1053 if (fTalpha) >> 1054 { >> 1055 salpha=-calpha/fTalpha; // NOTE: actually use MINUS std::sin(alpha) >> 1056 } >> 1057 else >> 1058 { >> 1059 salpha=0; >> 1060 } >> 1061 tntheta=fTthetaCphi*calpha+fTthetaSphi*salpha; >> 1062 cosntheta=-1/std::sqrt(1+tntheta*tntheta); >> 1063 *n=G4ThreeVector(calpha*cosntheta,salpha*cosntheta,-tntheta*cosntheta); >> 1064 break; >> 1065 case kPX: >> 1066 calpha=1/std::sqrt(1+fTalpha*fTalpha); >> 1067 if (fTalpha) >> 1068 { >> 1069 salpha=-calpha/fTalpha; // NOTE: actually use MINUS std::sin(alpha) >> 1070 } >> 1071 else >> 1072 { >> 1073 salpha=0; >> 1074 } >> 1075 tntheta=fTthetaCphi*calpha+fTthetaSphi*salpha; >> 1076 cosntheta=1/std::sqrt(1+tntheta*tntheta); >> 1077 *n=G4ThreeVector(calpha*cosntheta,salpha*cosntheta,-tntheta*cosntheta); >> 1078 break; >> 1079 default: >> 1080 DumpInfo(); >> 1081 G4Exception("G4Para::DistanceToOut(p,v,..)","Notification",JustWarning, >> 1082 "Undefined side for valid surface normal to solid."); >> 1083 break; >> 1084 } 748 } 1085 } 749 return tmax; << 1086 return snxt; 750 } 1087 } 751 1088 752 ////////////////////////////////////////////// << 1089 ///////////////////////////////////////////////////////////////////////////// 753 // 1090 // 754 // Calculate exact shortest distance to any bo 1091 // Calculate exact shortest distance to any boundary from inside 755 // - returns 0 is point outside << 1092 // - Returns 0 is point outside 756 1093 757 G4double G4Para::DistanceToOut( const G4ThreeV 1094 G4double G4Para::DistanceToOut( const G4ThreeVector& p ) const 758 { 1095 { >> 1096 G4double safe=0.0; >> 1097 G4double distz1,distz2,disty1,disty2,distx1,distx2; >> 1098 G4double trany,cosy,tranx,cosx; >> 1099 759 #ifdef G4CSGDEBUG 1100 #ifdef G4CSGDEBUG 760 if( Inside(p) == kOutside ) 1101 if( Inside(p) == kOutside ) 761 { 1102 { 762 std::ostringstream message; << 1103 G4cout.precision(16) ; 763 G4int oldprc = message.precision(16); << 1104 G4cout << G4endl ; 764 message << "Point p is outside (!?) of sol << 1105 DumpInfo(); 765 message << "Position:\n"; << 1106 G4cout << "Position:" << G4endl << G4endl ; 766 message << " p.x() = " << p.x()/mm << " << 1107 G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl ; 767 message << " p.y() = " << p.y()/mm << " << 1108 G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl ; 768 message << " p.z() = " << p.z()/mm << " << 1109 G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl ; 769 G4cout.precision(oldprc) ; << 1110 G4Exception("G4Para::DistanceToOut(p)", "Notification", 770 G4Exception("G4Para::DistanceToOut(p)", "G << 1111 JustWarning, "Point p is outside !?" ); 771 JustWarning, message ); << 1112 } 772 DumpInfo(); << 773 } << 774 #endif 1113 #endif 775 G4double xx = fPlanes[2].a*p.x()+fPlanes[2]. << 776 G4double dx = std::abs(xx) + fPlanes[2].d; << 777 1114 778 G4double yy = fPlanes[0].b*p.y()+fPlanes[0]. << 1115 // Z planes 779 G4double dy = std::abs(yy) + fPlanes[0].d; << 1116 // 780 G4double dxy = std::max(dx,dy); << 1117 distz1=fDz-p.z(); 781 << 1118 distz2=fDz+p.z(); 782 G4double dz = std::abs(p.z())-fDz; << 1119 if (distz1<distz2) 783 G4double dist = std::max(dxy,dz); << 1120 { >> 1121 safe=distz1; >> 1122 } >> 1123 else >> 1124 { >> 1125 safe=distz2; >> 1126 } 784 1127 785 return (dist < 0) ? -dist : 0.; << 1128 trany=p.y()-fTthetaSphi*p.z(); // Transformed y into `box' system 786 } << 787 1129 788 ////////////////////////////////////////////// << 1130 // Transformed x into `box' system 789 // << 1131 // 790 // GetEntityType << 1132 cosy=1.0/std::sqrt(1.0+fTthetaSphi*fTthetaSphi); >> 1133 disty1=(fDy-trany)*cosy; >> 1134 disty2=(fDy+trany)*cosy; >> 1135 >> 1136 if (disty1<safe) safe=disty1; >> 1137 if (disty2<safe) safe=disty2; 791 1138 792 G4GeometryType G4Para::GetEntityType() const << 1139 tranx=p.x()-fTthetaCphi*p.z()-fTalpha*trany; 793 { << 1140 cosx=1.0/std::sqrt(1.0+fTalpha*fTalpha+fTthetaCphi*fTthetaCphi); 794 return {"G4Para"}; << 1141 distx1=(fDx-tranx)*cosx; >> 1142 distx2=(fDx+tranx)*cosx; >> 1143 >> 1144 if (distx1<safe) safe=distx1; >> 1145 if (distx2<safe) safe=distx2; >> 1146 >> 1147 if (safe<0) safe=0; >> 1148 return safe; 795 } 1149 } 796 1150 797 ////////////////////////////////////////////// << 1151 //////////////////////////////////////////////////////////////////////////////// 798 // 1152 // 799 // IsFaceted << 1153 // Create a List containing the transformed vertices 800 << 1154 // Ordering [0-3] -fDz cross section 801 G4bool G4Para::IsFaceted() const << 1155 // [4-7] +fDz cross section such that [0] is below [4], 802 { << 1156 // [1] below [5] etc. 803 return true; << 1157 // Note: >> 1158 // Caller has deletion resposibility >> 1159 >> 1160 G4ThreeVectorList* >> 1161 G4Para::CreateRotatedVertices( const G4AffineTransform& pTransform ) const >> 1162 { >> 1163 G4ThreeVectorList *vertices; >> 1164 vertices=new G4ThreeVectorList(); >> 1165 vertices->reserve(8); >> 1166 if (vertices) >> 1167 { >> 1168 G4ThreeVector vertex0(-fDz*fTthetaCphi-fDy*fTalpha-fDx, >> 1169 -fDz*fTthetaSphi-fDy, -fDz); >> 1170 G4ThreeVector vertex1(-fDz*fTthetaCphi-fDy*fTalpha+fDx, >> 1171 -fDz*fTthetaSphi-fDy, -fDz); >> 1172 G4ThreeVector vertex2(-fDz*fTthetaCphi+fDy*fTalpha-fDx, >> 1173 -fDz*fTthetaSphi+fDy, -fDz); >> 1174 G4ThreeVector vertex3(-fDz*fTthetaCphi+fDy*fTalpha+fDx, >> 1175 -fDz*fTthetaSphi+fDy, -fDz); >> 1176 G4ThreeVector vertex4(+fDz*fTthetaCphi-fDy*fTalpha-fDx, >> 1177 +fDz*fTthetaSphi-fDy, +fDz); >> 1178 G4ThreeVector vertex5(+fDz*fTthetaCphi-fDy*fTalpha+fDx, >> 1179 +fDz*fTthetaSphi-fDy, +fDz); >> 1180 G4ThreeVector vertex6(+fDz*fTthetaCphi+fDy*fTalpha-fDx, >> 1181 +fDz*fTthetaSphi+fDy, +fDz); >> 1182 G4ThreeVector vertex7(+fDz*fTthetaCphi+fDy*fTalpha+fDx, >> 1183 +fDz*fTthetaSphi+fDy, +fDz); >> 1184 >> 1185 vertices->push_back(pTransform.TransformPoint(vertex0)); >> 1186 vertices->push_back(pTransform.TransformPoint(vertex1)); >> 1187 vertices->push_back(pTransform.TransformPoint(vertex2)); >> 1188 vertices->push_back(pTransform.TransformPoint(vertex3)); >> 1189 vertices->push_back(pTransform.TransformPoint(vertex4)); >> 1190 vertices->push_back(pTransform.TransformPoint(vertex5)); >> 1191 vertices->push_back(pTransform.TransformPoint(vertex6)); >> 1192 vertices->push_back(pTransform.TransformPoint(vertex7)); >> 1193 } >> 1194 else >> 1195 { >> 1196 DumpInfo(); >> 1197 G4Exception("G4Para::CreateRotatedVertices()", >> 1198 "FatalError", FatalException, >> 1199 "Error in allocation of vertices. Out of memory !"); >> 1200 } >> 1201 return vertices; 804 } 1202 } 805 1203 806 ////////////////////////////////////////////// 1204 ////////////////////////////////////////////////////////////////////////// 807 // 1205 // 808 // Make a clone of the object << 1206 // GetEntityType 809 // << 1207 810 G4VSolid* G4Para::Clone() const << 1208 G4GeometryType G4Para::GetEntityType() const 811 { 1209 { 812 return new G4Para(*this); << 1210 return G4String("G4Para"); 813 } 1211 } 814 1212 815 ////////////////////////////////////////////// 1213 ////////////////////////////////////////////////////////////////////////// 816 // 1214 // 817 // Stream object contents to an output stream 1215 // Stream object contents to an output stream 818 1216 819 std::ostream& G4Para::StreamInfo( std::ostream 1217 std::ostream& G4Para::StreamInfo( std::ostream& os ) const 820 { 1218 { 821 G4double alpha = std::atan(fTalpha); << 822 G4double theta = std::atan(std::sqrt(fTtheta << 823 fTtheta << 824 G4double phi = std::atan2(fTthetaSphi,fTth << 825 << 826 G4long oldprc = os.precision(16); << 827 os << "------------------------------------- 1219 os << "-----------------------------------------------------------\n" 828 << " *** Dump for solid - " << GetName 1220 << " *** Dump for solid - " << GetName() << " ***\n" 829 << " ================================= 1221 << " ===================================================\n" 830 << " Solid type: G4Para\n" 1222 << " Solid type: G4Para\n" 831 << " Parameters:\n" << 1223 << " Parameters: \n" 832 << " half length X: " << fDx/mm << " m << 1224 << " half length X: " << fDx/mm << " mm \n" 833 << " half length Y: " << fDy/mm << " m << 1225 << " half length Y: " << fDy/mm << " mm \n" 834 << " half length Z: " << fDz/mm << " m << 1226 << " half length Z: " << fDz/mm << " mm \n" 835 << " alpha: " << alpha/degree << "degr << 1227 << " std::tan(alpha) : " << fTalpha/degree << " degrees \n" 836 << " theta: " << theta/degree << "degr << 1228 << " std::tan(theta)*std::cos(phi): " << fTthetaCphi/degree 837 << " phi: " << phi/degree << "degrees\ << 1229 << " degrees \n" >> 1230 << " std::tan(theta)*std::sin(phi): " << fTthetaSphi/degree >> 1231 << " degrees \n" 838 << "------------------------------------- 1232 << "-----------------------------------------------------------\n"; 839 os.precision(oldprc); << 840 1233 841 return os; 1234 return os; 842 } 1235 } 843 1236 844 ////////////////////////////////////////////// << 1237 ////////////////////////////////////////////////////////////////////////////// >> 1238 // >> 1239 // GetPointOnPlane >> 1240 // Auxiliary method for Get Point on Surface 845 // 1241 // 846 // Return a point randomly and uniformly selec << 847 1242 848 G4ThreeVector G4Para::GetPointOnSurface() cons << 1243 G4ThreeVector G4Para::GetPointOnPlane(G4ThreeVector p0, G4ThreeVector p1, >> 1244 G4ThreeVector p2, G4ThreeVector p3, >> 1245 G4double& area) const 849 { 1246 { 850 G4double DyTalpha = fDy*fTalpha; << 1247 G4double lambda1, lambda2, chose, aOne, aTwo; 851 G4double DzTthetaSphi = fDz*fTthetaSphi; << 1248 G4ThreeVector t, u, v, w, Area, normal; 852 G4double DzTthetaCphi = fDz*fTthetaCphi; << 853 << 854 // Set vertices << 855 // << 856 G4ThreeVector pt[8]; << 857 pt[0].set(-DzTthetaCphi-DyTalpha-fDx, -DzTth << 858 pt[1].set(-DzTthetaCphi-DyTalpha+fDx, -DzTth << 859 pt[2].set(-DzTthetaCphi+DyTalpha-fDx, -DzTth << 860 pt[3].set(-DzTthetaCphi+DyTalpha+fDx, -DzTth << 861 pt[4].set( DzTthetaCphi-DyTalpha-fDx, DzTth << 862 pt[5].set( DzTthetaCphi-DyTalpha+fDx, DzTth << 863 pt[6].set( DzTthetaCphi+DyTalpha-fDx, DzTth << 864 pt[7].set( DzTthetaCphi+DyTalpha+fDx, DzTth << 865 << 866 // Set areas (-Z, -Y, +Y, -X, +X, +Z) << 867 // << 868 G4ThreeVector vx(fDx, 0, 0); << 869 G4ThreeVector vy(DyTalpha, fDy, 0); << 870 G4ThreeVector vz(DzTthetaCphi, DzTthetaSphi, << 871 << 872 G4double sxy = fDx*fDy; // (vx.cross(vy)).ma << 873 G4double sxz = (vx.cross(vz)).mag(); << 874 G4double syz = (vy.cross(vz)).mag(); << 875 1249 876 G4double sface[6] = { sxy, syz, syz, sxz, sx << 1250 t = p1 - p0; 877 for (G4int i=1; i<6; ++i) { sface[i] += sfac << 1251 u = p2 - p1; >> 1252 v = p3 - p2; >> 1253 w = p0 - p3; >> 1254 >> 1255 Area = G4ThreeVector(w.y()*v.z() - w.z()*v.y(), >> 1256 w.z()*v.x() - w.x()*v.z(), >> 1257 w.x()*v.y() - w.y()*v.x()); >> 1258 >> 1259 aOne = 0.5*Area.mag(); >> 1260 >> 1261 Area = G4ThreeVector(t.y()*u.z() - t.z()*u.y(), >> 1262 t.z()*u.x() - t.x()*u.z(), >> 1263 t.x()*u.y() - t.y()*u.x()); >> 1264 >> 1265 aTwo = 0.5*Area.mag(); >> 1266 >> 1267 area = aOne + aTwo; >> 1268 >> 1269 chose = RandFlat::shoot(0.,aOne+aTwo); 878 1270 879 // Select face << 1271 if( (chose>=0.) && (chose < aOne) ) 880 // << 1272 { 881 G4double select = sface[5]*G4UniformRand(); << 1273 lambda1 = RandFlat::shoot(0.,1.); 882 G4int k = 5; << 1274 lambda2 = RandFlat::shoot(0.,lambda1); 883 if (select <= sface[4]) k = 4; << 1275 return (p2+lambda1*v+lambda2*w); 884 if (select <= sface[3]) k = 3; << 1276 } 885 if (select <= sface[2]) k = 2; << 1277 886 if (select <= sface[1]) k = 1; << 1278 // else 887 if (select <= sface[0]) k = 0; << 1279 888 << 1280 lambda1 = RandFlat::shoot(0.,1.); 889 // Generate point << 1281 lambda2 = RandFlat::shoot(0.,lambda1); 890 // << 1282 return (p0+lambda1*t+lambda2*u); 891 G4int ip[6][3] = {{0,1,2}, {0,4,1}, {2,3,6}, << 892 G4double u = G4UniformRand(); << 893 G4double v = G4UniformRand(); << 894 return (1.-u-v)*pt[ip[k][0]] + u*pt[ip[k][1] << 895 } 1283 } 896 1284 897 ////////////////////////////////////////////// << 1285 ///////////////////////////////////////////////////////////////////////// >> 1286 // >> 1287 // GetPointOnSurface >> 1288 // >> 1289 // Return a point (G4ThreeVector) randomly and uniformly >> 1290 // selected on the solid surface >> 1291 >> 1292 G4ThreeVector G4Para::GetPointOnSurface() const >> 1293 { >> 1294 G4ThreeVector One, Two, Three, Four, Five, Six; >> 1295 G4ThreeVector pt[8] ; >> 1296 G4double chose, aOne, aTwo, aThree, aFour, aFive, aSix; >> 1297 >> 1298 pt[0] = G4ThreeVector(-fDz*fTthetaCphi-fDy*fTalpha-fDx, >> 1299 -fDz*fTthetaSphi-fDy, -fDz); >> 1300 pt[1] = G4ThreeVector(-fDz*fTthetaCphi-fDy*fTalpha+fDx, >> 1301 -fDz*fTthetaSphi-fDy, -fDz); >> 1302 pt[2] = G4ThreeVector(-fDz*fTthetaCphi+fDy*fTalpha-fDx, >> 1303 -fDz*fTthetaSphi+fDy, -fDz); >> 1304 pt[3] = G4ThreeVector(-fDz*fTthetaCphi+fDy*fTalpha+fDx, >> 1305 -fDz*fTthetaSphi+fDy, -fDz); >> 1306 pt[4] = G4ThreeVector(+fDz*fTthetaCphi-fDy*fTalpha-fDx, >> 1307 +fDz*fTthetaSphi-fDy, +fDz); >> 1308 pt[5] = G4ThreeVector(+fDz*fTthetaCphi-fDy*fTalpha+fDx, >> 1309 +fDz*fTthetaSphi-fDy, +fDz); >> 1310 pt[6] = G4ThreeVector(+fDz*fTthetaCphi+fDy*fTalpha-fDx, >> 1311 +fDz*fTthetaSphi+fDy, +fDz); >> 1312 pt[7] = G4ThreeVector(+fDz*fTthetaCphi+fDy*fTalpha+fDx, >> 1313 +fDz*fTthetaSphi+fDy, +fDz); >> 1314 >> 1315 // make sure we provide the points in a clockwise fashion >> 1316 >> 1317 One = GetPointOnPlane(pt[0],pt[1],pt[3],pt[2], aOne); >> 1318 Two = GetPointOnPlane(pt[4],pt[5],pt[7],pt[6], aTwo); >> 1319 Three = GetPointOnPlane(pt[6],pt[7],pt[3],pt[2], aThree); >> 1320 Four = GetPointOnPlane(pt[4],pt[5],pt[1],pt[0], aFour); >> 1321 Five = GetPointOnPlane(pt[0],pt[2],pt[6],pt[4], aFive); >> 1322 Six = GetPointOnPlane(pt[1],pt[3],pt[7],pt[5], aSix); >> 1323 >> 1324 chose = RandFlat::shoot(0.,aOne+aTwo+aThree+aFour+aFive+aSix); >> 1325 >> 1326 if( (chose>=0.) && (chose<aOne) ) >> 1327 { return One; } >> 1328 else if(chose>=aOne && chose<aOne+aTwo) >> 1329 { return Two; } >> 1330 else if(chose>=aOne+aTwo && chose<aOne+aTwo+aThree) >> 1331 { return Three; } >> 1332 else if(chose>=aOne+aTwo+aThree && chose<aOne+aTwo+aThree+aFour) >> 1333 { return Four; } >> 1334 else if(chose>=aOne+aTwo+aThree+aFour && chose<aOne+aTwo+aThree+aFour+aFive) >> 1335 { return Five; } >> 1336 return Six; >> 1337 } >> 1338 >> 1339 //////////////////////////////////////////////////////////////////////////// 898 // 1340 // 899 // Methods for visualisation 1341 // Methods for visualisation 900 1342 901 void G4Para::DescribeYourselfTo ( G4VGraphicsS 1343 void G4Para::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 902 { 1344 { 903 scene.AddSolid (*this); 1345 scene.AddSolid (*this); 904 } 1346 } 905 1347 906 G4Polyhedron* G4Para::CreatePolyhedron () cons 1348 G4Polyhedron* G4Para::CreatePolyhedron () const 907 { 1349 { 908 G4double phi = std::atan2(fTthetaSphi, fTthe 1350 G4double phi = std::atan2(fTthetaSphi, fTthetaCphi); 909 G4double alpha = std::atan(fTalpha); 1351 G4double alpha = std::atan(fTalpha); 910 G4double theta = std::atan(std::sqrt(fTtheta << 1352 G4double theta = std::atan(std::sqrt(fTthetaCphi*fTthetaCphi 911 fTtheta << 1353 +fTthetaSphi*fTthetaSphi)); 912 1354 913 return new G4PolyhedronPara(fDx, fDy, fDz, a 1355 return new G4PolyhedronPara(fDx, fDy, fDz, alpha, theta, phi); 914 } 1356 } 915 #endif << 1357 >> 1358 G4NURBS* G4Para::CreateNURBS () const >> 1359 { >> 1360 // return new G4NURBSbox (fDx, fDy, fDz); >> 1361 return 0 ; >> 1362 } 916 1363