Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/CSG/src/G4Para.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/solids/CSG/src/G4Para.cc (Version 11.3.0) and /geometry/solids/CSG/src/G4Para.cc (Version 7.0.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                    <<   3 // * DISCLAIMER                                                       *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th <<   5 // * The following disclaimer summarizes all the specific disclaimers *
  6 // * the Geant4 Collaboration.  It is provided <<   6 // * of contributors to this software. The specific disclaimers,which *
  7 // * conditions of the Geant4 Software License <<   7 // * govern, are listed with their locations in:                      *
  8 // * LICENSE and available at  http://cern.ch/ <<   8 // *   http://cern.ch/geant4/license                                  *
  9 // * include a list of copyright holders.      << 
 10 // *                                                9 // *                                                                  *
 11 // * Neither the authors of this software syst     10 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     11 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     12 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     13 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  <<  14 // * use.                                                             *
 16 // * for the full disclaimer and the limitatio << 
 17 // *                                               15 // *                                                                  *
 18 // * This  code  implementation is the result  <<  16 // * This  code  implementation is the  intellectual property  of the *
 19 // * technical work of the GEANT4 collaboratio <<  17 // * GEANT4 collaboration.                                            *
 20 // * By using,  copying,  modifying or  distri <<  18 // * By copying,  distributing  or modifying the Program (or any work *
 21 // * any work based  on the software)  you  ag <<  19 // * based  on  the Program)  you indicate  your  acceptance of  this *
 22 // * use  in  resulting  scientific  publicati <<  20 // * statement, and all its terms.                                    *
 23 // * acceptance of all terms of the Geant4 Sof << 
 24 // *******************************************     21 // ********************************************************************
 25 //                                                 22 //
                                                   >>  23 //
                                                   >>  24 // $Id: G4Para.cc,v 1.22.2.1 2004/12/02 09:30:14 gcosmo Exp $
                                                   >>  25 // GEANT4 tag $Name: geant4-07-00-patch-01 $
                                                   >>  26 //
                                                   >>  27 // class G4Para
                                                   >>  28 //
 26 // Implementation for G4Para class                 29 // Implementation for G4Para class
 27 //                                                 30 //
                                                   >>  31 // History:
 28 // 21.03.95 P.Kent: Modified for `tolerant' ge     32 // 21.03.95 P.Kent: Modified for `tolerant' geom
 29 // 31.10.96 V.Grichine: Modifications accordin     33 // 31.10.96 V.Grichine: Modifications according G4Box/Tubs before to commit
 30 // 28.04.05 V.Grichine: new SurfaceNormal acco <<  34 // 18.11.99 V.Grichine: kUndef was added to ESide
 31 // 29.05.17 E.Tcherniaev: complete revision, s <<  35 // 14.02.02 V.Grichine: bug fixed in Inside according to proposal of D.Wright
 32 ////////////////////////////////////////////// <<  36 // --------------------------------------------------------------------
 33                                                    37 
 34 #include "G4Para.hh"                               38 #include "G4Para.hh"
 35                                                    39 
 36 #if !defined(G4GEOM_USE_UPARA)                 << 
 37                                                << 
 38 #include "G4VoxelLimits.hh"                        40 #include "G4VoxelLimits.hh"
 39 #include "G4AffineTransform.hh"                    41 #include "G4AffineTransform.hh"
 40 #include "G4BoundingEnvelope.hh"               << 
 41 #include "Randomize.hh"                        << 
 42                                                    42 
 43 #include "G4VPVParameterisation.hh"                43 #include "G4VPVParameterisation.hh"
 44                                                    44 
 45 #include "G4VGraphicsScene.hh"                     45 #include "G4VGraphicsScene.hh"
                                                   >>  46 #include "G4Polyhedron.hh"
                                                   >>  47 #include "G4NURBS.hh"
                                                   >>  48 #include "G4NURBSbox.hh"
 46                                                    49 
 47 using namespace CLHEP;                         <<  50 // Private enum: Not for external use 
                                                   >>  51     
                                                   >>  52 enum ESide {kUndef,kPX,kMX,kPY,kMY,kPZ,kMZ};
 48                                                    53 
 49 ////////////////////////////////////////////// <<  54 // used internally for normal routine
 50 //                                             << 
 51 //  Constructor - set & check half widths      << 
 52                                                    55 
 53 G4Para::G4Para(const G4String& pName,          <<  56 enum ENSide {kNZ,kNX,kNY};
 54                      G4double pDx, G4double pD << 
 55                      G4double pAlpha, G4double << 
 56   : G4CSGSolid(pName), halfCarTolerance(0.5*kC << 
 57 {                                              << 
 58   SetAllParameters(pDx, pDy, pDz, pAlpha, pThe << 
 59   fRebuildPolyhedron = false;  // default valu << 
 60 }                                              << 
 61                                                    57 
 62 ////////////////////////////////////////////// <<  58 /////////////////////////////////////////////////////////////////////
 63 //                                                 59 //
 64 // Constructor - design of trapezoid based on  <<  60 // Constructor - check and set half-widths
 65                                                    61 
 66 G4Para::G4Para( const G4String& pName,         <<  62 void G4Para::SetAllParameters( G4double pDx, G4double pDy, G4double pDz, 
 67                 const G4ThreeVector pt[8] )    <<  63                                G4double pAlpha, G4double pTheta, G4double pPhi )
 68   : G4CSGSolid(pName), halfCarTolerance(0.5*kC << 
 69 {                                                  64 {
 70   // Find dimensions and trigonometric values  <<  65   if (pDx>0&&pDy>0&&pDz>0)
 71   //                                           <<  66   {
 72   fDx = (pt[3].x() - pt[2].x())*0.5;           <<  67     fDx=pDx;
 73   fDy = (pt[2].y() - pt[1].y())*0.5;           <<  68     fDy=pDy;
 74   fDz = pt[7].z();                             <<  69     fDz=pDz;
 75   CheckParameters(); // check dimensions       <<  70     fTalpha=std::tan(pAlpha);
 76                                                <<  71     fTthetaCphi=std::tan(pTheta)*std::cos(pPhi);
 77   fTalpha = (pt[2].x() + pt[3].x() - pt[1].x() <<  72     fTthetaSphi=std::tan(pTheta)*std::sin(pPhi);
 78   fTthetaCphi = (pt[4].x() + fDy*fTalpha + fDx << 
 79   fTthetaSphi = (pt[4].y() + fDy)/fDz;         << 
 80   MakePlanes();                                << 
 81                                                << 
 82   // Recompute vertices                        << 
 83   //                                           << 
 84   G4ThreeVector v[8];                          << 
 85   G4double DyTalpha = fDy*fTalpha;             << 
 86   G4double DzTthetaSphi = fDz*fTthetaSphi;     << 
 87   G4double DzTthetaCphi = fDz*fTthetaCphi;     << 
 88   v[0].set(-DzTthetaCphi-DyTalpha-fDx, -DzTthe << 
 89   v[1].set(-DzTthetaCphi-DyTalpha+fDx, -DzTthe << 
 90   v[2].set(-DzTthetaCphi+DyTalpha-fDx, -DzTthe << 
 91   v[3].set(-DzTthetaCphi+DyTalpha+fDx, -DzTthe << 
 92   v[4].set( DzTthetaCphi-DyTalpha-fDx,  DzTthe << 
 93   v[5].set( DzTthetaCphi-DyTalpha+fDx,  DzTthe << 
 94   v[6].set( DzTthetaCphi+DyTalpha-fDx,  DzTthe << 
 95   v[7].set( DzTthetaCphi+DyTalpha+fDx,  DzTthe << 
 96                                                << 
 97   // Compare with original vertices            << 
 98   //                                           << 
 99   for (G4int i=0; i<8; ++i)                    << 
100   {                                            << 
101     G4double delx = std::abs(pt[i].x() - v[i]. << 
102     G4double dely = std::abs(pt[i].y() - v[i]. << 
103     G4double delz = std::abs(pt[i].z() - v[i]. << 
104     G4double discrepancy = std::max(std::max(d << 
105     if (discrepancy > 0.1*kCarTolerance)       << 
106     {                                          << 
107       std::ostringstream message;              << 
108       G4long oldprc = message.precision(16);   << 
109       message << "Invalid vertice coordinates  << 
110               << "\nVertix #" << i << ", discr << 
111               << "\n  original   : " << pt[i]  << 
112               << "\n  recomputed : " << v[i];  << 
113       G4cout.precision(oldprc);                << 
114       G4Exception("G4Para::G4Para()", "GeomSol << 
115                   FatalException, message);    << 
116                                                << 
117     }                                          << 
118   }                                                73   }
                                                   >>  74   else
                                                   >>  75   {
                                                   >>  76     G4cerr << "ERROR - G4Para()::SetAllParameters(): " << GetName() << G4endl
                                                   >>  77            << "        Invalid dimensions ! - "
                                                   >>  78            << pDx << ", " << pDy << ", " << pDz << G4endl;
                                                   >>  79     G4Exception("G4Para::SetAllParameters()", "InvalidSetup",
                                                   >>  80                 FatalException, "Invalid Length Parameters.");
                                                   >>  81   }
                                                   >>  82   fCubicVolume = 0.;
                                                   >>  83   fpPolyhedron = 0;
119 }                                                  84 }
120                                                    85 
121 ////////////////////////////////////////////// <<  86 ///////////////////////////////////////////////////////////////////////////
122 //                                             << 
123 // Fake default constructor - sets only member << 
124 //                            for usage restri << 
125                                                << 
126 G4Para::G4Para( __void__& a )                  << 
127   : G4CSGSolid(a), halfCarTolerance(0.5*kCarTo << 
128 {                                              << 
129   SetAllParameters(1., 1., 1., 0., 0., 0.);    << 
130   fRebuildPolyhedron = false; // default value << 
131 }                                              << 
132                                                << 
133 ////////////////////////////////////////////// << 
134 //                                             << 
135 // Destructor                                  << 
136                                                << 
137 G4Para::~G4Para() = default;                   << 
138                                                << 
139 ////////////////////////////////////////////// << 
140 //                                             << 
141 // Copy constructor                            << 
142                                                << 
143 G4Para::G4Para(const G4Para& rhs)              << 
144   : G4CSGSolid(rhs), halfCarTolerance(rhs.half << 
145     fDx(rhs.fDx), fDy(rhs.fDy), fDz(rhs.fDz),  << 
146     fTthetaCphi(rhs.fTthetaCphi),fTthetaSphi(r << 
147 {                                              << 
148   for (G4int i=0; i<4; ++i) { fPlanes[i] = rhs << 
149 }                                              << 
150                                                << 
151 ////////////////////////////////////////////// << 
152 //                                             << 
153 // Assignment operator                         << 
154                                                << 
155 G4Para& G4Para::operator = (const G4Para& rhs) << 
156 {                                              << 
157    // Check assignment to self                 << 
158    //                                          << 
159    if (this == &rhs)  { return *this; }        << 
160                                                << 
161    // Copy base class data                     << 
162    //                                          << 
163    G4CSGSolid::operator=(rhs);                 << 
164                                                << 
165    // Copy data                                << 
166    //                                          << 
167    halfCarTolerance = rhs.halfCarTolerance;    << 
168    fDx = rhs.fDx;                              << 
169    fDy = rhs.fDy;                              << 
170    fDz = rhs.fDz;                              << 
171    fTalpha = rhs.fTalpha;                      << 
172    fTthetaCphi = rhs.fTthetaCphi;              << 
173    fTthetaSphi = rhs.fTthetaSphi;              << 
174    for (G4int i=0; i<4; ++i) { fPlanes[i] = rh << 
175                                                << 
176    return *this;                               << 
177 }                                              << 
178                                                << 
179 ////////////////////////////////////////////// << 
180 //                                             << 
181 // Set all parameters, as for constructor - se << 
182                                                << 
183 void G4Para::SetAllParameters(G4double pDx, G4 << 
184                               G4double pAlpha, << 
185 {                                              << 
186   // Reset data of the base class              << 
187   fCubicVolume = 0;                            << 
188   fSurfaceArea = 0;                            << 
189   fRebuildPolyhedron = true;                   << 
190                                                << 
191   // Set parameters                            << 
192   fDx = pDx;                                   << 
193   fDy = pDy;                                   << 
194   fDz = pDz;                                   << 
195   fTalpha = std::tan(pAlpha);                  << 
196   fTthetaCphi = std::tan(pTheta)*std::cos(pPhi << 
197   fTthetaSphi = std::tan(pTheta)*std::sin(pPhi << 
198                                                << 
199   CheckParameters();                           << 
200   MakePlanes();                                << 
201 }                                              << 
202                                                << 
203 ////////////////////////////////////////////// << 
204 //                                                 87 //
205 // Check dimensions                            << 
206                                                    88 
207 void G4Para::CheckParameters()                 <<  89 G4Para::G4Para(const G4String& pName,
                                                   >>  90                      G4double pDx, G4double pDy, G4double pDz,
                                                   >>  91                      G4double pAlpha, G4double pTheta, G4double pPhi)
                                                   >>  92   : G4CSGSolid(pName)
208 {                                                  93 {
209   if (fDx < 2*kCarTolerance ||                 <<  94   if (pDx>0&&pDy>0&&pDz>0)
210       fDy < 2*kCarTolerance ||                 <<  95   {
211       fDz < 2*kCarTolerance)                   <<  96     SetAllParameters( pDx, pDy, pDz, pAlpha, pTheta, pPhi);
212   {                                            <<  97   }
213     std::ostringstream message;                <<  98   else
214     message << "Invalid (too small or negative <<  99   {
215             << GetName()                       << 100     G4cerr << "ERROR - G4Para()::G4Para(): " << GetName() << G4endl
216             << "\n  X - " << fDx               << 101            << "        Invalid dimensions ! - "
217             << "\n  Y - " << fDy               << 102            << pDx << ", " << pDy << ", " << pDz << G4endl;
218             << "\n  Z - " << fDz;              << 103     G4Exception("G4Para::G4Para()", "InvalidSetup",
219     G4Exception("G4Para::CheckParameters()", " << 104                 FatalException, "Invalid Length Parameters.");
220                 FatalException, message);      << 
221   }                                               105   }
222 }                                                 106 }
223                                                   107 
224 ////////////////////////////////////////////// << 108 ////////////////////////////////////////////////////////////////////////
225 //                                                109 //
226 // Set side planes                             << 110 // Constructor - Design of trapezoid based on 8 G4ThreeVector parameters, 
                                                   >> 111 // which are its vertices. Checking of planarity with preparation of 
                                                   >> 112 // fPlanes[] and than calculation of other members
227                                                   113 
228 void G4Para::MakePlanes()                      << 114 G4Para::G4Para( const G4String& pName,
                                                   >> 115                 const G4ThreeVector pt[8] )
                                                   >> 116   : G4CSGSolid(pName)
229 {                                                 117 {
230   G4ThreeVector vx(1, 0, 0);                   << 118   if ( pt[0].z()<0 && pt[0].z()==pt[1].z() && pt[0].z()==pt[2].z() &&
231   G4ThreeVector vy(fTalpha, 1, 0);             << 119        pt[0].z()==pt[3].z() && pt[4].z()>0 && pt[4].z()==pt[5].z() &&
232   G4ThreeVector vz(fTthetaCphi, fTthetaSphi, 1 << 120        pt[4].z()==pt[6].z() && pt[4].z()==pt[7].z() &&
233                                                << 121        (pt[0].z()+pt[4].z())==0 &&
234   // Set -Y & +Y planes                        << 122        pt[0].y()==pt[1].y() && pt[2].y()==pt[3].y() &&
235   //                                           << 123        pt[4].y()==pt[5].y() && pt[6].y()==pt[7].y() &&
236   G4ThreeVector ynorm = (vx.cross(vz)).unit(); << 124        (pt[0].y()+pt[2].y()+pt[4].y()+pt[6].y())==0 )
                                                   >> 125   {
                                                   >> 126     fDz = (pt[7]).z() ;
                                                   >> 127 
                                                   >> 128     fDy = ((pt[2]).y()-(pt[1]).y())*0.5 ;
                                                   >> 129     fDx = ((pt[1]).x()-(pt[0]).x())*0.5 ;
                                                   >> 130     fDx = ((pt[3]).x()-(pt[2]).x())*0.5 ;
                                                   >> 131     fTalpha = ((pt[2]).x()+(pt[3]).x()-(pt[1]).x()-(pt[0]).x())*0.25/fDy ;
                                                   >> 132 
                                                   >> 133     // fDy = ((pt[6]).y()-(pt[5]).y())*0.5 ;
                                                   >> 134     // fDx = ((pt[5]).x()-(pt[4]).x())*0.5 ;
                                                   >> 135     // fDx = ((pt[7]).x()-(pt[6]).x())*0.5 ;
                                                   >> 136     // fTalpha = ((pt[6]).x()+(pt[7]).x()-(pt[5]).x()-(pt[4]).x())*0.25/fDy ;
237                                                   137 
238   fPlanes[0].a = 0.;                           << 138     fTthetaCphi = ((pt[4]).x()+fDy*fTalpha+fDx)/fDz ;
239   fPlanes[0].b = ynorm.y();                    << 139     fTthetaSphi = ((pt[4]).y()+fDy)/fDz ;
240   fPlanes[0].c = ynorm.z();                    << 
241   fPlanes[0].d = fPlanes[0].b*fDy; // point (0 << 
242                                                << 
243   fPlanes[1].a =  0.;                          << 
244   fPlanes[1].b = -fPlanes[0].b;                << 
245   fPlanes[1].c = -fPlanes[0].c;                << 
246   fPlanes[1].d =  fPlanes[0].d;                << 
247                                                << 
248   // Set -X & +X planes                        << 
249   //                                           << 
250   G4ThreeVector xnorm = (vz.cross(vy)).unit(); << 
251                                                << 
252   fPlanes[2].a = xnorm.x();                    << 
253   fPlanes[2].b = xnorm.y();                    << 
254   fPlanes[2].c = xnorm.z();                    << 
255   fPlanes[2].d = fPlanes[2].a*fDx; // point (f << 
256                                                << 
257   fPlanes[3].a = -fPlanes[2].a;                << 
258   fPlanes[3].b = -fPlanes[2].b;                << 
259   fPlanes[3].c = -fPlanes[2].c;                << 
260   fPlanes[3].d =  fPlanes[2].d;                << 
261 }                                              << 
262                                                << 
263 ////////////////////////////////////////////// << 
264 //                                             << 
265 // Get volume                                  << 
266                                                << 
267 G4double G4Para::GetCubicVolume()              << 
268 {                                              << 
269   // It is like G4Box, since para transformati << 
270   if (fCubicVolume == 0)                       << 
271   {                                            << 
272     fCubicVolume = 8*fDx*fDy*fDz;              << 
273   }                                               140   }
274   return fCubicVolume;                         << 141   else
                                                   >> 142   {
                                                   >> 143     G4cerr << "ERROR - G4Para()::G4Para(): " << GetName() << G4endl
                                                   >> 144            << "        Invalid dimensions !" << G4endl;
                                                   >> 145     G4Exception("G4Para::G4Para()", "InvalidSetup",
                                                   >> 146                 FatalException, "Invalid vertice coordinates.");
                                                   >> 147   }    
275 }                                                 148 }
276                                                   149 
277 //////////////////////////////////////////////    150 //////////////////////////////////////////////////////////////////////////
278 //                                                151 //
279 // Get surface area                            << 
280                                                   152 
281 G4double G4Para::GetSurfaceArea()              << 153 G4Para::~G4Para()
282 {                                                 154 {
283   if(fSurfaceArea == 0)                        << 
284   {                                            << 
285     G4ThreeVector vx(fDx, 0, 0);               << 
286     G4ThreeVector vy(fDy*fTalpha, fDy, 0);     << 
287     G4ThreeVector vz(fDz*fTthetaCphi, fDz*fTth << 
288                                                << 
289     G4double sxy = fDx*fDy; // (vx.cross(vy)). << 
290     G4double sxz = (vx.cross(vz)).mag();       << 
291     G4double syz = (vy.cross(vz)).mag();       << 
292                                                << 
293     fSurfaceArea = 8*(sxy+sxz+syz);            << 
294   }                                            << 
295   return fSurfaceArea;                         << 
296 }                                                 155 }
297                                                   156 
298 //////////////////////////////////////////////    157 //////////////////////////////////////////////////////////////////////////
299 //                                                158 //
300 // Dispatch to parameterisation for replicatio    159 // Dispatch to parameterisation for replication mechanism dimension
301 // computation & modification                  << 160 // computation & modification.
302                                                   161 
303 void G4Para::ComputeDimensions(      G4VPVPara    162 void G4Para::ComputeDimensions(      G4VPVParameterisation* p,
304                                 const G4int n,    163                                 const G4int n,
305                                 const G4VPhysi    164                                 const G4VPhysicalVolume* pRep )
306 {                                                 165 {
307   p->ComputeDimensions(*this,n,pRep);             166   p->ComputeDimensions(*this,n,pRep);
308 }                                                 167 }
309                                                   168 
310 ////////////////////////////////////////////// << 
311 //                                             << 
312 // Get bounding box                            << 
313                                                   169 
314 void G4Para::BoundingLimits(G4ThreeVector& pMi << 170 //////////////////////////////////////////////////////////////
315 {                                              << 
316   G4double dz = GetZHalfLength();              << 
317   G4double dx = GetXHalfLength();              << 
318   G4double dy = GetYHalfLength();              << 
319                                                << 
320   G4double x0 = dz*fTthetaCphi;                << 
321   G4double x1 = dy*GetTanAlpha();              << 
322   G4double xmin =                              << 
323     std::min(                                  << 
324     std::min(                                  << 
325     std::min(-x0-x1-dx,-x0+x1-dx),x0-x1-dx),x0 << 
326   G4double xmax =                              << 
327     std::max(                                  << 
328     std::max(                                  << 
329     std::max(-x0-x1+dx,-x0+x1+dx),x0-x1+dx),x0 << 
330                                                << 
331   G4double y0 = dz*fTthetaSphi;                << 
332   G4double ymin = std::min(-y0-dy,y0-dy);      << 
333   G4double ymax = std::max(-y0+dy,y0+dy);      << 
334                                                << 
335   pMin.set(xmin,ymin,-dz);                     << 
336   pMax.set(xmax,ymax, dz);                     << 
337                                                << 
338   // Check correctness of the bounding box     << 
339   //                                           << 
340   if (pMin.x() >= pMax.x() || pMin.y() >= pMax << 
341   {                                            << 
342     std::ostringstream message;                << 
343     message << "Bad bounding box (min >= max)  << 
344             << GetName() << " !"               << 
345             << "\npMin = " << pMin             << 
346             << "\npMax = " << pMax;            << 
347     G4Exception("G4Para::BoundingLimits()", "G << 
348                 JustWarning, message);         << 
349     DumpInfo();                                << 
350   }                                            << 
351 }                                              << 
352                                                << 
353 ////////////////////////////////////////////// << 
354 //                                                171 //
355 // Calculate extent under transform and specif    172 // Calculate extent under transform and specified limit
356                                                   173 
357 G4bool G4Para::CalculateExtent( const EAxis pA    174 G4bool G4Para::CalculateExtent( const EAxis pAxis,
358                                 const G4VoxelL    175                                 const G4VoxelLimits& pVoxelLimit,
359                                 const G4Affine    176                                 const G4AffineTransform& pTransform,
360                                      G4double&    177                                      G4double& pMin, G4double& pMax ) const
361 {                                                 178 {
362   G4ThreeVector bmin, bmax;                    << 179   G4bool flag;
363   G4bool exist;                                << 
364                                                   180 
365   // Check bounding box (bbox)                 << 181   if (!pTransform.IsRotated())
366   //                                           << 182   {  
367   BoundingLimits(bmin,bmax);                   << 183     // Special case handling for unrotated trapezoids
368   G4BoundingEnvelope bbox(bmin,bmax);          << 184     // Compute z/x/y/ mins and maxs respecting limits, with early returns
369 #ifdef G4BBOX_EXTENT                           << 185     // if outside limits. Then switch() on pAxis
370   return bbox.CalculateExtent(pAxis,pVoxelLimi << 186 
371 #endif                                         << 187     G4int i ; 
372   if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox << 188     G4double xoffset,xMin,xMax;
373   {                                            << 189     G4double yoffset,yMin,yMax;
374     return exist = pMin < pMax;                << 190     G4double zoffset,zMin,zMax;
375   }                                            << 191     G4double temp[8] ;       // some points for intersection with zMin/zMax
                                                   >> 192     
                                                   >> 193     xoffset=pTransform.NetTranslation().x();      
                                                   >> 194     yoffset=pTransform.NetTranslation().y();
                                                   >> 195     zoffset=pTransform.NetTranslation().z();
                                                   >> 196  
                                                   >> 197     G4ThreeVector pt[8];   // vertices after translation
                                                   >> 198     pt[0]=G4ThreeVector(xoffset-fDz*fTthetaCphi-fDy*fTalpha-fDx,
                                                   >> 199                         yoffset-fDz*fTthetaSphi-fDy,zoffset-fDz);
                                                   >> 200     pt[1]=G4ThreeVector(xoffset-fDz*fTthetaCphi-fDy*fTalpha+fDx,
                                                   >> 201                         yoffset-fDz*fTthetaSphi-fDy,zoffset-fDz);
                                                   >> 202     pt[2]=G4ThreeVector(xoffset-fDz*fTthetaCphi+fDy*fTalpha-fDx,
                                                   >> 203                         yoffset-fDz*fTthetaSphi+fDy,zoffset-fDz);
                                                   >> 204     pt[3]=G4ThreeVector(xoffset-fDz*fTthetaCphi+fDy*fTalpha+fDx,
                                                   >> 205                         yoffset-fDz*fTthetaSphi+fDy,zoffset-fDz);
                                                   >> 206     pt[4]=G4ThreeVector(xoffset+fDz*fTthetaCphi-fDy*fTalpha-fDx,
                                                   >> 207                         yoffset+fDz*fTthetaSphi-fDy,zoffset+fDz);
                                                   >> 208     pt[5]=G4ThreeVector(xoffset+fDz*fTthetaCphi-fDy*fTalpha+fDx,
                                                   >> 209                         yoffset+fDz*fTthetaSphi-fDy,zoffset+fDz);
                                                   >> 210     pt[6]=G4ThreeVector(xoffset+fDz*fTthetaCphi+fDy*fTalpha-fDx,
                                                   >> 211                         yoffset+fDz*fTthetaSphi+fDy,zoffset+fDz);
                                                   >> 212     pt[7]=G4ThreeVector(xoffset+fDz*fTthetaCphi+fDy*fTalpha+fDx,
                                                   >> 213                         yoffset+fDz*fTthetaSphi+fDy,zoffset+fDz);
                                                   >> 214     zMin=zoffset-fDz;
                                                   >> 215     zMax=zoffset+fDz;
                                                   >> 216     if ( pVoxelLimit.IsZLimited() )
                                                   >> 217     {
                                                   >> 218       if   ( (zMin>pVoxelLimit.GetMaxZExtent()+kCarTolerance)
                                                   >> 219           || (zMax<pVoxelLimit.GetMinZExtent()-kCarTolerance) )
                                                   >> 220       {
                                                   >> 221         return false;
                                                   >> 222       }
                                                   >> 223       else
                                                   >> 224       {
                                                   >> 225         if (zMin<pVoxelLimit.GetMinZExtent())
                                                   >> 226         {
                                                   >> 227           zMin=pVoxelLimit.GetMinZExtent();
                                                   >> 228         }
                                                   >> 229         if (zMax>pVoxelLimit.GetMaxZExtent())
                                                   >> 230         {
                                                   >> 231           zMax=pVoxelLimit.GetMaxZExtent();
                                                   >> 232         }
                                                   >> 233       }
                                                   >> 234     }
376                                                   235 
377   // Set bounding envelope (benv) and calculat << 236     temp[0] = pt[0].y()+(pt[4].y()-pt[0].y())
378   //                                           << 237                        *(zMin-pt[0].z())/(pt[4].z()-pt[0].z()) ;
379   G4double dz = GetZHalfLength();              << 238     temp[1] = pt[0].y()+(pt[4].y()-pt[0].y())
380   G4double dx = GetXHalfLength();              << 239                        *(zMax-pt[0].z())/(pt[4].z()-pt[0].z()) ;
381   G4double dy = GetYHalfLength();              << 240     temp[2] = pt[2].y()+(pt[6].y()-pt[2].y())
                                                   >> 241                        *(zMin-pt[2].z())/(pt[6].z()-pt[2].z()) ;
                                                   >> 242     temp[3] = pt[2].y()+(pt[6].y()-pt[2].y())
                                                   >> 243                        *(zMax-pt[2].z())/(pt[6].z()-pt[2].z()) ;        
                                                   >> 244     yMax = yoffset - std::fabs(fDz*fTthetaSphi) - fDy - fDy ;
                                                   >> 245     yMin = -yMax ;
                                                   >> 246     for(i=0;i<4;i++)
                                                   >> 247     {
                                                   >> 248       if(temp[i] > yMax) yMax = temp[i] ;
                                                   >> 249       if(temp[i] < yMin) yMin = temp[i] ;
                                                   >> 250     }
                                                   >> 251       
                                                   >> 252     if (pVoxelLimit.IsYLimited())
                                                   >> 253     {
                                                   >> 254       if ( (yMin>pVoxelLimit.GetMaxYExtent()+kCarTolerance)
                                                   >> 255         || (yMax<pVoxelLimit.GetMinYExtent()-kCarTolerance) )
                                                   >> 256       {
                                                   >> 257         return false;
                                                   >> 258       }
                                                   >> 259       else
                                                   >> 260       {
                                                   >> 261         if (yMin<pVoxelLimit.GetMinYExtent())
                                                   >> 262         {
                                                   >> 263           yMin=pVoxelLimit.GetMinYExtent();
                                                   >> 264         }
                                                   >> 265         if (yMax>pVoxelLimit.GetMaxYExtent())
                                                   >> 266         {
                                                   >> 267           yMax=pVoxelLimit.GetMaxYExtent();
                                                   >> 268         }
                                                   >> 269       }
                                                   >> 270     }
382                                                   271 
383   G4double x0 = dz*fTthetaCphi;                << 272     temp[0] = pt[0].x()+(pt[4].x()-pt[0].x())
384   G4double x1 = dy*GetTanAlpha();              << 273                        *(zMin-pt[0].z())/(pt[4].z()-pt[0].z()) ;
385   G4double y0 = dz*fTthetaSphi;                << 274     temp[1] = pt[0].x()+(pt[4].x()-pt[0].x())
                                                   >> 275                        *(zMax-pt[0].z())/(pt[4].z()-pt[0].z()) ;
                                                   >> 276     temp[2] = pt[2].x()+(pt[6].x()-pt[2].x())
                                                   >> 277                        *(zMin-pt[2].z())/(pt[6].z()-pt[2].z()) ;
                                                   >> 278     temp[3] = pt[2].x()+(pt[6].x()-pt[2].x())
                                                   >> 279                        *(zMax-pt[2].z())/(pt[6].z()-pt[2].z()) ;
                                                   >> 280     temp[4] = pt[3].x()+(pt[7].x()-pt[3].x())
                                                   >> 281                        *(zMin-pt[3].z())/(pt[7].z()-pt[3].z()) ;
                                                   >> 282     temp[5] = pt[3].x()+(pt[7].x()-pt[3].x())
                                                   >> 283                        *(zMax-pt[3].z())/(pt[7].z()-pt[3].z()) ;
                                                   >> 284     temp[6] = pt[1].x()+(pt[5].x()-pt[1].x())
                                                   >> 285                        *(zMin-pt[1].z())/(pt[5].z()-pt[1].z()) ;
                                                   >> 286     temp[7] = pt[1].x()+(pt[5].x()-pt[1].x())
                                                   >> 287                        *(zMax-pt[1].z())/(pt[5].z()-pt[1].z()) ;
                                                   >> 288 
                                                   >> 289     xMax = xoffset - std::fabs(fDz*fTthetaCphi) - fDx - fDx -fDx - fDx;
                                                   >> 290     xMin = -xMax ;
                                                   >> 291     for(i=0;i<8;i++)
                                                   >> 292     {
                                                   >> 293       if(temp[i] > xMax) xMax = temp[i] ;
                                                   >> 294       if(temp[i] < xMin) xMin = temp[i] ;
                                                   >> 295     }
                                                   >> 296       // xMax/Min = f(yMax/Min) ?
                                                   >> 297     if (pVoxelLimit.IsXLimited())
                                                   >> 298     {
                                                   >> 299       if ( (xMin>pVoxelLimit.GetMaxXExtent()+kCarTolerance)
                                                   >> 300         || (xMax<pVoxelLimit.GetMinXExtent()-kCarTolerance) )
                                                   >> 301       {
                                                   >> 302         return false;
                                                   >> 303       }
                                                   >> 304       else
                                                   >> 305       {
                                                   >> 306         if (xMin<pVoxelLimit.GetMinXExtent())
                                                   >> 307         {
                                                   >> 308           xMin=pVoxelLimit.GetMinXExtent();
                                                   >> 309         }
                                                   >> 310         if (xMax>pVoxelLimit.GetMaxXExtent())
                                                   >> 311         {
                                                   >> 312           xMax=pVoxelLimit.GetMaxXExtent();
                                                   >> 313         }
                                                   >> 314       }
                                                   >> 315     }
                                                   >> 316 
                                                   >> 317     switch (pAxis)
                                                   >> 318     {
                                                   >> 319       case kXAxis:
                                                   >> 320         pMin=xMin;
                                                   >> 321         pMax=xMax;
                                                   >> 322         break;
                                                   >> 323       case kYAxis:
                                                   >> 324         pMin=yMin;
                                                   >> 325         pMax=yMax;
                                                   >> 326         break;
                                                   >> 327       case kZAxis:
                                                   >> 328         pMin=zMin;
                                                   >> 329         pMax=zMax;
                                                   >> 330         break;
                                                   >> 331       default:
                                                   >> 332         break;
                                                   >> 333     }
386                                                   334 
387   G4ThreeVectorList baseA(4), baseB(4);        << 335     pMin-=kCarTolerance;
388   baseA[0].set(-x0-x1-dx,-y0-dy,-dz);          << 336     pMax+=kCarTolerance;
389   baseA[1].set(-x0-x1+dx,-y0-dy,-dz);          << 337     flag = true;
390   baseA[2].set(-x0+x1+dx,-y0+dy,-dz);          << 338   }
391   baseA[3].set(-x0+x1-dx,-y0+dy,-dz);          << 339   else
                                                   >> 340   {
                                                   >> 341     // General rotated case - create and clip mesh to boundaries
392                                                   342 
393   baseB[0].set(+x0-x1-dx, y0-dy, dz);          << 343     G4bool existsAfterClip=false;
394   baseB[1].set(+x0-x1+dx, y0-dy, dz);          << 344     G4ThreeVectorList *vertices;
395   baseB[2].set(+x0+x1+dx, y0+dy, dz);          << 
396   baseB[3].set(+x0+x1-dx, y0+dy, dz);          << 
397                                                   345 
398   std::vector<const G4ThreeVectorList *> polyg << 346     pMin=+kInfinity;
399   polygons[0] = &baseA;                        << 347     pMax=-kInfinity;
400   polygons[1] = &baseB;                        << 
401                                                   348 
402   G4BoundingEnvelope benv(bmin,bmax,polygons); << 349     // Calculate rotated vertex coordinates
403   exist = benv.CalculateExtent(pAxis,pVoxelLim << 350 
404   return exist;                                << 351     vertices=CreateRotatedVertices(pTransform);
                                                   >> 352     ClipCrossSection(vertices,0,pVoxelLimit,pAxis,pMin,pMax);
                                                   >> 353     ClipCrossSection(vertices,4,pVoxelLimit,pAxis,pMin,pMax);
                                                   >> 354     ClipBetweenSections(vertices,0,pVoxelLimit,pAxis,pMin,pMax);
                                                   >> 355       
                                                   >> 356     if (pMin!=kInfinity||pMax!=-kInfinity)
                                                   >> 357     {
                                                   >> 358       existsAfterClip=true;
                                                   >> 359         
                                                   >> 360       // Add 2*tolerance to avoid precision troubles
                                                   >> 361       //
                                                   >> 362       pMin-=kCarTolerance;
                                                   >> 363       pMax+=kCarTolerance;
                                                   >> 364     }
                                                   >> 365     else
                                                   >> 366     {
                                                   >> 367       // Check for case where completely enveloping clipping volume
                                                   >> 368       // If point inside then we are confident that the solid completely
                                                   >> 369       // envelopes the clipping volume. Hence set min/max extents according
                                                   >> 370       // to clipping volume extents along the specified axis.
                                                   >> 371        
                                                   >> 372       G4ThreeVector clipCentre(
                                                   >> 373         (pVoxelLimit.GetMinXExtent()+pVoxelLimit.GetMaxXExtent())*0.5,
                                                   >> 374         (pVoxelLimit.GetMinYExtent()+pVoxelLimit.GetMaxYExtent())*0.5,
                                                   >> 375         (pVoxelLimit.GetMinZExtent()+pVoxelLimit.GetMaxZExtent())*0.5);
                                                   >> 376         
                                                   >> 377       if (Inside(pTransform.Inverse().TransformPoint(clipCentre))!=kOutside)
                                                   >> 378       {
                                                   >> 379         existsAfterClip=true;
                                                   >> 380         pMin=pVoxelLimit.GetMinExtent(pAxis);
                                                   >> 381         pMax=pVoxelLimit.GetMaxExtent(pAxis);
                                                   >> 382       }
                                                   >> 383     }
                                                   >> 384     delete vertices ;          //  'new' in the function called
                                                   >> 385     flag = existsAfterClip ;
                                                   >> 386   }
                                                   >> 387   return flag;
405 }                                                 388 }
406                                                   389 
407 ////////////////////////////////////////////// << 390 /////////////////////////////////////////////////////////////////////////////
408 //                                             << 
409 // Determine where is point p, inside/on_surfa << 
410 //                                                391 //
                                                   >> 392 // Check in p is inside/on surface/outside solid
411                                                   393 
412 EInside G4Para::Inside( const G4ThreeVector& p    394 EInside G4Para::Inside( const G4ThreeVector& p ) const
413 {                                                 395 {
414   G4double xx = fPlanes[2].a*p.x()+fPlanes[2]. << 396   G4double xt, yt, yt1;
415   G4double dx = std::abs(xx) + fPlanes[2].d;   << 397   EInside  in = kOutside;
                                                   >> 398 
                                                   >> 399   yt1 = p.y() - fTthetaSphi*p.z();
                                                   >> 400   yt  = std::fabs(yt1) ;
416                                                   401 
417   G4double yy = fPlanes[0].b*p.y()+fPlanes[0]. << 402   // xt = std::fabs( p.x() - fTthetaCphi*p.z() - fTalpha*yt );
418   G4double dy = std::abs(yy) + fPlanes[0].d;   << 
419   G4double dxy = std::max(dx,dy);              << 
420                                                   403 
421   G4double dz = std::abs(p.z())-fDz;           << 404   xt = std::fabs( p.x() - fTthetaCphi*p.z() - fTalpha*yt1 );
422   G4double dist = std::max(dxy,dz);            << 
423                                                   405 
424   if (dist > halfCarTolerance) return kOutside << 406   if ( std::fabs( p.z() ) <= fDz - kCarTolerance*0.5)
425   return (dist > -halfCarTolerance) ? kSurface << 407   {
                                                   >> 408     if (yt <= fDy - kCarTolerance*0.5)
                                                   >> 409     {
                                                   >> 410       if      ( xt <= fDx - kCarTolerance*0.5 ) in = kInside;
                                                   >> 411       else if ( xt <= fDx + kCarTolerance*0.5 ) in = kSurface;
                                                   >> 412     }
                                                   >> 413     else if ( yt <= fDy + kCarTolerance*0.5)
                                                   >> 414     {
                                                   >> 415       if ( xt <= fDx + kCarTolerance*0.5 ) in = kSurface;  
                                                   >> 416     }
                                                   >> 417   }
                                                   >> 418   else  if ( std::fabs(p.z()) <= fDz + kCarTolerance*0.5 )
                                                   >> 419   {
                                                   >> 420     if ( yt <= fDy + kCarTolerance*0.5)
                                                   >> 421     {
                                                   >> 422       if ( xt <= fDx + kCarTolerance*0.5 ) in = kSurface;  
                                                   >> 423     }
                                                   >> 424   }
                                                   >> 425   return in;
426 }                                                 426 }
427                                                   427 
428 ////////////////////////////////////////////// << 428 ///////////////////////////////////////////////////////////////////////////
429 //                                                429 //
430 // Determine side where point is, and return c << 430 // Calculate side nearest to p, and return normal
                                                   >> 431 // If 2+ sides equidistant, first side's normal returned (arbitrarily)
431                                                   432 
432 G4ThreeVector G4Para::SurfaceNormal( const G4T    433 G4ThreeVector G4Para::SurfaceNormal( const G4ThreeVector& p ) const
433 {                                                 434 {
434   G4int nsurf = 0; // number of surfaces where << 435   ENSide  side;
                                                   >> 436   G4ThreeVector norm;
                                                   >> 437   G4double distx,disty,distz;
                                                   >> 438   G4double newpx,newpy,xshift;
                                                   >> 439   G4double calpha,salpha;  // Sin/Cos(alpha) - needed to recalc G4Parameter 
                                                   >> 440   G4double tntheta,cosntheta;  // tan and cos of normal's theta component
                                                   >> 441   G4double ycomp;
435                                                   442 
436   // Check Z faces                             << 443   newpx=p.x()-fTthetaCphi*p.z();
437   //                                           << 444   newpy=p.y()-fTthetaSphi*p.z();
438   G4double nz = 0;                             << 
439   G4double dz = std::abs(p.z()) - fDz;         << 
440   if (std::abs(dz) <= halfCarTolerance)        << 
441   {                                            << 
442     nz = (p.z() < 0) ? -1 : 1;                 << 
443     ++nsurf;                                   << 
444   }                                            << 
445                                                   445 
446   // Check Y faces                             << 446   calpha=1/std::sqrt(1+fTalpha*fTalpha);
447   //                                           << 447   if (fTalpha)
448   G4double ny = 0;                             << 
449   G4double yy = fPlanes[0].b*p.y()+fPlanes[0]. << 
450   if (std::abs(fPlanes[0].d + yy) <= halfCarTo << 
451   {                                               448   {
452     ny  = fPlanes[0].b;                        << 449     salpha=-calpha/fTalpha;  // NOTE: actually use MINUS std::sin(alpha)
453     nz += fPlanes[0].c;                        << 
454     ++nsurf;                                   << 
455   }                                               450   }
456   else if (std::abs(fPlanes[1].d - yy) <= half << 451   else
457   {                                               452   {
458     ny  = fPlanes[1].b;                        << 453     salpha=0;
459     nz += fPlanes[1].c;                        << 
460     ++nsurf;                                   << 
461   }                                               454   }
462                                                   455 
463   // Check X faces                             << 456   xshift=newpx*calpha+newpy*salpha;
464   //                                           << 457 
465   G4double nx = 0;                             << 458   distx=std::fabs(std::fabs(xshift)-fDx*calpha);
466   G4double xx = fPlanes[2].a*p.x()+fPlanes[2]. << 459   disty=std::fabs(std::fabs(newpy)-fDy);
467   if (std::abs(fPlanes[2].d + xx) <= halfCarTo << 460   distz=std::fabs(std::fabs(p.z())-fDz);
468   {                                            << 461     
469     nx  = fPlanes[2].a;                        << 462   if (distx<disty)
470     ny += fPlanes[2].b;                        << 
471     nz += fPlanes[2].c;                        << 
472     ++nsurf;                                   << 
473   }                                            << 
474   else if (std::abs(fPlanes[3].d - xx) <= half << 
475   {                                               463   {
476     nx  = fPlanes[3].a;                        << 464     if (distx<distz) side=kNX;
477     ny += fPlanes[3].b;                        << 465     else side=kNZ;
478     nz += fPlanes[3].c;                        << 
479     ++nsurf;                                   << 
480   }                                               466   }
481                                                << 
482   // Return normal                             << 
483   //                                           << 
484   if (nsurf == 1)      return {nx,ny,nz};      << 
485   else if (nsurf != 0) return G4ThreeVector(nx << 
486   else                                            467   else
487   {                                               468   {
488     // Point is not on the surface             << 469     if (disty<distz) side=kNY;
489     //                                         << 470     else side=kNZ;
490 #ifdef G4CSGDEBUG                              << 
491     std::ostringstream message;                << 
492     G4int oldprc = message.precision(16);      << 
493     message << "Point p is not on surface (!?) << 
494             << GetName() << G4endl;            << 
495     message << "Position:\n";                  << 
496     message << "   p.x() = " << p.x()/mm << "  << 
497     message << "   p.y() = " << p.y()/mm << "  << 
498     message << "   p.z() = " << p.z()/mm << "  << 
499     G4cout.precision(oldprc) ;                 << 
500     G4Exception("G4Para::SurfaceNormal(p)", "G << 
501                 JustWarning, message );        << 
502     DumpInfo();                                << 
503 #endif                                         << 
504     return ApproxSurfaceNormal(p);             << 
505   }                                               471   }
506 }                                              << 
507                                                   472 
508 ////////////////////////////////////////////// << 473   switch (side)
509 //                                             << 
510 // Algorithm for SurfaceNormal() following the << 
511 // for points not on the surface               << 
512                                                << 
513 G4ThreeVector G4Para::ApproxSurfaceNormal( con << 
514 {                                              << 
515   G4double dist = -DBL_MAX;                    << 
516   G4int iside = 0;                             << 
517   for (G4int i=0; i<4; ++i)                    << 
518   {                                               474   {
519     G4double d = fPlanes[i].a*p.x() +          << 475     case kNX:
520                  fPlanes[i].b*p.y() +          << 476       tntheta=fTthetaCphi*calpha+fTthetaSphi*salpha;
521                  fPlanes[i].c*p.z() + fPlanes[ << 477       if (xshift<0)
522     if (d > dist) { dist = d; iside = i; }     << 478       {
                                                   >> 479         cosntheta=-1/std::sqrt(1+tntheta*tntheta);
                                                   >> 480       }
                                                   >> 481       else
                                                   >> 482       {
                                                   >> 483         cosntheta=1/std::sqrt(1+tntheta*tntheta);
                                                   >> 484       }
                                                   >> 485       norm=G4ThreeVector(calpha*cosntheta,salpha*cosntheta,-tntheta*cosntheta);
                                                   >> 486       break;
                                                   >> 487     case kNY:
                                                   >> 488       if (newpy<0)
                                                   >> 489       {
                                                   >> 490         ycomp=-1/std::sqrt(1+fTthetaSphi*fTthetaSphi);
                                                   >> 491       }
                                                   >> 492       else
                                                   >> 493       {
                                                   >> 494         ycomp=1/std::sqrt(1+fTthetaSphi*fTthetaSphi);
                                                   >> 495       }
                                                   >> 496       norm=G4ThreeVector(0,ycomp,-fTthetaSphi*ycomp);
                                                   >> 497       break;
                                                   >> 498     case kNZ:           // Closest to Z
                                                   >> 499       if (p.z()>=0)
                                                   >> 500       {
                                                   >> 501         norm=G4ThreeVector(0,0,1);
                                                   >> 502       }
                                                   >> 503       else
                                                   >> 504       {
                                                   >> 505         norm=G4ThreeVector(0,0,-1);
                                                   >> 506       }
                                                   >> 507       break;
523   }                                               508   }
524                                                << 509   return norm;
525   G4double distz = std::abs(p.z()) - fDz;      << 
526   if (dist > distz)                            << 
527     return { fPlanes[iside].a, fPlanes[iside]. << 
528   else                                         << 
529     return { 0, 0, (G4double)((p.z() < 0) ? -1 << 
530 }                                                 510 }
531                                                   511 
532 ////////////////////////////////////////////// << 512 //////////////////////////////////////////////////////////////////////////////
533 //                                                513 //
534 // Calculate distance to shape from outside       514 // Calculate distance to shape from outside
535 //  - return kInfinity if no intersection      << 515 // - return kInfinity if no intersection
536                                                << 516 //
537 G4double G4Para::DistanceToIn(const G4ThreeVec << 517 // ALGORITHM:
538                               const G4ThreeVec << 518 // For each component, calculate pair of minimum and maximum intersection
539 {                                              << 519 // values for which the particle is in the extent of the shape
540   // Z intersections                           << 520 // - The smallest (MAX minimum) allowed distance of the pairs is intersect
                                                   >> 521 // - Z plane intersectin uses tolerance
                                                   >> 522 // - XZ YZ planes use logic & *SLIGHTLY INCORRECT* tolerance
                                                   >> 523 //   (this saves at least 1 sqrt, 1 multiply and 1 divide... in applicable
                                                   >> 524 //    cases)
                                                   >> 525 // - Note: XZ and YZ planes each divide space into four regions,
                                                   >> 526 //   characterised by ss1 ss2
                                                   >> 527 
                                                   >> 528 G4double G4Para::DistanceToIn( const G4ThreeVector& p,
                                                   >> 529                                const G4ThreeVector& v ) const
                                                   >> 530 {
                                                   >> 531   G4double snxt;    // snxt = default return value
                                                   >> 532   G4double smin,smax;
                                                   >> 533   G4double tmin,tmax;
                                                   >> 534   G4double yt,vy,xt,vx;
                                                   >> 535   G4double max;
541   //                                              536   //
542   if ((std::abs(p.z()) - fDz) >= -halfCarToler << 537   // Z Intersection range
543     return kInfinity;                          << 
544   G4double invz = (-v.z() == 0) ? DBL_MAX : -1 << 
545   G4double dz = (invz < 0) ? fDz : -fDz;       << 
546   G4double tzmin = (p.z() + dz)*invz;          << 
547   G4double tzmax = (p.z() - dz)*invz;          << 
548                                                << 
549   // Y intersections                           << 
550   //                                              538   //
551   G4double tmin0 = tzmin, tmax0 = tzmax;       << 539   if (v.z()>0)
552   G4double cos0 = fPlanes[0].b*v.y() + fPlanes << 540   {
553   G4double disy = fPlanes[0].b*p.y() + fPlanes << 541     max=fDz-p.z();
554   G4double dis0 = fPlanes[0].d + disy;         << 542     if (max>kCarTolerance*0.5)
555   if (dis0 >= -halfCarTolerance)               << 543     {
                                                   >> 544       smax=max/v.z();
                                                   >> 545       smin=(-fDz-p.z())/v.z();
                                                   >> 546     }
                                                   >> 547     else
                                                   >> 548     {
                                                   >> 549       return snxt=kInfinity;
                                                   >> 550     }
                                                   >> 551   }
                                                   >> 552   else if (v.z()<0)
556   {                                               553   {
557     if (cos0 >= 0) return kInfinity;           << 554     max=-fDz-p.z();
558     G4double tmp  = -dis0/cos0;                << 555     if (max<-kCarTolerance*0.5)
559     if (tmin0 < tmp) tmin0 = tmp;              << 556     {
                                                   >> 557       smax=max/v.z();
                                                   >> 558       smin=(fDz-p.z())/v.z();
                                                   >> 559     }
                                                   >> 560     else
                                                   >> 561     {
                                                   >> 562       return snxt=kInfinity;
                                                   >> 563     }
560   }                                               564   }
561   else if (cos0 > 0)                           << 565   else
562   {                                               566   {
563     G4double tmp  = -dis0/cos0;                << 567     if (std::fabs(p.z())<=fDz) // Inside
564     if (tmax0 > tmp) tmax0 = tmp;              << 568     {
                                                   >> 569       smin=0;
                                                   >> 570       smax=kInfinity;
                                                   >> 571     }
                                                   >> 572     else
                                                   >> 573     {
                                                   >> 574       return snxt=kInfinity;
                                                   >> 575     }
565   }                                               576   }
                                                   >> 577     
                                                   >> 578   //
                                                   >> 579   // Y G4Parallel planes intersection
                                                   >> 580   //
                                                   >> 581 
                                                   >> 582   yt=p.y()-fTthetaSphi*p.z();
                                                   >> 583   vy=v.y()-fTthetaSphi*v.z();
566                                                   584 
567   G4double tmin1 = tmin0, tmax1 = tmax0;       << 585   if (vy>0)
568   G4double cos1 = -cos0;                       << 
569   G4double dis1 = fPlanes[1].d - disy;         << 
570   if (dis1 >= -halfCarTolerance)               << 
571   {                                               586   {
572     if (cos1 >= 0) return kInfinity;           << 587     max=fDy-yt;
573     G4double tmp  = -dis1/cos1;                << 588     if (max>kCarTolerance*0.5)
574     if (tmin1 < tmp) tmin1 = tmp;              << 589     {
                                                   >> 590       tmax=max/vy;
                                                   >> 591       tmin=(-fDy-yt)/vy;
                                                   >> 592     }
                                                   >> 593     else
                                                   >> 594     {
                                                   >> 595       return snxt=kInfinity;
                                                   >> 596     }
575   }                                               597   }
576   else if (cos1 > 0)                           << 598   else if (vy<0)
577   {                                               599   {
578     G4double tmp  = -dis1/cos1;                << 600     max=-fDy-yt;
579     if (tmax1 > tmp) tmax1 = tmp;              << 601     if (max<-kCarTolerance*0.5)
                                                   >> 602     {
                                                   >> 603       tmax=max/vy;
                                                   >> 604       tmin=(fDy-yt)/vy;
                                                   >> 605     }
                                                   >> 606     else
                                                   >> 607     {
                                                   >> 608       return snxt=kInfinity;
                                                   >> 609     }
                                                   >> 610   }
                                                   >> 611   else
                                                   >> 612   {
                                                   >> 613     if (std::fabs(yt)<=fDy)
                                                   >> 614     {
                                                   >> 615       tmin=0;
                                                   >> 616       tmax=kInfinity;
                                                   >> 617     }
                                                   >> 618     else
                                                   >> 619     {
                                                   >> 620       return snxt=kInfinity;
                                                   >> 621     }
580   }                                               622   }
581                                                   623 
582   // X intersections                           << 624   // Re-Calc valid intersection range
583   //                                              625   //
584   G4double tmin2 = tmin1, tmax2 = tmax1;       << 626   if (tmin>smin) smin=tmin;
585   G4double cos2 = fPlanes[2].a*v.x() + fPlanes << 627   if (tmax<smax) smax=tmax;
586   G4double disx = fPlanes[2].a*p.x() + fPlanes << 628   if (smax<=smin)
587   G4double dis2 = fPlanes[2].d + disx;         << 
588   if (dis2 >= -halfCarTolerance)               << 
589   {                                               629   {
590     if (cos2 >= 0) return kInfinity;           << 630     return snxt=kInfinity;
591     G4double tmp  = -dis2/cos2;                << 
592     if (tmin2 < tmp) tmin2 = tmp;              << 
593   }                                               631   }
594   else if (cos2 > 0)                           << 632   else
595   {                                               633   {
596     G4double tmp  = -dis2/cos2;                << 634     //
597     if (tmax2 > tmp) tmax2 = tmp;              << 635     // X G4Parallel planes intersection
                                                   >> 636     //
                                                   >> 637     xt=p.x()-fTthetaCphi*p.z()-fTalpha*yt;
                                                   >> 638     vx=v.x()-fTthetaCphi*v.z()-fTalpha*vy;
                                                   >> 639     if (vx>0)
                                                   >> 640     {
                                                   >> 641       max=fDx-xt;
                                                   >> 642       if (max>kCarTolerance*0.5)
                                                   >> 643       {
                                                   >> 644         tmax=max/vx;
                                                   >> 645         tmin=(-fDx-xt)/vx;
                                                   >> 646       }
                                                   >> 647       else
                                                   >> 648       {
                                                   >> 649         return snxt=kInfinity;
                                                   >> 650       }
                                                   >> 651     }
                                                   >> 652     else if (vx<0)
                                                   >> 653     {
                                                   >> 654       max=-fDx-xt;
                                                   >> 655       if (max<-kCarTolerance*0.5)
                                                   >> 656       {
                                                   >> 657         tmax=max/vx;
                                                   >> 658         tmin=(fDx-xt)/vx;
                                                   >> 659       }
                                                   >> 660       else
                                                   >> 661       {
                                                   >> 662         return snxt=kInfinity;
                                                   >> 663       }
                                                   >> 664     }
                                                   >> 665     else
                                                   >> 666     {
                                                   >> 667       if (std::fabs(xt)<=fDx)
                                                   >> 668       {
                                                   >> 669         tmin=0;
                                                   >> 670         tmax=kInfinity;
                                                   >> 671       }
                                                   >> 672       else
                                                   >> 673       {
                                                   >> 674         return snxt=kInfinity;
                                                   >> 675       }
                                                   >> 676     }
                                                   >> 677     if (tmin>smin) smin=tmin;
                                                   >> 678     if (tmax<smax) smax=tmax;
598   }                                               679   }
599                                                   680 
600   G4double tmin3 = tmin2, tmax3 = tmax2;       << 681   if (smax>0&&smin<smax)
601   G4double cos3 = -cos2;                       << 
602   G4double dis3 = fPlanes[3].d - disx;         << 
603   if (dis3 >= -halfCarTolerance)               << 
604   {                                               682   {
605     if (cos3 >= 0) return kInfinity;           << 683     if (smin>0)
606     G4double tmp  = -dis3/cos3;                << 684     {
607     if (tmin3 < tmp) tmin3 = tmp;              << 685       snxt=smin;
                                                   >> 686     }
                                                   >> 687     else
                                                   >> 688     {
                                                   >> 689       snxt=0;
                                                   >> 690     }
608   }                                               691   }
609   else if (cos3 > 0)                           << 692   else
610   {                                               693   {
611     G4double tmp  = -dis3/cos3;                << 694     snxt=kInfinity;
612     if (tmax3 > tmp) tmax3 = tmp;              << 
613   }                                               695   }
614                                                << 696   return snxt;
615   // Find distance                             << 
616   //                                           << 
617   G4double tmin = tmin3, tmax = tmax3;         << 
618   if (tmax <= tmin + halfCarTolerance) return  << 
619   return (tmin < halfCarTolerance ) ? 0. : tmi << 
620 }                                                 697 }
621                                                   698 
622 ////////////////////////////////////////////// << 699 ////////////////////////////////////////////////////////////////////////////
623 //                                                700 //
624 // Calculate exact shortest distance to any bo    701 // Calculate exact shortest distance to any boundary from outside
625 // - returns 0 is point inside                 << 702 // - Returns 0 is point inside
626                                                   703 
627 G4double G4Para::DistanceToIn( const G4ThreeVe    704 G4double G4Para::DistanceToIn( const G4ThreeVector& p ) const
628 {                                                 705 {
629   G4double xx = fPlanes[2].a*p.x()+fPlanes[2]. << 706   G4double safe=0.0;
630   G4double dx = std::abs(xx) + fPlanes[2].d;   << 707   G4double distz1,distz2,disty1,disty2,distx1,distx2;
                                                   >> 708   G4double trany,cosy,tranx,cosx;
631                                                   709 
632   G4double yy = fPlanes[0].b*p.y()+fPlanes[0]. << 710   // Z planes
633   G4double dy = std::abs(yy) + fPlanes[0].d;   << 711   //
634   G4double dxy = std::max(dx,dy);              << 712   distz1=p.z()-fDz;
                                                   >> 713   distz2=-fDz-p.z();
                                                   >> 714   if (distz1>distz2)
                                                   >> 715   {
                                                   >> 716     safe=distz1;
                                                   >> 717   }
                                                   >> 718   else
                                                   >> 719   {
                                                   >> 720     safe=distz2;
                                                   >> 721   }
635                                                   722 
636   G4double dz = std::abs(p.z())-fDz;           << 723   trany=p.y()-fTthetaSphi*p.z(); // Transformed y into `box' system
637   G4double dist = std::max(dxy,dz);            << 
638                                                   724 
639   return (dist > 0) ? dist : 0.;               << 725   // Transformed x into `box' system
                                                   >> 726   //
                                                   >> 727   cosy=1.0/std::sqrt(1.0+fTthetaSphi*fTthetaSphi);
                                                   >> 728   disty1=(trany-fDy)*cosy;
                                                   >> 729   disty2=(-fDy-trany)*cosy;
                                                   >> 730     
                                                   >> 731   if (disty1>safe) safe=disty1;
                                                   >> 732   if (disty2>safe) safe=disty2;
                                                   >> 733 
                                                   >> 734   tranx=p.x()-fTthetaCphi*p.z()-fTalpha*trany;
                                                   >> 735   cosx=1.0/std::sqrt(1.0+fTalpha*fTalpha+fTthetaCphi*fTthetaCphi);
                                                   >> 736   distx1=(tranx-fDx)*cosx;
                                                   >> 737   distx2=(-fDx-tranx)*cosx;
                                                   >> 738     
                                                   >> 739   if (distx1>safe) safe=distx1;
                                                   >> 740   if (distx2>safe) safe=distx2;
                                                   >> 741     
                                                   >> 742   if (safe<0) safe=0;
                                                   >> 743   return safe;  
640 }                                                 744 }
641                                                   745 
642 //////////////////////////////////////////////    746 //////////////////////////////////////////////////////////////////////////
643 //                                                747 //
644 // Calculate distance to surface of shape from << 748 // Calculate distance to surface of shape from inside
645 // find normal at exit point                   << 749 // Calculate distance to x/y/z planes - smallest is exiting distance
646 // - when leaving the surface, return 0        << 
647                                                   750 
648 G4double G4Para::DistanceToOut(const G4ThreeVe    751 G4double G4Para::DistanceToOut(const G4ThreeVector& p, const G4ThreeVector& v,
649                                const G4bool ca    752                                const G4bool calcNorm,
650                                      G4bool* v << 753                                G4bool *validNorm, G4ThreeVector *n) const
651 {                                                 754 {
652   // Z intersections                           << 755   ESide side = kUndef;
                                                   >> 756   G4double snxt;    // snxt = return value
                                                   >> 757   G4double max,tmax;
                                                   >> 758   G4double yt,vy,xt,vx;
                                                   >> 759 
                                                   >> 760   G4double ycomp,calpha,salpha,tntheta,cosntheta;
                                                   >> 761 
                                                   >> 762   //
                                                   >> 763   // Z Intersections
653   //                                              764   //
654   if ((std::abs(p.z()) - fDz) >= -halfCarToler << 765 
                                                   >> 766   if (v.z()>0)
655   {                                               767   {
656     if (calcNorm)                              << 768     max=fDz-p.z();
                                                   >> 769     if (max>kCarTolerance*0.5)
657     {                                             770     {
658       *validNorm = true;                       << 771       snxt=max/v.z();
659       n->set(0, 0, (p.z() < 0) ? -1 : 1);      << 772       side=kPZ;
                                                   >> 773     }
                                                   >> 774     else
                                                   >> 775     {
                                                   >> 776       if (calcNorm)
                                                   >> 777       {
                                                   >> 778         *validNorm=true;
                                                   >> 779         *n=G4ThreeVector(0,0,1);
                                                   >> 780       }
                                                   >> 781       return snxt=0;
660     }                                             782     }
661     return 0.;                                 << 
662   }                                               783   }
663   G4double vz = v.z();                         << 784   else if (v.z()<0)
664   G4double tmax = (vz == 0) ? DBL_MAX : (std:: << 
665   G4int iside = (vz < 0) ? -4 : -2; // little  << 
666                                                << 
667   // Y intersections                           << 
668   //                                           << 
669   G4double cos0 = fPlanes[0].b*v.y() + fPlanes << 
670   if (cos0 > 0)                                << 
671   {                                               785   {
672     G4double dis0 = fPlanes[0].b*p.y() + fPlan << 786     max=-fDz-p.z();
673     if (dis0 >= -halfCarTolerance)             << 787     if (max<-kCarTolerance*0.5)
                                                   >> 788     {
                                                   >> 789       snxt=max/v.z();
                                                   >> 790       side=kMZ;
                                                   >> 791     }
                                                   >> 792     else
674     {                                             793     {
675       if (calcNorm)                               794       if (calcNorm)
676       {                                           795       {
677         *validNorm = true;                     << 796         *validNorm=true;
678         n->set(0, fPlanes[0].b, fPlanes[0].c); << 797         *n=G4ThreeVector(0,0,-1);
679       }                                           798       }
680       return 0.;                               << 799       return snxt=0;
681     }                                             800     }
682     G4double tmp = -dis0/cos0;                 << 
683     if (tmax > tmp) { tmax = tmp; iside = 0; } << 
684   }                                               801   }
                                                   >> 802   else
                                                   >> 803   {
                                                   >> 804     snxt=kInfinity;
                                                   >> 805   }
                                                   >> 806     
                                                   >> 807   //
                                                   >> 808   // Y plane intersection
                                                   >> 809   //
685                                                   810 
686   G4double cos1 = -cos0;                       << 811   yt=p.y()-fTthetaSphi*p.z();
687   if (cos1 > 0)                                << 812   vy=v.y()-fTthetaSphi*v.z();
                                                   >> 813 
                                                   >> 814   if (vy>0)
688   {                                               815   {
689     G4double dis1 = fPlanes[1].b*p.y() + fPlan << 816     max=fDy-yt;
690     if (dis1 >= -halfCarTolerance)             << 817     if (max>kCarTolerance*0.5)
                                                   >> 818     {
                                                   >> 819       tmax=max/vy;
                                                   >> 820       if (tmax<snxt)
                                                   >> 821       {
                                                   >> 822         snxt=tmax;
                                                   >> 823         side=kPY;
                                                   >> 824       }
                                                   >> 825     }
                                                   >> 826     else
691     {                                             827     {
692       if (calcNorm)                               828       if (calcNorm)
                                                   >> 829       {      
                                                   >> 830         *validNorm=true; // Leaving via plus Y
                                                   >> 831         ycomp=1/std::sqrt(1+fTthetaSphi*fTthetaSphi);
                                                   >> 832         *n=G4ThreeVector(0,ycomp,-fTthetaSphi*ycomp);
                                                   >> 833       }
                                                   >> 834       return snxt=0;
                                                   >> 835     }
                                                   >> 836   }
                                                   >> 837   else if (vy<0)
                                                   >> 838   {
                                                   >> 839     max=-fDy-yt;
                                                   >> 840     if (max<-kCarTolerance*0.5)
                                                   >> 841     {
                                                   >> 842       tmax=max/vy;
                                                   >> 843       if (tmax<snxt)
693       {                                           844       {
694         *validNorm = true;                     << 845         snxt=tmax;
695         n->set(0, fPlanes[1].b, fPlanes[1].c); << 846         side=kMY;
696       }                                           847       }
697       return 0.;                               << 
698     }                                             848     }
699     G4double tmp = -dis1/cos1;                 << 849     else
700     if (tmax > tmp) { tmax = tmp; iside = 1; } << 850     {
                                                   >> 851       if (calcNorm)
                                                   >> 852       {
                                                   >> 853         *validNorm=true; // Leaving via minus Y
                                                   >> 854         ycomp=-1/std::sqrt(1+fTthetaSphi*fTthetaSphi);
                                                   >> 855         *n=G4ThreeVector(0,ycomp,-fTthetaSphi*ycomp);
                                                   >> 856       }
                                                   >> 857       return snxt=0;
                                                   >> 858     }
701   }                                               859   }
702                                                   860 
703   // X intersections                           << 
704   //                                              861   //
705   G4double cos2 = fPlanes[2].a*v.x() + fPlanes << 862   // X plane intersection
706   if (cos2 > 0)                                << 863   //
                                                   >> 864 
                                                   >> 865   xt=p.x()-fTthetaCphi*p.z()-fTalpha*yt;
                                                   >> 866   vx=v.x()-fTthetaCphi*v.z()-fTalpha*vy;
                                                   >> 867   if (vx>0)
707   {                                               868   {
708     G4double dis2 = fPlanes[2].a*p.x()+fPlanes << 869     max=fDx-xt;
709     if (dis2 >= -halfCarTolerance)             << 870     if (max>kCarTolerance*0.5)
                                                   >> 871     {
                                                   >> 872       tmax=max/vx;
                                                   >> 873       if (tmax<snxt)
                                                   >> 874       {
                                                   >> 875         snxt=tmax;
                                                   >> 876         side=kPX;
                                                   >> 877       }
                                                   >> 878     }
                                                   >> 879     else
710     {                                             880     {
711       if (calcNorm)                               881       if (calcNorm)
712       {                                           882       {
713          *validNorm = true;                    << 883         *validNorm=true; // Leaving via plus X
714          n->set(fPlanes[2].a, fPlanes[2].b, fP << 884         calpha=1/std::sqrt(1+fTalpha*fTalpha);
                                                   >> 885         if (fTalpha)
                                                   >> 886         {
                                                   >> 887           salpha=-calpha/fTalpha;  // NOTE: actually use MINUS std::sin(alpha)
                                                   >> 888         }
                                                   >> 889         else
                                                   >> 890         {
                                                   >> 891           salpha=0;
                                                   >> 892         }
                                                   >> 893         tntheta=fTthetaCphi*calpha+fTthetaSphi*salpha;
                                                   >> 894         cosntheta=1/std::sqrt(1+tntheta*tntheta);
                                                   >> 895         *n=G4ThreeVector(calpha*cosntheta,salpha*cosntheta,-tntheta*cosntheta);
715       }                                           896       }
716       return 0.;                               << 897       return snxt=0;
717     }                                             898     }
718     G4double tmp = -dis2/cos2;                 << 
719     if (tmax > tmp) { tmax = tmp; iside = 2; } << 
720   }                                               899   }
721                                                << 900   else if (vx<0)
722   G4double cos3 = -cos2;                       << 
723   if (cos3 > 0)                                << 
724   {                                               901   {
725     G4double dis3 = fPlanes[3].a*p.x()+fPlanes << 902     max=-fDx-xt;
726     if (dis3 >= -halfCarTolerance)             << 903     if (max<-kCarTolerance*0.5)
                                                   >> 904     {
                                                   >> 905       tmax=max/vx;
                                                   >> 906       if (tmax<snxt)
                                                   >> 907       {
                                                   >> 908         snxt=tmax;
                                                   >> 909         side=kMX;
                                                   >> 910       }
                                                   >> 911     }
                                                   >> 912     else
727     {                                             913     {
728       if (calcNorm)                               914       if (calcNorm)
729       {                                           915       {
730          *validNorm = true;                    << 916         *validNorm=true; // Leaving via minus X
731          n->set(fPlanes[3].a, fPlanes[3].b, fP << 917         calpha=1/std::sqrt(1+fTalpha*fTalpha);
                                                   >> 918         if (fTalpha)
                                                   >> 919         {
                                                   >> 920           salpha=-calpha/fTalpha;  // NOTE: actually use MINUS std::sin(alpha)
                                                   >> 921         }
                                                   >> 922         else
                                                   >> 923         {
                                                   >> 924           salpha=0;
                                                   >> 925         }
                                                   >> 926         tntheta=fTthetaCphi*calpha+fTthetaSphi*salpha;
                                                   >> 927         cosntheta=-1/std::sqrt(1+tntheta*tntheta);
                                                   >> 928         *n=G4ThreeVector(calpha*cosntheta,salpha*cosntheta,-tntheta*cosntheta);           
                                                   >> 929         return snxt=0;
732       }                                           930       }
733       return 0.;                               << 
734     }                                             931     }
735     G4double tmp = -dis3/cos3;                 << 
736     if (tmax > tmp) { tmax = tmp; iside = 3; } << 
737   }                                               932   }
738                                                   933 
739   // Set normal, if required, and return dista << 934   if (calcNorm)
740   //                                           << 
741   if (calcNorm)                                << 
742   {                                               935   {
743     *validNorm = true;                         << 936     *validNorm=true;
744     if (iside < 0)                             << 937     switch (side)
745       n->set(0, 0, iside + 3); // (-4+3)=-1, ( << 938     {
746     else                                       << 939       case kMZ:
747       n->set(fPlanes[iside].a, fPlanes[iside]. << 940         *n=G4ThreeVector(0,0,-1);
                                                   >> 941         break;
                                                   >> 942       case kPZ:
                                                   >> 943         *n=G4ThreeVector(0,0,1);
                                                   >> 944         break;
                                                   >> 945       case kMY:
                                                   >> 946         ycomp=-1/std::sqrt(1+fTthetaSphi*fTthetaSphi);
                                                   >> 947         *n=G4ThreeVector(0,ycomp,-fTthetaSphi*ycomp);
                                                   >> 948         break;        
                                                   >> 949       case kPY:
                                                   >> 950         ycomp=1/std::sqrt(1+fTthetaSphi*fTthetaSphi);
                                                   >> 951         *n=G4ThreeVector(0,ycomp,-fTthetaSphi*ycomp);
                                                   >> 952         break;        
                                                   >> 953       case kMX:
                                                   >> 954         calpha=1/std::sqrt(1+fTalpha*fTalpha);
                                                   >> 955         if (fTalpha)
                                                   >> 956         {
                                                   >> 957           salpha=-calpha/fTalpha;  // NOTE: actually use MINUS std::sin(alpha)
                                                   >> 958         }
                                                   >> 959         else
                                                   >> 960         {
                                                   >> 961           salpha=0;
                                                   >> 962         }
                                                   >> 963         tntheta=fTthetaCphi*calpha+fTthetaSphi*salpha;
                                                   >> 964         cosntheta=-1/std::sqrt(1+tntheta*tntheta);
                                                   >> 965         *n=G4ThreeVector(calpha*cosntheta,salpha*cosntheta,-tntheta*cosntheta);
                                                   >> 966         break;
                                                   >> 967       case kPX:
                                                   >> 968         calpha=1/std::sqrt(1+fTalpha*fTalpha);
                                                   >> 969         if (fTalpha)
                                                   >> 970         {
                                                   >> 971           salpha=-calpha/fTalpha;  // NOTE: actually use MINUS std::sin(alpha)
                                                   >> 972         }
                                                   >> 973         else
                                                   >> 974         {
                                                   >> 975           salpha=0;
                                                   >> 976         }
                                                   >> 977         tntheta=fTthetaCphi*calpha+fTthetaSphi*salpha;
                                                   >> 978         cosntheta=1/std::sqrt(1+tntheta*tntheta);
                                                   >> 979         *n=G4ThreeVector(calpha*cosntheta,salpha*cosntheta,-tntheta*cosntheta);
                                                   >> 980         break;
                                                   >> 981       default:
                                                   >> 982         DumpInfo();
                                                   >> 983         G4Exception("G4Para::DistanceToOut(p,v,..)","Notification",JustWarning,
                                                   >> 984                     "Undefined side for valid surface normal to solid.");
                                                   >> 985         break;
                                                   >> 986     }
748   }                                               987   }
749   return tmax;                                 << 988   return snxt;
750 }                                                 989 }
751                                                   990 
752 ////////////////////////////////////////////// << 991 /////////////////////////////////////////////////////////////////////////////
753 //                                                992 //
754 // Calculate exact shortest distance to any bo    993 // Calculate exact shortest distance to any boundary from inside
755 // - returns 0 is point outside                << 994 // - Returns 0 is point outside
756                                                   995 
757 G4double G4Para::DistanceToOut( const G4ThreeV    996 G4double G4Para::DistanceToOut( const G4ThreeVector& p ) const
758 {                                                 997 {
                                                   >> 998   G4double safe=0.0;
                                                   >> 999   G4double distz1,distz2,disty1,disty2,distx1,distx2;
                                                   >> 1000   G4double trany,cosy,tranx,cosx;
                                                   >> 1001 
759 #ifdef G4CSGDEBUG                                 1002 #ifdef G4CSGDEBUG
760   if( Inside(p) == kOutside )                     1003   if( Inside(p) == kOutside )
761   {                                               1004   {
762     std::ostringstream message;                << 1005      G4cout.precision(16) ;
763     G4int oldprc = message.precision(16);      << 1006      G4cout << G4endl ;
764     message << "Point p is outside (!?) of sol << 1007      DumpInfo();
765     message << "Position:\n";                  << 1008      G4cout << "Position:"  << G4endl << G4endl ;
766     message << "   p.x() = " << p.x()/mm << "  << 1009      G4cout << "p.x() = "   << p.x()/mm << " mm" << G4endl ;
767     message << "   p.y() = " << p.y()/mm << "  << 1010      G4cout << "p.y() = "   << p.y()/mm << " mm" << G4endl ;
768     message << "   p.z() = " << p.z()/mm << "  << 1011      G4cout << "p.z() = "   << p.z()/mm << " mm" << G4endl << G4endl ;
769     G4cout.precision(oldprc) ;                 << 1012      G4Exception("G4Para::DistanceToOut(p)", "Notification",
770     G4Exception("G4Para::DistanceToOut(p)", "G << 1013                  JustWarning, "Point p is outside !?" );
771                 JustWarning, message );        << 1014   }
772     DumpInfo();                                << 
773     }                                          << 
774 #endif                                            1015 #endif
775   G4double xx = fPlanes[2].a*p.x()+fPlanes[2]. << 
776   G4double dx = std::abs(xx) + fPlanes[2].d;   << 
777                                                << 
778   G4double yy = fPlanes[0].b*p.y()+fPlanes[0]. << 
779   G4double dy = std::abs(yy) + fPlanes[0].d;   << 
780   G4double dxy = std::max(dx,dy);              << 
781                                                   1016 
782   G4double dz = std::abs(p.z())-fDz;           << 1017   // Z planes
783   G4double dist = std::max(dxy,dz);            << 1018   //
                                                   >> 1019   distz1=fDz-p.z();
                                                   >> 1020   distz2=fDz+p.z();
                                                   >> 1021   if (distz1<distz2)
                                                   >> 1022   {
                                                   >> 1023     safe=distz1;
                                                   >> 1024   }
                                                   >> 1025   else
                                                   >> 1026   {
                                                   >> 1027     safe=distz2;
                                                   >> 1028   }
784                                                   1029 
785   return (dist < 0) ? -dist : 0.;              << 1030   trany=p.y()-fTthetaSphi*p.z(); // Transformed y into `box' system
786 }                                              << 
787                                                   1031 
788 ////////////////////////////////////////////// << 1032   // Transformed x into `box' system
789 //                                             << 1033   //
790 // GetEntityType                               << 1034   cosy=1.0/std::sqrt(1.0+fTthetaSphi*fTthetaSphi);
                                                   >> 1035   disty1=(fDy-trany)*cosy;
                                                   >> 1036   disty2=(fDy+trany)*cosy;
                                                   >> 1037     
                                                   >> 1038   if (disty1<safe) safe=disty1;
                                                   >> 1039   if (disty2<safe) safe=disty2;
791                                                   1040 
792 G4GeometryType G4Para::GetEntityType() const   << 1041   tranx=p.x()-fTthetaCphi*p.z()-fTalpha*trany;
793 {                                              << 1042   cosx=1.0/std::sqrt(1.0+fTalpha*fTalpha+fTthetaCphi*fTthetaCphi);
794   return {"G4Para"};                           << 1043   distx1=(fDx-tranx)*cosx;
                                                   >> 1044   distx2=(fDx+tranx)*cosx;
                                                   >> 1045     
                                                   >> 1046   if (distx1<safe) safe=distx1;
                                                   >> 1047   if (distx2<safe) safe=distx2;
                                                   >> 1048     
                                                   >> 1049   if (safe<0) safe=0;
                                                   >> 1050   return safe;  
795 }                                                 1051 }
796                                                   1052 
797 ////////////////////////////////////////////// << 1053 ////////////////////////////////////////////////////////////////////////////////
798 //                                                1054 //
799 // IsFaceted                                   << 1055 // Create a List containing the transformed vertices
800                                                << 1056 // Ordering [0-3] -fDz cross section
801 G4bool G4Para::IsFaceted() const               << 1057 //          [4-7] +fDz cross section such that [0] is below [4],
802 {                                              << 1058 //                                             [1] below [5] etc.
803   return true;                                 << 1059 // Note:
                                                   >> 1060 //  Caller has deletion resposibility
                                                   >> 1061 
                                                   >> 1062 G4ThreeVectorList*
                                                   >> 1063 G4Para::CreateRotatedVertices( const G4AffineTransform& pTransform ) const
                                                   >> 1064 {
                                                   >> 1065   G4ThreeVectorList *vertices;
                                                   >> 1066   vertices=new G4ThreeVectorList();
                                                   >> 1067   vertices->reserve(8);
                                                   >> 1068   if (vertices)
                                                   >> 1069   {
                                                   >> 1070     G4ThreeVector vertex0(-fDz*fTthetaCphi-fDy*fTalpha-fDx,
                                                   >> 1071                           -fDz*fTthetaSphi-fDy, -fDz);
                                                   >> 1072     G4ThreeVector vertex1(-fDz*fTthetaCphi-fDy*fTalpha+fDx,
                                                   >> 1073                           -fDz*fTthetaSphi-fDy, -fDz);
                                                   >> 1074     G4ThreeVector vertex2(-fDz*fTthetaCphi+fDy*fTalpha-fDx,
                                                   >> 1075                           -fDz*fTthetaSphi+fDy, -fDz);
                                                   >> 1076     G4ThreeVector vertex3(-fDz*fTthetaCphi+fDy*fTalpha+fDx,
                                                   >> 1077                           -fDz*fTthetaSphi+fDy, -fDz);
                                                   >> 1078     G4ThreeVector vertex4(+fDz*fTthetaCphi-fDy*fTalpha-fDx,
                                                   >> 1079                           +fDz*fTthetaSphi-fDy, +fDz);
                                                   >> 1080     G4ThreeVector vertex5(+fDz*fTthetaCphi-fDy*fTalpha+fDx,
                                                   >> 1081                           +fDz*fTthetaSphi-fDy, +fDz);
                                                   >> 1082     G4ThreeVector vertex6(+fDz*fTthetaCphi+fDy*fTalpha-fDx,
                                                   >> 1083                           +fDz*fTthetaSphi+fDy, +fDz);
                                                   >> 1084     G4ThreeVector vertex7(+fDz*fTthetaCphi+fDy*fTalpha+fDx,
                                                   >> 1085                           +fDz*fTthetaSphi+fDy, +fDz);
                                                   >> 1086 
                                                   >> 1087     vertices->push_back(pTransform.TransformPoint(vertex0));
                                                   >> 1088     vertices->push_back(pTransform.TransformPoint(vertex1));
                                                   >> 1089     vertices->push_back(pTransform.TransformPoint(vertex2));
                                                   >> 1090     vertices->push_back(pTransform.TransformPoint(vertex3));
                                                   >> 1091     vertices->push_back(pTransform.TransformPoint(vertex4));
                                                   >> 1092     vertices->push_back(pTransform.TransformPoint(vertex5));
                                                   >> 1093     vertices->push_back(pTransform.TransformPoint(vertex6));
                                                   >> 1094     vertices->push_back(pTransform.TransformPoint(vertex7));
                                                   >> 1095   }
                                                   >> 1096   else
                                                   >> 1097   {
                                                   >> 1098     DumpInfo();
                                                   >> 1099     G4Exception("G4Para::CreateRotatedVertices()",
                                                   >> 1100                 "FatalError", FatalException,
                                                   >> 1101                 "Error in allocation of vertices. Out of memory !");
                                                   >> 1102   }
                                                   >> 1103   return vertices;
804 }                                                 1104 }
805                                                   1105 
806 //////////////////////////////////////////////    1106 //////////////////////////////////////////////////////////////////////////
807 //                                                1107 //
808 // Make a clone of the object                  << 1108 // GetEntityType
809 //                                             << 1109 
810 G4VSolid* G4Para::Clone() const                << 1110 G4GeometryType G4Para::GetEntityType() const
811 {                                                 1111 {
812   return new G4Para(*this);                    << 1112   return G4String("G4Para");
813 }                                                 1113 }
814                                                   1114 
815 //////////////////////////////////////////////    1115 //////////////////////////////////////////////////////////////////////////
816 //                                                1116 //
817 // Stream object contents to an output stream     1117 // Stream object contents to an output stream
818                                                   1118 
819 std::ostream& G4Para::StreamInfo( std::ostream    1119 std::ostream& G4Para::StreamInfo( std::ostream& os ) const
820 {                                                 1120 {
821   G4double alpha = std::atan(fTalpha);         << 
822   G4double theta = std::atan(std::sqrt(fTtheta << 
823                                        fTtheta << 
824   G4double phi   = std::atan2(fTthetaSphi,fTth << 
825                                                << 
826   G4long oldprc = os.precision(16);            << 
827   os << "-------------------------------------    1121   os << "-----------------------------------------------------------\n"
828      << "    *** Dump for solid - " << GetName    1122      << "    *** Dump for solid - " << GetName() << " ***\n"
829      << "    =================================    1123      << "    ===================================================\n"
830      << " Solid type: G4Para\n"                   1124      << " Solid type: G4Para\n"
831      << " Parameters:\n"                       << 1125      << " Parameters: \n"
832      << "    half length X: " << fDx/mm << " m << 1126      << "    half length X: " << fDx/mm << " mm \n"
833      << "    half length Y: " << fDy/mm << " m << 1127      << "    half length Y: " << fDy/mm << " mm \n"
834      << "    half length Z: " << fDz/mm << " m << 1128      << "    half length Z: " << fDz/mm << " mm \n"
835      << "    alpha: " << alpha/degree << "degr << 1129      << "    std::tan(alpha)         : " << fTalpha/degree << " degrees \n"
836      << "    theta: " << theta/degree << "degr << 1130      << "    std::tan(theta)*std::cos(phi): " << fTthetaCphi/degree << " degrees \n"
837      << "    phi: " << phi/degree << "degrees\ << 1131      << "    std::tan(theta)*std::sin(phi): " << fTthetaSphi/degree << " degrees \n"
838      << "-------------------------------------    1132      << "-----------------------------------------------------------\n";
839   os.precision(oldprc);                        << 
840                                                   1133 
841   return os;                                      1134   return os;
842 }                                                 1135 }
843                                                   1136 
844 ////////////////////////////////////////////// << 1137 ////////////////////////////////////////////////////////////////////////////
845 //                                             << 
846 // Return a point randomly and uniformly selec << 
847                                                << 
848 G4ThreeVector G4Para::GetPointOnSurface() cons << 
849 {                                              << 
850   G4double DyTalpha = fDy*fTalpha;             << 
851   G4double DzTthetaSphi = fDz*fTthetaSphi;     << 
852   G4double DzTthetaCphi = fDz*fTthetaCphi;     << 
853                                                << 
854   // Set vertices                              << 
855   //                                           << 
856   G4ThreeVector pt[8];                         << 
857   pt[0].set(-DzTthetaCphi-DyTalpha-fDx, -DzTth << 
858   pt[1].set(-DzTthetaCphi-DyTalpha+fDx, -DzTth << 
859   pt[2].set(-DzTthetaCphi+DyTalpha-fDx, -DzTth << 
860   pt[3].set(-DzTthetaCphi+DyTalpha+fDx, -DzTth << 
861   pt[4].set( DzTthetaCphi-DyTalpha-fDx,  DzTth << 
862   pt[5].set( DzTthetaCphi-DyTalpha+fDx,  DzTth << 
863   pt[6].set( DzTthetaCphi+DyTalpha-fDx,  DzTth << 
864   pt[7].set( DzTthetaCphi+DyTalpha+fDx,  DzTth << 
865                                                << 
866   // Set areas (-Z, -Y, +Y, -X, +X, +Z)        << 
867   //                                           << 
868   G4ThreeVector vx(fDx, 0, 0);                 << 
869   G4ThreeVector vy(DyTalpha, fDy, 0);          << 
870   G4ThreeVector vz(DzTthetaCphi, DzTthetaSphi, << 
871                                                << 
872   G4double sxy = fDx*fDy; // (vx.cross(vy)).ma << 
873   G4double sxz = (vx.cross(vz)).mag();         << 
874   G4double syz = (vy.cross(vz)).mag();         << 
875                                                << 
876   G4double sface[6] = { sxy, syz, syz, sxz, sx << 
877   for (G4int i=1; i<6; ++i) { sface[i] += sfac << 
878                                                << 
879   // Select face                               << 
880   //                                           << 
881   G4double select = sface[5]*G4UniformRand();  << 
882   G4int k = 5;                                 << 
883   if (select <= sface[4]) k = 4;               << 
884   if (select <= sface[3]) k = 3;               << 
885   if (select <= sface[2]) k = 2;               << 
886   if (select <= sface[1]) k = 1;               << 
887   if (select <= sface[0]) k = 0;               << 
888                                                << 
889   // Generate point                            << 
890   //                                           << 
891   G4int ip[6][3] = {{0,1,2}, {0,4,1}, {2,3,6}, << 
892   G4double u = G4UniformRand();                << 
893   G4double v = G4UniformRand();                << 
894   return (1.-u-v)*pt[ip[k][0]] + u*pt[ip[k][1] << 
895 }                                              << 
896                                                << 
897 ////////////////////////////////////////////// << 
898 //                                                1138 //
899 // Methods for visualisation                      1139 // Methods for visualisation
900                                                   1140 
901 void G4Para::DescribeYourselfTo ( G4VGraphicsS    1141 void G4Para::DescribeYourselfTo ( G4VGraphicsScene& scene ) const
902 {                                                 1142 {
903   scene.AddSolid (*this);                      << 1143   scene.AddThis (*this);
904 }                                                 1144 }
905                                                   1145 
906 G4Polyhedron* G4Para::CreatePolyhedron () cons    1146 G4Polyhedron* G4Para::CreatePolyhedron () const
907 {                                                 1147 {
908   G4double phi = std::atan2(fTthetaSphi, fTthe    1148   G4double phi = std::atan2(fTthetaSphi, fTthetaCphi);
909   G4double alpha = std::atan(fTalpha);            1149   G4double alpha = std::atan(fTalpha);
910   G4double theta = std::atan(std::sqrt(fTtheta << 1150   G4double theta = std::atan(std::sqrt(fTthetaCphi*fTthetaCphi
911                                        fTtheta << 1151                             +fTthetaSphi*fTthetaSphi));
912                                                   1152     
913   return new G4PolyhedronPara(fDx, fDy, fDz, a    1153   return new G4PolyhedronPara(fDx, fDy, fDz, alpha, theta, phi);
914 }                                                 1154 }
915 #endif                                         << 1155 
                                                   >> 1156 G4NURBS* G4Para::CreateNURBS () const
                                                   >> 1157 {
                                                   >> 1158   // return new G4NURBSbox (fDx, fDy, fDz);
                                                   >> 1159   return 0 ;
                                                   >> 1160 }
                                                   >> 1161 
                                                   >> 1162 //
                                                   >> 1163 //
                                                   >> 1164 ///////////////////////////  End of G4Para.cc ///////////////////////////
916                                                   1165