Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // >> 23 // >> 24 // $Id: G4Para.cc,v 1.11 2002/05/15 09:37:33 gcosmo Exp $ >> 25 // GEANT4 tag $Name: geant4-04-01 $ >> 26 // >> 27 // class G4Para >> 28 // 26 // Implementation for G4Para class 29 // Implementation for G4Para class 27 // 30 // 28 // 21.03.95 P.Kent: Modified for `tolerant' ge << 31 // History: 29 // 31.10.96 V.Grichine: Modifications accordin << 32 // 21.03.95 P.Kent Modified for `tolerant' geom 30 // 28.04.05 V.Grichine: new SurfaceNormal acco << 33 // 31.10.96 V.Grichine Modifications according G4Box/Tubs before to commit 31 // 29.05.17 E.Tcherniaev: complete revision, s << 34 // 18.11.99 V. Grichine , kUndef was added to ESide 32 ////////////////////////////////////////////// << 35 // 14.02.02 V. Grichine , bug fixed in Inside according to proposal of D. Wright 33 36 34 #include "G4Para.hh" 37 #include "G4Para.hh" 35 << 36 #if !defined(G4GEOM_USE_UPARA) << 37 << 38 #include "G4VoxelLimits.hh" 38 #include "G4VoxelLimits.hh" 39 #include "G4AffineTransform.hh" 39 #include "G4AffineTransform.hh" 40 #include "G4BoundingEnvelope.hh" << 41 #include "Randomize.hh" << 42 40 43 #include "G4VPVParameterisation.hh" 41 #include "G4VPVParameterisation.hh" 44 42 45 #include "G4VGraphicsScene.hh" 43 #include "G4VGraphicsScene.hh" >> 44 #include "G4Polyhedron.hh" >> 45 #include "G4NURBS.hh" >> 46 #include "G4NURBSbox.hh" 46 47 47 using namespace CLHEP; << 48 // Private enum: Not for external use >> 49 >> 50 enum ESide {kUndef,kPX,kMX,kPY,kMY,kPZ,kMZ}; 48 51 49 ////////////////////////////////////////////// << 52 // used internally for normal routine 50 // << 51 // Constructor - set & check half widths << 52 53 53 G4Para::G4Para(const G4String& pName, << 54 enum ENSide {kNZ,kNX,kNY}; 54 G4double pDx, G4double pD << 55 G4double pAlpha, G4double << 56 : G4CSGSolid(pName), halfCarTolerance(0.5*kC << 57 { << 58 SetAllParameters(pDx, pDy, pDz, pAlpha, pThe << 59 fRebuildPolyhedron = false; // default valu << 60 } << 61 55 62 ////////////////////////////////////////////// << 56 ///////////////////////////////////////////////////////////////////// 63 // 57 // 64 // Constructor - design of trapezoid based on << 58 // Constructor - check and set half-widths 65 59 66 G4Para::G4Para( const G4String& pName, << 60 void G4Para::SetAllParameters(G4double pDx, G4double pDy, G4double pDz, 67 const G4ThreeVector pt[8] ) << 61 G4double pAlpha, G4double pTheta, G4double pPhi) 68 : G4CSGSolid(pName), halfCarTolerance(0.5*kC << 69 { 62 { 70 // Find dimensions and trigonometric values << 63 if (pDx>0&&pDy>0&&pDz>0) 71 // << 72 fDx = (pt[3].x() - pt[2].x())*0.5; << 73 fDy = (pt[2].y() - pt[1].y())*0.5; << 74 fDz = pt[7].z(); << 75 CheckParameters(); // check dimensions << 76 << 77 fTalpha = (pt[2].x() + pt[3].x() - pt[1].x() << 78 fTthetaCphi = (pt[4].x() + fDy*fTalpha + fDx << 79 fTthetaSphi = (pt[4].y() + fDy)/fDz; << 80 MakePlanes(); << 81 << 82 // Recompute vertices << 83 // << 84 G4ThreeVector v[8]; << 85 G4double DyTalpha = fDy*fTalpha; << 86 G4double DzTthetaSphi = fDz*fTthetaSphi; << 87 G4double DzTthetaCphi = fDz*fTthetaCphi; << 88 v[0].set(-DzTthetaCphi-DyTalpha-fDx, -DzTthe << 89 v[1].set(-DzTthetaCphi-DyTalpha+fDx, -DzTthe << 90 v[2].set(-DzTthetaCphi+DyTalpha-fDx, -DzTthe << 91 v[3].set(-DzTthetaCphi+DyTalpha+fDx, -DzTthe << 92 v[4].set( DzTthetaCphi-DyTalpha-fDx, DzTthe << 93 v[5].set( DzTthetaCphi-DyTalpha+fDx, DzTthe << 94 v[6].set( DzTthetaCphi+DyTalpha-fDx, DzTthe << 95 v[7].set( DzTthetaCphi+DyTalpha+fDx, DzTthe << 96 << 97 // Compare with original vertices << 98 // << 99 for (G4int i=0; i<8; ++i) << 100 { 64 { 101 G4double delx = std::abs(pt[i].x() - v[i]. << 65 fDx=pDx; 102 G4double dely = std::abs(pt[i].y() - v[i]. << 66 fDy=pDy; 103 G4double delz = std::abs(pt[i].z() - v[i]. << 67 fDz=pDz; 104 G4double discrepancy = std::max(std::max(d << 68 fTalpha=tan(pAlpha); 105 if (discrepancy > 0.1*kCarTolerance) << 69 fTthetaCphi=tan(pTheta)*cos(pPhi); 106 { << 70 fTthetaSphi=tan(pTheta)*sin(pPhi); 107 std::ostringstream message; << 71 } 108 G4long oldprc = message.precision(16); << 72 else 109 message << "Invalid vertice coordinates << 73 { 110 << "\nVertix #" << i << ", discr << 74 G4Exception("Error in G4Para::SetAllParameters - Invalid Length Parameters"); 111 << "\n original : " << pt[i] << 112 << "\n recomputed : " << v[i]; << 113 G4cout.precision(oldprc); << 114 G4Exception("G4Para::G4Para()", "GeomSol << 115 FatalException, message); << 116 << 117 } << 118 } 75 } 119 } 76 } 120 77 121 ////////////////////////////////////////////// << 78 /////////////////////////////////////////////////////////////////////////// 122 // << 123 // Fake default constructor - sets only member << 124 // for usage restri << 125 << 126 G4Para::G4Para( __void__& a ) << 127 : G4CSGSolid(a), halfCarTolerance(0.5*kCarTo << 128 { << 129 SetAllParameters(1., 1., 1., 0., 0., 0.); << 130 fRebuildPolyhedron = false; // default value << 131 } << 132 << 133 ////////////////////////////////////////////// << 134 // << 135 // Destructor << 136 << 137 G4Para::~G4Para() = default; << 138 << 139 ////////////////////////////////////////////// << 140 // << 141 // Copy constructor << 142 << 143 G4Para::G4Para(const G4Para& rhs) << 144 : G4CSGSolid(rhs), halfCarTolerance(rhs.half << 145 fDx(rhs.fDx), fDy(rhs.fDy), fDz(rhs.fDz), << 146 fTthetaCphi(rhs.fTthetaCphi),fTthetaSphi(r << 147 { << 148 for (G4int i=0; i<4; ++i) { fPlanes[i] = rhs << 149 } << 150 << 151 ////////////////////////////////////////////// << 152 // 79 // 153 // Assignment operator << 154 80 155 G4Para& G4Para::operator = (const G4Para& rhs) << 81 G4Para::G4Para(const G4String& pName,G4double pDx, G4double pDy, G4double pDz, >> 82 G4double pAlpha, G4double pTheta,G4double pPhi) : G4CSGSolid(pName) 156 { 83 { 157 // Check assignment to self << 84 if (pDx>0&&pDy>0&&pDz>0) 158 // << 85 { 159 if (this == &rhs) { return *this; } << 86 SetAllParameters( pDx, pDy, pDz, pAlpha, pTheta, pPhi); 160 << 87 } 161 // Copy base class data << 88 else 162 // << 89 { 163 G4CSGSolid::operator=(rhs); << 90 G4Exception("Error in G4Para::G4Para - Invalid Length Parameters"); 164 << 91 } 165 // Copy data << 166 // << 167 halfCarTolerance = rhs.halfCarTolerance; << 168 fDx = rhs.fDx; << 169 fDy = rhs.fDy; << 170 fDz = rhs.fDz; << 171 fTalpha = rhs.fTalpha; << 172 fTthetaCphi = rhs.fTthetaCphi; << 173 fTthetaSphi = rhs.fTthetaSphi; << 174 for (G4int i=0; i<4; ++i) { fPlanes[i] = rh << 175 << 176 return *this; << 177 } 92 } 178 93 179 ////////////////////////////////////////////// << 94 //////////////////////////////////////////////////////////////////////// 180 // 95 // 181 // Set all parameters, as for constructor - se << 96 // Constructor - Design of trapezoid based on 8 G4ThreeVector parameters, 182 << 97 // which are its vertices. Checking of planarity with preparation of 183 void G4Para::SetAllParameters(G4double pDx, G4 << 98 // fPlanes[] and than calculation of other members 184 G4double pAlpha, << 185 { << 186 // Reset data of the base class << 187 fCubicVolume = 0; << 188 fSurfaceArea = 0; << 189 fRebuildPolyhedron = true; << 190 << 191 // Set parameters << 192 fDx = pDx; << 193 fDy = pDy; << 194 fDz = pDz; << 195 fTalpha = std::tan(pAlpha); << 196 fTthetaCphi = std::tan(pTheta)*std::cos(pPhi << 197 fTthetaSphi = std::tan(pTheta)*std::sin(pPhi << 198 99 199 CheckParameters(); << 200 MakePlanes(); << 201 } << 202 100 203 ////////////////////////////////////////////// << 101 G4Para::G4Para( const G4String& pName, 204 // << 102 const G4ThreeVector pt[8]) : G4CSGSolid(pName) 205 // Check dimensions << 206 << 207 void G4Para::CheckParameters() << 208 { 103 { 209 if (fDx < 2*kCarTolerance || << 104 if ( pt[0].z()<0 && pt[0].z()==pt[1].z() && pt[0].z()==pt[2].z() && pt[0].z()==pt[3].z() 210 fDy < 2*kCarTolerance || << 105 && pt[4].z()>0 && pt[4].z()==pt[5].z() && pt[4].z()==pt[6].z() && pt[4].z()==pt[7].z() 211 fDz < 2*kCarTolerance) << 106 && (pt[0].z()+pt[4].z())== 0 212 { << 107 && pt[0].y()==pt[1].y() && pt[2].y()==pt[3].y() 213 std::ostringstream message; << 108 && pt[4].y()==pt[5].y() && pt[6].y()==pt[7].y() 214 message << "Invalid (too small or negative << 109 && (pt[0].y()+pt[2].y()+pt[4].y()+pt[6].y())==0 ) 215 << GetName() << 110 { 216 << "\n X - " << fDx << 111 fDz = (pt[7]).z() ; 217 << "\n Y - " << fDy << 112 218 << "\n Z - " << fDz; << 113 fDy = ((pt[2]).y()-(pt[1]).y())*0.5 ; 219 G4Exception("G4Para::CheckParameters()", " << 114 fDx = ((pt[1]).x()-(pt[0]).x())*0.5 ; 220 FatalException, message); << 115 fDx = ((pt[3]).x()-(pt[2]).x())*0.5 ; 221 } << 116 fTalpha = ((pt[2]).x()+(pt[3]).x()-(pt[1]).x()-(pt[0]).x())*0.25/fDy ; 222 } << 117 >> 118 // fDy = ((pt[6]).y()-(pt[5]).y())*0.5 ; >> 119 // fDx = ((pt[5]).x()-(pt[4]).x())*0.5 ; >> 120 // fDx = ((pt[7]).x()-(pt[6]).x())*0.5 ; >> 121 // fTalpha = ((pt[6]).x()+(pt[7]).x()-(pt[5]).x()-(pt[4]).x())*0.25/fDy ; 223 122 224 ////////////////////////////////////////////// << 123 fTthetaCphi = ((pt[4]).x()+fDy*fTalpha+fDx)/fDz ; 225 // << 124 fTthetaSphi = ((pt[4]).y()+fDy)/fDz ; 226 // Set side planes << 227 << 228 void G4Para::MakePlanes() << 229 { << 230 G4ThreeVector vx(1, 0, 0); << 231 G4ThreeVector vy(fTalpha, 1, 0); << 232 G4ThreeVector vz(fTthetaCphi, fTthetaSphi, 1 << 233 << 234 // Set -Y & +Y planes << 235 // << 236 G4ThreeVector ynorm = (vx.cross(vz)).unit(); << 237 << 238 fPlanes[0].a = 0.; << 239 fPlanes[0].b = ynorm.y(); << 240 fPlanes[0].c = ynorm.z(); << 241 fPlanes[0].d = fPlanes[0].b*fDy; // point (0 << 242 << 243 fPlanes[1].a = 0.; << 244 fPlanes[1].b = -fPlanes[0].b; << 245 fPlanes[1].c = -fPlanes[0].c; << 246 fPlanes[1].d = fPlanes[0].d; << 247 << 248 // Set -X & +X planes << 249 // << 250 G4ThreeVector xnorm = (vz.cross(vy)).unit(); << 251 << 252 fPlanes[2].a = xnorm.x(); << 253 fPlanes[2].b = xnorm.y(); << 254 fPlanes[2].c = xnorm.z(); << 255 fPlanes[2].d = fPlanes[2].a*fDx; // point (f << 256 << 257 fPlanes[3].a = -fPlanes[2].a; << 258 fPlanes[3].b = -fPlanes[2].b; << 259 fPlanes[3].c = -fPlanes[2].c; << 260 fPlanes[3].d = fPlanes[2].d; << 261 } << 262 125 263 ////////////////////////////////////////////// << 126 } 264 // << 127 else 265 // Get volume << 128 { >> 129 G4Exception("Error in G4Para::G4Para - Invalid vertice coordinates"); >> 130 } 266 131 267 G4double G4Para::GetCubicVolume() << 132 268 { << 269 // It is like G4Box, since para transformati << 270 if (fCubicVolume == 0) << 271 { << 272 fCubicVolume = 8*fDx*fDy*fDz; << 273 } << 274 return fCubicVolume; << 275 } 133 } 276 134 277 ////////////////////////////////////////////// 135 ////////////////////////////////////////////////////////////////////////// 278 // 136 // 279 // Get surface area << 280 137 281 G4double G4Para::GetSurfaceArea() << 138 G4Para::~G4Para() 282 { 139 { 283 if(fSurfaceArea == 0) << 140 ; 284 { << 285 G4ThreeVector vx(fDx, 0, 0); << 286 G4ThreeVector vy(fDy*fTalpha, fDy, 0); << 287 G4ThreeVector vz(fDz*fTthetaCphi, fDz*fTth << 288 << 289 G4double sxy = fDx*fDy; // (vx.cross(vy)). << 290 G4double sxz = (vx.cross(vz)).mag(); << 291 G4double syz = (vy.cross(vz)).mag(); << 292 << 293 fSurfaceArea = 8*(sxy+sxz+syz); << 294 } << 295 return fSurfaceArea; << 296 } 141 } 297 142 298 ////////////////////////////////////////////// 143 ////////////////////////////////////////////////////////////////////////// 299 // 144 // 300 // Dispatch to parameterisation for replicatio 145 // Dispatch to parameterisation for replication mechanism dimension 301 // computation & modification << 146 // computation & modification. 302 147 303 void G4Para::ComputeDimensions( G4VPVPara << 148 void G4Para::ComputeDimensions(G4VPVParameterisation* p, 304 const G4int n, 149 const G4int n, 305 const G4VPhysi << 150 const G4VPhysicalVolume* pRep) 306 { 151 { 307 p->ComputeDimensions(*this,n,pRep); << 152 p->ComputeDimensions(*this,n,pRep); 308 } 153 } 309 154 310 ////////////////////////////////////////////// << 311 // << 312 // Get bounding box << 313 << 314 void G4Para::BoundingLimits(G4ThreeVector& pMi << 315 { << 316 G4double dz = GetZHalfLength(); << 317 G4double dx = GetXHalfLength(); << 318 G4double dy = GetYHalfLength(); << 319 << 320 G4double x0 = dz*fTthetaCphi; << 321 G4double x1 = dy*GetTanAlpha(); << 322 G4double xmin = << 323 std::min( << 324 std::min( << 325 std::min(-x0-x1-dx,-x0+x1-dx),x0-x1-dx),x0 << 326 G4double xmax = << 327 std::max( << 328 std::max( << 329 std::max(-x0-x1+dx,-x0+x1+dx),x0-x1+dx),x0 << 330 << 331 G4double y0 = dz*fTthetaSphi; << 332 G4double ymin = std::min(-y0-dy,y0-dy); << 333 G4double ymax = std::max(-y0+dy,y0+dy); << 334 << 335 pMin.set(xmin,ymin,-dz); << 336 pMax.set(xmax,ymax, dz); << 337 << 338 // Check correctness of the bounding box << 339 // << 340 if (pMin.x() >= pMax.x() || pMin.y() >= pMax << 341 { << 342 std::ostringstream message; << 343 message << "Bad bounding box (min >= max) << 344 << GetName() << " !" << 345 << "\npMin = " << pMin << 346 << "\npMax = " << pMax; << 347 G4Exception("G4Para::BoundingLimits()", "G << 348 JustWarning, message); << 349 DumpInfo(); << 350 } << 351 } << 352 155 353 ////////////////////////////////////////////// << 156 ////////////////////////////////////////////////////////////// 354 // 157 // 355 // Calculate extent under transform and specif 158 // Calculate extent under transform and specified limit 356 159 357 G4bool G4Para::CalculateExtent( const EAxis pA << 160 G4bool G4Para::CalculateExtent(const EAxis pAxis, 358 const G4VoxelL << 161 const G4VoxelLimits& pVoxelLimit, 359 const G4Affine << 162 const G4AffineTransform& pTransform, 360 G4double& << 163 G4double& pMin, G4double& pMax) const 361 { << 164 { 362 G4ThreeVector bmin, bmax; << 165 G4bool flag; 363 G4bool exist; << 166 364 << 167 if (!pTransform.IsRotated()) 365 // Check bounding box (bbox) << 168 { 366 // << 169 // Special case handling for unrotated trapezoids 367 BoundingLimits(bmin,bmax); << 170 // Compute z/x/y/ mins and maxs respecting limits, with early returns 368 G4BoundingEnvelope bbox(bmin,bmax); << 171 // if outside limits. Then switch() on pAxis 369 #ifdef G4BBOX_EXTENT << 172 G4int i ; 370 return bbox.CalculateExtent(pAxis,pVoxelLimi << 173 G4double xoffset,xMin,xMax; 371 #endif << 174 G4double yoffset,yMin,yMax; 372 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox << 175 G4double zoffset,zMin,zMax; 373 { << 176 G4double temp[8] ; // some points for intersection with zMin/zMax 374 return exist = pMin < pMax; << 177 375 } << 178 xoffset=pTransform.NetTranslation().x(); 376 << 179 yoffset=pTransform.NetTranslation().y(); 377 // Set bounding envelope (benv) and calculat << 180 zoffset=pTransform.NetTranslation().z(); 378 // << 181 379 G4double dz = GetZHalfLength(); << 182 G4ThreeVector pt[8]; // vertices after translation 380 G4double dx = GetXHalfLength(); << 183 pt[0]=G4ThreeVector(xoffset-fDz*fTthetaCphi-fDy*fTalpha-fDx, 381 G4double dy = GetYHalfLength(); << 184 yoffset-fDz*fTthetaSphi-fDy,zoffset-fDz); 382 << 185 pt[1]=G4ThreeVector(xoffset-fDz*fTthetaCphi-fDy*fTalpha+fDx, 383 G4double x0 = dz*fTthetaCphi; << 186 yoffset-fDz*fTthetaSphi-fDy,zoffset-fDz); 384 G4double x1 = dy*GetTanAlpha(); << 187 pt[2]=G4ThreeVector(xoffset-fDz*fTthetaCphi+fDy*fTalpha-fDx, 385 G4double y0 = dz*fTthetaSphi; << 188 yoffset-fDz*fTthetaSphi+fDy,zoffset-fDz); 386 << 189 pt[3]=G4ThreeVector(xoffset-fDz*fTthetaCphi+fDy*fTalpha+fDx, 387 G4ThreeVectorList baseA(4), baseB(4); << 190 yoffset-fDz*fTthetaSphi+fDy,zoffset-fDz); 388 baseA[0].set(-x0-x1-dx,-y0-dy,-dz); << 191 pt[4]=G4ThreeVector(xoffset+fDz*fTthetaCphi-fDy*fTalpha-fDx, 389 baseA[1].set(-x0-x1+dx,-y0-dy,-dz); << 192 yoffset+fDz*fTthetaSphi-fDy,zoffset+fDz); 390 baseA[2].set(-x0+x1+dx,-y0+dy,-dz); << 193 pt[5]=G4ThreeVector(xoffset+fDz*fTthetaCphi-fDy*fTalpha+fDx, 391 baseA[3].set(-x0+x1-dx,-y0+dy,-dz); << 194 yoffset+fDz*fTthetaSphi-fDy,zoffset+fDz); 392 << 195 pt[6]=G4ThreeVector(xoffset+fDz*fTthetaCphi+fDy*fTalpha-fDx, 393 baseB[0].set(+x0-x1-dx, y0-dy, dz); << 196 yoffset+fDz*fTthetaSphi+fDy,zoffset+fDz); 394 baseB[1].set(+x0-x1+dx, y0-dy, dz); << 197 pt[7]=G4ThreeVector(xoffset+fDz*fTthetaCphi+fDy*fTalpha+fDx, 395 baseB[2].set(+x0+x1+dx, y0+dy, dz); << 198 yoffset+fDz*fTthetaSphi+fDy,zoffset+fDz); 396 baseB[3].set(+x0+x1-dx, y0+dy, dz); << 199 zMin=zoffset-fDz; 397 << 200 zMax=zoffset+fDz; 398 std::vector<const G4ThreeVectorList *> polyg << 201 if (pVoxelLimit.IsZLimited()) 399 polygons[0] = &baseA; << 202 { 400 polygons[1] = &baseB; << 203 if (zMin>pVoxelLimit.GetMaxZExtent()+kCarTolerance 401 << 204 ||zMax<pVoxelLimit.GetMinZExtent()-kCarTolerance) 402 G4BoundingEnvelope benv(bmin,bmax,polygons); << 205 { 403 exist = benv.CalculateExtent(pAxis,pVoxelLim << 206 return false; 404 return exist; << 207 } 405 } << 208 else 406 << 209 { 407 ////////////////////////////////////////////// << 210 if (zMin<pVoxelLimit.GetMinZExtent()) 408 // << 211 { 409 // Determine where is point p, inside/on_surfa << 212 zMin=pVoxelLimit.GetMinZExtent(); 410 // << 213 } 411 << 214 if (zMax>pVoxelLimit.GetMaxZExtent()) 412 EInside G4Para::Inside( const G4ThreeVector& p << 215 { 413 { << 216 zMax=pVoxelLimit.GetMaxZExtent(); 414 G4double xx = fPlanes[2].a*p.x()+fPlanes[2]. << 217 } 415 G4double dx = std::abs(xx) + fPlanes[2].d; << 218 } >> 219 } >> 220 >> 221 temp[0] = pt[0].y()+(pt[4].y()-pt[0].y())*(zMin-pt[0].z())/(pt[4].z()-pt[0].z()) ; >> 222 temp[1] = pt[0].y()+(pt[4].y()-pt[0].y())*(zMax-pt[0].z())/(pt[4].z()-pt[0].z()) ; >> 223 temp[2] = pt[2].y()+(pt[6].y()-pt[2].y())*(zMin-pt[2].z())/(pt[6].z()-pt[2].z()) ; >> 224 temp[3] = pt[2].y()+(pt[6].y()-pt[2].y())*(zMax-pt[2].z())/(pt[6].z()-pt[2].z()) ; >> 225 yMax = yoffset - fabs(fDz*fTthetaSphi) - fDy - fDy ; >> 226 yMin = -yMax ; >> 227 for(i=0;i<4;i++) >> 228 { >> 229 if(temp[i] > yMax) yMax = temp[i] ; >> 230 if(temp[i] < yMin) yMin = temp[i] ; >> 231 } >> 232 >> 233 if (pVoxelLimit.IsYLimited()) >> 234 { >> 235 if (yMin>pVoxelLimit.GetMaxYExtent()+kCarTolerance >> 236 ||yMax<pVoxelLimit.GetMinYExtent()-kCarTolerance) >> 237 { >> 238 return false; >> 239 } >> 240 else >> 241 { >> 242 if (yMin<pVoxelLimit.GetMinYExtent()) >> 243 { >> 244 yMin=pVoxelLimit.GetMinYExtent(); >> 245 } >> 246 if (yMax>pVoxelLimit.GetMaxYExtent()) >> 247 { >> 248 yMax=pVoxelLimit.GetMaxYExtent(); >> 249 } >> 250 } >> 251 } >> 252 >> 253 temp[0] = pt[0].x()+(pt[4].x()-pt[0].x())*(zMin-pt[0].z())/(pt[4].z()-pt[0].z()) ; >> 254 temp[1] = pt[0].x()+(pt[4].x()-pt[0].x())*(zMax-pt[0].z())/(pt[4].z()-pt[0].z()) ; >> 255 temp[2] = pt[2].x()+(pt[6].x()-pt[2].x())*(zMin-pt[2].z())/(pt[6].z()-pt[2].z()) ; >> 256 temp[3] = pt[2].x()+(pt[6].x()-pt[2].x())*(zMax-pt[2].z())/(pt[6].z()-pt[2].z()) ; >> 257 temp[4] = pt[3].x()+(pt[7].x()-pt[3].x())*(zMin-pt[3].z())/(pt[7].z()-pt[3].z()) ; >> 258 temp[5] = pt[3].x()+(pt[7].x()-pt[3].x())*(zMax-pt[3].z())/(pt[7].z()-pt[3].z()) ; >> 259 temp[6] = pt[1].x()+(pt[5].x()-pt[1].x())*(zMin-pt[1].z())/(pt[5].z()-pt[1].z()) ; >> 260 temp[7] = pt[1].x()+(pt[5].x()-pt[1].x())*(zMax-pt[1].z())/(pt[5].z()-pt[1].z()) ; >> 261 >> 262 xMax = xoffset - fabs(fDz*fTthetaCphi) - fDx - fDx -fDx - fDx; >> 263 xMin = -xMax ; >> 264 for(i=0;i<8;i++) >> 265 { >> 266 if(temp[i] > xMax) xMax = temp[i] ; >> 267 if(temp[i] < xMin) xMin = temp[i] ; >> 268 } >> 269 // xMax/Min = f(yMax/Min) ? >> 270 if (pVoxelLimit.IsXLimited()) >> 271 { >> 272 if (xMin>pVoxelLimit.GetMaxXExtent()+kCarTolerance >> 273 ||xMax<pVoxelLimit.GetMinXExtent()-kCarTolerance) >> 274 { >> 275 return false; >> 276 } >> 277 else >> 278 { >> 279 if (xMin<pVoxelLimit.GetMinXExtent()) >> 280 { >> 281 xMin=pVoxelLimit.GetMinXExtent(); >> 282 } >> 283 if (xMax>pVoxelLimit.GetMaxXExtent()) >> 284 { >> 285 xMax=pVoxelLimit.GetMaxXExtent(); >> 286 } >> 287 } >> 288 } >> 289 >> 290 switch (pAxis) >> 291 { >> 292 case kXAxis: >> 293 pMin=xMin; >> 294 pMax=xMax; >> 295 break; >> 296 case kYAxis: >> 297 pMin=yMin; >> 298 pMax=yMax; >> 299 break; >> 300 case kZAxis: >> 301 pMin=zMin; >> 302 pMax=zMax; >> 303 break; >> 304 default: >> 305 break; >> 306 } 416 307 417 G4double yy = fPlanes[0].b*p.y()+fPlanes[0]. << 308 pMin-=kCarTolerance; 418 G4double dy = std::abs(yy) + fPlanes[0].d; << 309 pMax+=kCarTolerance; 419 G4double dxy = std::max(dx,dy); << 420 310 421 G4double dz = std::abs(p.z())-fDz; << 311 flag = true; 422 G4double dist = std::max(dxy,dz); << 312 } >> 313 else >> 314 { >> 315 // General rotated case - create and clip mesh to boundaries 423 316 424 if (dist > halfCarTolerance) return kOutside << 317 G4bool existsAfterClip=false; 425 return (dist > -halfCarTolerance) ? kSurface << 318 G4ThreeVectorList *vertices; 426 } << 427 319 428 ////////////////////////////////////////////// << 320 pMin=+kInfinity; 429 // << 321 pMax=-kInfinity; 430 // Determine side where point is, and return c << 322 // Calculate rotated vertex coordinates 431 << 323 432 G4ThreeVector G4Para::SurfaceNormal( const G4T << 324 vertices=CreateRotatedVertices(pTransform); 433 { << 325 ClipCrossSection(vertices,0,pVoxelLimit,pAxis,pMin,pMax); 434 G4int nsurf = 0; // number of surfaces where << 326 ClipCrossSection(vertices,4,pVoxelLimit,pAxis,pMin,pMax); >> 327 ClipBetweenSections(vertices,0,pVoxelLimit,pAxis,pMin,pMax); >> 328 >> 329 if (pMin!=kInfinity||pMax!=-kInfinity) >> 330 { >> 331 existsAfterClip=true; >> 332 >> 333 // Add 2*tolerance to avoid precision troubles >> 334 pMin-=kCarTolerance; >> 335 pMax+=kCarTolerance; >> 336 >> 337 } >> 338 else >> 339 { >> 340 // Check for case where completely enveloping clipping volume >> 341 // If point inside then we are confident that the solid completely >> 342 // envelopes the clipping volume. Hence set min/max extents according >> 343 // to clipping volume extents along the specified axis. >> 344 >> 345 G4ThreeVector clipCentre( >> 346 (pVoxelLimit.GetMinXExtent()+pVoxelLimit.GetMaxXExtent())*0.5, >> 347 (pVoxelLimit.GetMinYExtent()+pVoxelLimit.GetMaxYExtent())*0.5, >> 348 (pVoxelLimit.GetMinZExtent()+pVoxelLimit.GetMaxZExtent())*0.5); >> 349 >> 350 if (Inside(pTransform.Inverse().TransformPoint(clipCentre))!=kOutside) >> 351 { >> 352 existsAfterClip=true; >> 353 pMin=pVoxelLimit.GetMinExtent(pAxis); >> 354 pMax=pVoxelLimit.GetMaxExtent(pAxis); >> 355 } >> 356 } >> 357 delete vertices ; // 'new' in the function called >> 358 flag = existsAfterClip ; >> 359 } >> 360 return flag; >> 361 } >> 362 >> 363 ///////////////////////////////////////////////////////////////////////////// >> 364 // >> 365 // Check in p is inside/on surface/outside solid >> 366 >> 367 EInside G4Para::Inside(const G4ThreeVector& p) const >> 368 { >> 369 G4double xt, yt, yt1; >> 370 EInside in = kOutside; >> 371 >> 372 yt1 = p.y() - fTthetaSphi*p.z(); >> 373 yt = fabs(yt1) ; 435 374 436 // Check Z faces << 375 // xt = fabs( p.x() - fTthetaCphi*p.z() - fTalpha*yt ); 437 // << 438 G4double nz = 0; << 439 G4double dz = std::abs(p.z()) - fDz; << 440 if (std::abs(dz) <= halfCarTolerance) << 441 { << 442 nz = (p.z() < 0) ? -1 : 1; << 443 ++nsurf; << 444 } << 445 376 446 // Check Y faces << 377 xt = fabs( p.x() - fTthetaCphi*p.z() - fTalpha*yt1 ); 447 // << 448 G4double ny = 0; << 449 G4double yy = fPlanes[0].b*p.y()+fPlanes[0]. << 450 if (std::abs(fPlanes[0].d + yy) <= halfCarTo << 451 { << 452 ny = fPlanes[0].b; << 453 nz += fPlanes[0].c; << 454 ++nsurf; << 455 } << 456 else if (std::abs(fPlanes[1].d - yy) <= half << 457 { << 458 ny = fPlanes[1].b; << 459 nz += fPlanes[1].c; << 460 ++nsurf; << 461 } << 462 378 463 // Check X faces << 379 if ( fabs( p.z() ) <= fDz - kCarTolerance*0.5) 464 // << 465 G4double nx = 0; << 466 G4double xx = fPlanes[2].a*p.x()+fPlanes[2]. << 467 if (std::abs(fPlanes[2].d + xx) <= halfCarTo << 468 { 380 { 469 nx = fPlanes[2].a; << 381 if (yt <= fDy - kCarTolerance*0.5) 470 ny += fPlanes[2].b; << 382 { 471 nz += fPlanes[2].c; << 383 if ( xt <= fDx - kCarTolerance*0.5 ) in = kInside; 472 ++nsurf; << 384 else if ( xt <= fDx + kCarTolerance*0.5 ) in = kSurface; >> 385 } >> 386 else if ( yt <= fDy + kCarTolerance*0.5) >> 387 { >> 388 if ( xt <= fDx + kCarTolerance*0.5 ) in = kSurface; >> 389 } 473 } 390 } 474 else if (std::abs(fPlanes[3].d - xx) <= half << 391 else if ( fabs(p.z()) <= fDz + kCarTolerance*0.5 ) 475 { 392 { 476 nx = fPlanes[3].a; << 477 ny += fPlanes[3].b; << 478 nz += fPlanes[3].c; << 479 ++nsurf; << 480 } << 481 393 482 // Return normal << 394 if ( yt <= fDy + kCarTolerance*0.5) 483 // << 395 { 484 if (nsurf == 1) return {nx,ny,nz}; << 396 if ( xt <= fDx + kCarTolerance*0.5 ) in = kSurface; 485 else if (nsurf != 0) return G4ThreeVector(nx << 397 } 486 else << 487 { << 488 // Point is not on the surface << 489 // << 490 #ifdef G4CSGDEBUG << 491 std::ostringstream message; << 492 G4int oldprc = message.precision(16); << 493 message << "Point p is not on surface (!?) << 494 << GetName() << G4endl; << 495 message << "Position:\n"; << 496 message << " p.x() = " << p.x()/mm << " << 497 message << " p.y() = " << p.y()/mm << " << 498 message << " p.z() = " << p.z()/mm << " << 499 G4cout.precision(oldprc) ; << 500 G4Exception("G4Para::SurfaceNormal(p)", "G << 501 JustWarning, message ); << 502 DumpInfo(); << 503 #endif << 504 return ApproxSurfaceNormal(p); << 505 } 398 } >> 399 return in; 506 } 400 } 507 401 508 ////////////////////////////////////////////// << 402 /////////////////////////////////////////////////////////////////////////// 509 // 403 // 510 // Algorithm for SurfaceNormal() following the << 404 // Calculate side nearest to p, and return normal 511 // for points not on the surface << 405 // If 2+ sides equidistant, first side's normal returned (arbitrarily) 512 406 513 G4ThreeVector G4Para::ApproxSurfaceNormal( con << 407 G4ThreeVector G4Para::SurfaceNormal( const G4ThreeVector& p) const 514 { 408 { 515 G4double dist = -DBL_MAX; << 409 ENSide side; 516 G4int iside = 0; << 410 G4ThreeVector norm; 517 for (G4int i=0; i<4; ++i) << 411 G4double distx,disty,distz; 518 { << 412 G4double newpx,newpy,xshift; 519 G4double d = fPlanes[i].a*p.x() + << 413 G4double calpha,salpha; // Sin/Cos(alpha) - needed to recalc G4Parameter 520 fPlanes[i].b*p.y() + << 414 G4double tntheta,cosntheta; // tan and cos of normal's theta component 521 fPlanes[i].c*p.z() + fPlanes[ << 415 G4double ycomp; 522 if (d > dist) { dist = d; iside = i; } << 523 } << 524 416 525 G4double distz = std::abs(p.z()) - fDz; << 417 newpx=p.x()-fTthetaCphi*p.z(); 526 if (dist > distz) << 418 newpy=p.y()-fTthetaSphi*p.z(); 527 return { fPlanes[iside].a, fPlanes[iside]. << 528 else << 529 return { 0, 0, (G4double)((p.z() < 0) ? -1 << 530 } << 531 419 532 ////////////////////////////////////////////// << 420 calpha=1/sqrt(1+fTalpha*fTalpha); >> 421 if (fTalpha) >> 422 { >> 423 salpha=-calpha/fTalpha; // NOTE: actually use MINUS sin(alpha) >> 424 } >> 425 else >> 426 { >> 427 salpha=0; >> 428 } >> 429 >> 430 xshift=newpx*calpha+newpy*salpha; >> 431 >> 432 distx=fabs(fabs(xshift)-fDx*calpha); >> 433 disty=fabs(fabs(newpy)-fDy); >> 434 distz=fabs(fabs(p.z())-fDz); >> 435 >> 436 if (distx<disty) >> 437 { >> 438 if (distx<distz) side=kNX; >> 439 else side=kNZ; >> 440 } >> 441 else >> 442 { >> 443 if (disty<distz) side=kNY; >> 444 else side=kNZ; >> 445 } >> 446 >> 447 switch (side) >> 448 { >> 449 case kNX: >> 450 tntheta=fTthetaCphi*calpha+fTthetaSphi*salpha; >> 451 if (xshift<0) >> 452 { >> 453 cosntheta=-1/sqrt(1+tntheta*tntheta); >> 454 } >> 455 else >> 456 { >> 457 cosntheta=1/sqrt(1+tntheta*tntheta); >> 458 } >> 459 norm=G4ThreeVector(calpha*cosntheta,salpha*cosntheta,-tntheta*cosntheta); >> 460 break; >> 461 case kNY: >> 462 if (newpy<0) >> 463 { >> 464 ycomp=-1/sqrt(1+fTthetaSphi*fTthetaSphi); >> 465 } >> 466 else >> 467 { >> 468 ycomp=1/sqrt(1+fTthetaSphi*fTthetaSphi); >> 469 } >> 470 norm=G4ThreeVector(0,ycomp,-fTthetaSphi*ycomp); >> 471 break; >> 472 case kNZ: >> 473 // Closest to Z >> 474 if (p.z()>=0) >> 475 { >> 476 norm=G4ThreeVector(0,0,1); >> 477 } >> 478 else >> 479 { >> 480 norm=G4ThreeVector(0,0,-1); >> 481 } >> 482 break; >> 483 } >> 484 return norm; >> 485 } >> 486 >> 487 ////////////////////////////////////////////////////////////////////////////// >> 488 // >> 489 // Calculate distance to shape from outside - return kInfinity if no intersection >> 490 // >> 491 // ALGORITHM: >> 492 // For each component, calculate pair of minimum and maximum intersection >> 493 // values for which the particle is in the extent of the shape >> 494 // - The smallest (MAX minimum) allowed distance of the pairs is intersect >> 495 // - Z plane intersectin uses tolerance >> 496 // - XZ YZ planes use logic & *SLIGHTLY INCORRECT* tolerance >> 497 // (this saves at least 1 sqrt, 1 multiply and 1 divide... in applicable >> 498 // cases) >> 499 // - Note: XZ and YZ planes each divide space into four regions, >> 500 // characterised by ss1 ss2 >> 501 >> 502 G4double G4Para::DistanceToIn(const G4ThreeVector& p,const G4ThreeVector& v) const >> 503 { >> 504 G4double snxt; // snxt = default return value >> 505 G4double smin,smax; >> 506 G4double tmin,tmax; >> 507 G4double yt,vy,xt,vx; >> 508 G4double max; >> 509 // >> 510 // Z Intersection range >> 511 // >> 512 if (v.z()>0) >> 513 { >> 514 max=fDz-p.z(); >> 515 if (max>kCarTolerance*0.5) >> 516 { >> 517 smax=max/v.z(); >> 518 smin=(-fDz-p.z())/v.z(); >> 519 } >> 520 else >> 521 { >> 522 return snxt=kInfinity; >> 523 } >> 524 } >> 525 else if (v.z()<0) >> 526 { >> 527 max=-fDz-p.z(); >> 528 if (max<-kCarTolerance*0.5) >> 529 { >> 530 smax=max/v.z(); >> 531 smin=(fDz-p.z())/v.z(); >> 532 } >> 533 else >> 534 { >> 535 return snxt=kInfinity; >> 536 } >> 537 } >> 538 else >> 539 { >> 540 if (fabs(p.z())<=fDz) // Inside >> 541 { >> 542 smin=0; >> 543 smax=kInfinity; >> 544 } >> 545 else >> 546 { >> 547 return snxt=kInfinity; >> 548 } >> 549 } >> 550 533 // 551 // 534 // Calculate distance to shape from outside << 552 // Y G4Parallel planes intersection 535 // - return kInfinity if no intersection << 553 // 536 << 554 yt=p.y()-fTthetaSphi*p.z(); 537 G4double G4Para::DistanceToIn(const G4ThreeVec << 555 vy=v.y()-fTthetaSphi*v.z(); 538 const G4ThreeVec << 539 { << 540 // Z intersections << 541 // << 542 if ((std::abs(p.z()) - fDz) >= -halfCarToler << 543 return kInfinity; << 544 G4double invz = (-v.z() == 0) ? DBL_MAX : -1 << 545 G4double dz = (invz < 0) ? fDz : -fDz; << 546 G4double tzmin = (p.z() + dz)*invz; << 547 G4double tzmax = (p.z() - dz)*invz; << 548 << 549 // Y intersections << 550 // << 551 G4double tmin0 = tzmin, tmax0 = tzmax; << 552 G4double cos0 = fPlanes[0].b*v.y() + fPlanes << 553 G4double disy = fPlanes[0].b*p.y() + fPlanes << 554 G4double dis0 = fPlanes[0].d + disy; << 555 if (dis0 >= -halfCarTolerance) << 556 { << 557 if (cos0 >= 0) return kInfinity; << 558 G4double tmp = -dis0/cos0; << 559 if (tmin0 < tmp) tmin0 = tmp; << 560 } << 561 else if (cos0 > 0) << 562 { << 563 G4double tmp = -dis0/cos0; << 564 if (tmax0 > tmp) tmax0 = tmp; << 565 } << 566 << 567 G4double tmin1 = tmin0, tmax1 = tmax0; << 568 G4double cos1 = -cos0; << 569 G4double dis1 = fPlanes[1].d - disy; << 570 if (dis1 >= -halfCarTolerance) << 571 { << 572 if (cos1 >= 0) return kInfinity; << 573 G4double tmp = -dis1/cos1; << 574 if (tmin1 < tmp) tmin1 = tmp; << 575 } << 576 else if (cos1 > 0) << 577 { << 578 G4double tmp = -dis1/cos1; << 579 if (tmax1 > tmp) tmax1 = tmp; << 580 } << 581 << 582 // X intersections << 583 // << 584 G4double tmin2 = tmin1, tmax2 = tmax1; << 585 G4double cos2 = fPlanes[2].a*v.x() + fPlanes << 586 G4double disx = fPlanes[2].a*p.x() + fPlanes << 587 G4double dis2 = fPlanes[2].d + disx; << 588 if (dis2 >= -halfCarTolerance) << 589 { << 590 if (cos2 >= 0) return kInfinity; << 591 G4double tmp = -dis2/cos2; << 592 if (tmin2 < tmp) tmin2 = tmp; << 593 } << 594 else if (cos2 > 0) << 595 { << 596 G4double tmp = -dis2/cos2; << 597 if (tmax2 > tmp) tmax2 = tmp; << 598 } << 599 << 600 G4double tmin3 = tmin2, tmax3 = tmax2; << 601 G4double cos3 = -cos2; << 602 G4double dis3 = fPlanes[3].d - disx; << 603 if (dis3 >= -halfCarTolerance) << 604 { << 605 if (cos3 >= 0) return kInfinity; << 606 G4double tmp = -dis3/cos3; << 607 if (tmin3 < tmp) tmin3 = tmp; << 608 } << 609 else if (cos3 > 0) << 610 { << 611 G4double tmp = -dis3/cos3; << 612 if (tmax3 > tmp) tmax3 = tmp; << 613 } << 614 556 615 // Find distance << 557 if (vy>0) 616 // << 558 { 617 G4double tmin = tmin3, tmax = tmax3; << 559 max=fDy-yt; 618 if (tmax <= tmin + halfCarTolerance) return << 560 if (max>kCarTolerance*0.5) 619 return (tmin < halfCarTolerance ) ? 0. : tmi << 561 { >> 562 tmax=max/vy; >> 563 tmin=(-fDy-yt)/vy; >> 564 } >> 565 else >> 566 { >> 567 return snxt=kInfinity; >> 568 } >> 569 } >> 570 else if (vy<0) >> 571 { >> 572 max=-fDy-yt; >> 573 if (max<-kCarTolerance*0.5) >> 574 { >> 575 tmax=max/vy; >> 576 tmin=(fDy-yt)/vy; >> 577 } >> 578 else >> 579 { >> 580 return snxt=kInfinity; >> 581 } >> 582 } >> 583 else >> 584 { >> 585 if (fabs(yt)<=fDy) >> 586 { >> 587 tmin=0; >> 588 tmax=kInfinity; >> 589 } >> 590 else >> 591 { >> 592 return snxt=kInfinity; >> 593 } >> 594 } >> 595 >> 596 // Re-Calc valid intersection range >> 597 if (tmin>smin) smin=tmin; >> 598 if (tmax<smax) smax=tmax; >> 599 if (smax<=smin) >> 600 { >> 601 return snxt=kInfinity; >> 602 } >> 603 else >> 604 { >> 605 // >> 606 // X G4Parallel planes intersection >> 607 // >> 608 xt=p.x()-fTthetaCphi*p.z()-fTalpha*yt; >> 609 vx=v.x()-fTthetaCphi*v.z()-fTalpha*vy; >> 610 if (vx>0) >> 611 { >> 612 max=fDx-xt; >> 613 if (max>kCarTolerance*0.5) >> 614 { >> 615 tmax=max/vx; >> 616 tmin=(-fDx-xt)/vx; >> 617 } >> 618 else >> 619 { >> 620 return snxt=kInfinity; >> 621 } >> 622 } >> 623 else if (vx<0) >> 624 { >> 625 max=-fDx-xt; >> 626 if (max<-kCarTolerance*0.5) >> 627 { >> 628 tmax=max/vx; >> 629 tmin=(fDx-xt)/vx; >> 630 } >> 631 else >> 632 { >> 633 return snxt=kInfinity; >> 634 } >> 635 } >> 636 else >> 637 { >> 638 if (fabs(xt)<=fDx) >> 639 { >> 640 tmin=0; >> 641 tmax=kInfinity; >> 642 } >> 643 else >> 644 { >> 645 return snxt=kInfinity; >> 646 } >> 647 } >> 648 if (tmin>smin) smin=tmin; >> 649 if (tmax<smax) smax=tmax; >> 650 } >> 651 >> 652 if (smax>0&&smin<smax) >> 653 { >> 654 if (smin>0) >> 655 { >> 656 snxt=smin; >> 657 } >> 658 else >> 659 { >> 660 snxt=0; >> 661 } >> 662 } >> 663 else >> 664 { >> 665 snxt=kInfinity; >> 666 } >> 667 return snxt; 620 } 668 } 621 669 622 ////////////////////////////////////////////// << 670 //////////////////////////////////////////////////////////////////////////// 623 // 671 // 624 // Calculate exact shortest distance to any bo 672 // Calculate exact shortest distance to any boundary from outside 625 // - returns 0 is point inside << 673 // - Returns 0 is point inside 626 674 627 G4double G4Para::DistanceToIn( const G4ThreeVe << 675 G4double G4Para::DistanceToIn(const G4ThreeVector& p) const 628 { 676 { 629 G4double xx = fPlanes[2].a*p.x()+fPlanes[2]. << 677 G4double safe; 630 G4double dx = std::abs(xx) + fPlanes[2].d; << 678 G4double distz1,distz2,disty1,disty2,distx1,distx2; 631 << 679 G4double trany,cosy,tranx,cosx; 632 G4double yy = fPlanes[0].b*p.y()+fPlanes[0]. << 680 633 G4double dy = std::abs(yy) + fPlanes[0].d; << 681 // Z planes 634 G4double dxy = std::max(dx,dy); << 682 distz1=p.z()-fDz; 635 << 683 distz2=-fDz-p.z(); 636 G4double dz = std::abs(p.z())-fDz; << 684 if (distz1>distz2) 637 G4double dist = std::max(dxy,dz); << 685 { >> 686 safe=distz1; >> 687 } >> 688 else >> 689 { >> 690 safe=distz2; >> 691 } >> 692 >> 693 trany=p.y()-fTthetaSphi*p.z(); // Transformed y into `box' system >> 694 // Transformed x into `box' system >> 695 cosy=1.0/sqrt(1.0+fTthetaSphi*fTthetaSphi); >> 696 disty1=(trany-fDy)*cosy; >> 697 disty2=(-fDy-trany)*cosy; >> 698 >> 699 if (disty1>safe) safe=disty1; >> 700 if (disty2>safe) safe=disty2; 638 701 639 return (dist > 0) ? dist : 0.; << 702 tranx=p.x()-fTthetaCphi*p.z()-fTalpha*trany; >> 703 cosx=1.0/sqrt(1.0+fTalpha*fTalpha+fTthetaCphi*fTthetaCphi); >> 704 distx1=(tranx-fDx)*cosx; >> 705 distx2=(-fDx-tranx)*cosx; >> 706 >> 707 if (distx1>safe) safe=distx1; >> 708 if (distx2>safe) safe=distx2; >> 709 >> 710 if (safe<0) safe=0; >> 711 return safe; 640 } 712 } 641 713 642 ////////////////////////////////////////////// 714 ////////////////////////////////////////////////////////////////////////// 643 // 715 // 644 // Calculate distance to surface of shape from << 716 // Calcluate distance to surface of shape from inside 645 // find normal at exit point << 717 // Calculate distance to x/y/z planes - smallest is exiting distance 646 // - when leaving the surface, return 0 << 647 << 648 G4double G4Para::DistanceToOut(const G4ThreeVe << 649 const G4bool ca << 650 G4bool* v << 651 { << 652 // Z intersections << 653 // << 654 if ((std::abs(p.z()) - fDz) >= -halfCarToler << 655 { << 656 if (calcNorm) << 657 { << 658 *validNorm = true; << 659 n->set(0, 0, (p.z() < 0) ? -1 : 1); << 660 } << 661 return 0.; << 662 } << 663 G4double vz = v.z(); << 664 G4double tmax = (vz == 0) ? DBL_MAX : (std:: << 665 G4int iside = (vz < 0) ? -4 : -2; // little << 666 << 667 // Y intersections << 668 // << 669 G4double cos0 = fPlanes[0].b*v.y() + fPlanes << 670 if (cos0 > 0) << 671 { << 672 G4double dis0 = fPlanes[0].b*p.y() + fPlan << 673 if (dis0 >= -halfCarTolerance) << 674 { << 675 if (calcNorm) << 676 { << 677 *validNorm = true; << 678 n->set(0, fPlanes[0].b, fPlanes[0].c); << 679 } << 680 return 0.; << 681 } << 682 G4double tmp = -dis0/cos0; << 683 if (tmax > tmp) { tmax = tmp; iside = 0; } << 684 } << 685 718 686 G4double cos1 = -cos0; << 719 G4double G4Para::DistanceToOut(const G4ThreeVector& p,const G4ThreeVector& v, 687 if (cos1 > 0) << 720 const G4bool calcNorm, 688 { << 721 G4bool *validNorm,G4ThreeVector *n) const 689 G4double dis1 = fPlanes[1].b*p.y() + fPlan << 722 { 690 if (dis1 >= -halfCarTolerance) << 723 ESide side = kUndef; 691 { << 724 G4double snxt; // snxt = return value 692 if (calcNorm) << 725 G4double max,tmax; 693 { << 726 G4double yt,vy,xt,vx; 694 *validNorm = true; << 727 695 n->set(0, fPlanes[1].b, fPlanes[1].c); << 728 G4double ycomp,calpha,salpha,tntheta,cosntheta; 696 } << 729 // 697 return 0.; << 730 // Z Intersections 698 } << 731 // 699 G4double tmp = -dis1/cos1; << 732 if (v.z()>0) 700 if (tmax > tmp) { tmax = tmp; iside = 1; } << 733 { 701 } << 734 max=fDz-p.z(); >> 735 if (max>kCarTolerance*0.5) >> 736 { >> 737 snxt=max/v.z(); >> 738 side=kPZ; >> 739 } >> 740 else >> 741 { >> 742 if (calcNorm) >> 743 { >> 744 *validNorm=true; >> 745 *n=G4ThreeVector(0,0,1); >> 746 } >> 747 return snxt=0; >> 748 } >> 749 } >> 750 else if (v.z()<0) >> 751 { >> 752 max=-fDz-p.z(); >> 753 if (max<-kCarTolerance*0.5) >> 754 { >> 755 snxt=max/v.z(); >> 756 side=kMZ; >> 757 } >> 758 else >> 759 { >> 760 if (calcNorm) >> 761 { >> 762 *validNorm=true; >> 763 *n=G4ThreeVector(0,0,-1); >> 764 } >> 765 return snxt=0; >> 766 } >> 767 } >> 768 else >> 769 { >> 770 snxt=kInfinity; >> 771 } 702 772 703 // X intersections << 773 704 // << 774 // 705 G4double cos2 = fPlanes[2].a*v.x() + fPlanes << 775 // Y plane intersection 706 if (cos2 > 0) << 776 // 707 { << 777 yt=p.y()-fTthetaSphi*p.z(); 708 G4double dis2 = fPlanes[2].a*p.x()+fPlanes << 778 vy=v.y()-fTthetaSphi*v.z(); 709 if (dis2 >= -halfCarTolerance) << 710 { << 711 if (calcNorm) << 712 { << 713 *validNorm = true; << 714 n->set(fPlanes[2].a, fPlanes[2].b, fP << 715 } << 716 return 0.; << 717 } << 718 G4double tmp = -dis2/cos2; << 719 if (tmax > tmp) { tmax = tmp; iside = 2; } << 720 } << 721 779 722 G4double cos3 = -cos2; << 780 if (vy>0) 723 if (cos3 > 0) << 781 { 724 { << 782 max=fDy-yt; 725 G4double dis3 = fPlanes[3].a*p.x()+fPlanes << 783 if (max>kCarTolerance*0.5) 726 if (dis3 >= -halfCarTolerance) << 784 { 727 { << 785 tmax=max/vy; 728 if (calcNorm) << 786 if (tmax<snxt) 729 { << 787 { 730 *validNorm = true; << 788 snxt=tmax; 731 n->set(fPlanes[3].a, fPlanes[3].b, fP << 789 side=kPY; 732 } << 790 } 733 return 0.; << 791 } 734 } << 792 else 735 G4double tmp = -dis3/cos3; << 793 { 736 if (tmax > tmp) { tmax = tmp; iside = 3; } << 794 if (calcNorm) 737 } << 795 { >> 796 *validNorm=true; // Leaving via plus Y >> 797 ycomp=1/sqrt(1+fTthetaSphi*fTthetaSphi); >> 798 *n=G4ThreeVector(0,ycomp,-fTthetaSphi*ycomp); >> 799 } >> 800 return snxt=0; >> 801 } >> 802 } >> 803 else if (vy<0) >> 804 { >> 805 max=-fDy-yt; >> 806 if (max<-kCarTolerance*0.5) >> 807 { >> 808 tmax=max/vy; >> 809 if (tmax<snxt) >> 810 { >> 811 snxt=tmax; >> 812 side=kMY; >> 813 } >> 814 } >> 815 else >> 816 { >> 817 if (calcNorm) >> 818 { >> 819 *validNorm=true; // Leaving via minus Y >> 820 ycomp=-1/sqrt(1+fTthetaSphi*fTthetaSphi); >> 821 *n=G4ThreeVector(0,ycomp,-fTthetaSphi*ycomp); >> 822 >> 823 } >> 824 return snxt=0; >> 825 } >> 826 } >> 827 // >> 828 // X plane intersection >> 829 // >> 830 xt=p.x()-fTthetaCphi*p.z()-fTalpha*yt; >> 831 vx=v.x()-fTthetaCphi*v.z()-fTalpha*vy; >> 832 if (vx>0) >> 833 { >> 834 max=fDx-xt; >> 835 if (max>kCarTolerance*0.5) >> 836 { >> 837 tmax=max/vx; >> 838 if (tmax<snxt) >> 839 { >> 840 snxt=tmax; >> 841 side=kPX; >> 842 } >> 843 } >> 844 else >> 845 { >> 846 if (calcNorm) >> 847 { >> 848 *validNorm=true; // Leaving via plus X >> 849 calpha=1/sqrt(1+fTalpha*fTalpha); >> 850 if (fTalpha) >> 851 { >> 852 salpha=-calpha/fTalpha; // NOTE: actually use MINUS sin(alpha) >> 853 } >> 854 else >> 855 { >> 856 salpha=0; >> 857 } >> 858 tntheta=fTthetaCphi*calpha+fTthetaSphi*salpha; >> 859 cosntheta=1/sqrt(1+tntheta*tntheta); >> 860 *n=G4ThreeVector(calpha*cosntheta,salpha*cosntheta,-tntheta*cosntheta); >> 861 } >> 862 return snxt=0; >> 863 } >> 864 } >> 865 else if (vx<0) >> 866 { >> 867 max=-fDx-xt; >> 868 if (max<-kCarTolerance*0.5) >> 869 { >> 870 tmax=max/vx; >> 871 if (tmax<snxt) >> 872 { >> 873 snxt=tmax; >> 874 side=kMX; >> 875 } >> 876 } >> 877 else >> 878 { >> 879 if (calcNorm) >> 880 { >> 881 *validNorm=true; // Leaving via minus X >> 882 calpha=1/sqrt(1+fTalpha*fTalpha); >> 883 if (fTalpha) >> 884 { >> 885 salpha=-calpha/fTalpha; // NOTE: actually use MINUS sin(alpha) >> 886 } >> 887 else >> 888 { >> 889 salpha=0; >> 890 } >> 891 tntheta=fTthetaCphi*calpha+fTthetaSphi*salpha; >> 892 cosntheta=-1/sqrt(1+tntheta*tntheta); >> 893 *n=G4ThreeVector(calpha*cosntheta,salpha*cosntheta,-tntheta*cosntheta); >> 894 return snxt=0; >> 895 } >> 896 } >> 897 } 738 898 739 // Set normal, if required, and return dista << 899 if (calcNorm) 740 // << 900 { 741 if (calcNorm) << 901 *validNorm=true; 742 { << 902 switch (side) 743 *validNorm = true; << 903 { 744 if (iside < 0) << 904 case kMZ: 745 n->set(0, 0, iside + 3); // (-4+3)=-1, ( << 905 *n=G4ThreeVector(0,0,-1); 746 else << 906 break; 747 n->set(fPlanes[iside].a, fPlanes[iside]. << 907 case kPZ: 748 } << 908 *n=G4ThreeVector(0,0,1); 749 return tmax; << 909 break; >> 910 case kMY: >> 911 ycomp=-1/sqrt(1+fTthetaSphi*fTthetaSphi); >> 912 *n=G4ThreeVector(0,ycomp,-fTthetaSphi*ycomp); >> 913 break; >> 914 case kPY: >> 915 ycomp=1/sqrt(1+fTthetaSphi*fTthetaSphi); >> 916 *n=G4ThreeVector(0,ycomp,-fTthetaSphi*ycomp); >> 917 break; >> 918 case kMX: >> 919 calpha=1/sqrt(1+fTalpha*fTalpha); >> 920 if (fTalpha) >> 921 { >> 922 salpha=-calpha/fTalpha; // NOTE: actually use MINUS sin(alpha) >> 923 } >> 924 else >> 925 { >> 926 salpha=0; >> 927 } >> 928 tntheta=fTthetaCphi*calpha+fTthetaSphi*salpha; >> 929 cosntheta=-1/sqrt(1+tntheta*tntheta); >> 930 *n=G4ThreeVector(calpha*cosntheta,salpha*cosntheta,-tntheta*cosntheta); >> 931 break; >> 932 case kPX: >> 933 calpha=1/sqrt(1+fTalpha*fTalpha); >> 934 if (fTalpha) >> 935 { >> 936 salpha=-calpha/fTalpha; // NOTE: actually use MINUS sin(alpha) >> 937 } >> 938 else >> 939 { >> 940 salpha=0; >> 941 } >> 942 tntheta=fTthetaCphi*calpha+fTthetaSphi*salpha; >> 943 cosntheta=1/sqrt(1+tntheta*tntheta); >> 944 *n=G4ThreeVector(calpha*cosntheta,salpha*cosntheta,-tntheta*cosntheta); >> 945 break; >> 946 default: >> 947 G4Exception("Invalid enum in G4Para::DistanceToOut"); >> 948 break; >> 949 >> 950 } >> 951 } >> 952 return snxt; 750 } 953 } 751 954 752 ////////////////////////////////////////////// << 955 ///////////////////////////////////////////////////////////////////////////// 753 // 956 // 754 // Calculate exact shortest distance to any bo 957 // Calculate exact shortest distance to any boundary from inside 755 // - returns 0 is point outside << 958 // - Returns 0 is point outside 756 959 757 G4double G4Para::DistanceToOut( const G4ThreeV << 960 G4double G4Para::DistanceToOut(const G4ThreeVector& p) const 758 { 961 { >> 962 G4double safe; >> 963 G4double distz1,distz2,disty1,disty2,distx1,distx2; >> 964 G4double trany,cosy,tranx,cosx; >> 965 759 #ifdef G4CSGDEBUG 966 #ifdef G4CSGDEBUG 760 if( Inside(p) == kOutside ) 967 if( Inside(p) == kOutside ) 761 { 968 { 762 std::ostringstream message; << 969 G4cout.precision(16) ; 763 G4int oldprc = message.precision(16); << 970 G4cout << G4endl ; 764 message << "Point p is outside (!?) of sol << 971 G4cout << "Parallelpiped parameters:" << G4endl << G4endl ; 765 message << "Position:\n"; << 972 G4cout << "fDx = " << fDx/mm << " mm" << G4endl ; 766 message << " p.x() = " << p.x()/mm << " << 973 G4cout << "fDy = " << fDy/mm << " mm" << G4endl ; 767 message << " p.y() = " << p.y()/mm << " << 974 G4cout << "fDz = " << fDz/mm << " mm" << G4endl ; 768 message << " p.z() = " << p.z()/mm << " << 975 G4cout << "fTalpha = " << fTalpha/degree << " degree" << G4endl; 769 G4cout.precision(oldprc) ; << 976 G4cout << "fTthetaCphi = " << fTthetaCphi/degree << " degree" << G4endl; 770 G4Exception("G4Para::DistanceToOut(p)", "G << 977 G4cout << "fTthetaSphi = " << fTthetaSphi/degree << " degree" << G4endl << G4endl ; 771 JustWarning, message ); << 978 G4cout << "Position:" << G4endl << G4endl ; 772 DumpInfo(); << 979 G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl ; 773 } << 980 G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl ; >> 981 G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl ; >> 982 G4cout << "G4Para::DistanceToOut(p) - point p is outside ?!" << G4endl ; >> 983 // G4Exception("Invalid call in G4Para::DistanceToOut(p), point p is outside") ; >> 984 } 774 #endif 985 #endif 775 G4double xx = fPlanes[2].a*p.x()+fPlanes[2]. << 776 G4double dx = std::abs(xx) + fPlanes[2].d; << 777 << 778 G4double yy = fPlanes[0].b*p.y()+fPlanes[0]. << 779 G4double dy = std::abs(yy) + fPlanes[0].d; << 780 G4double dxy = std::max(dx,dy); << 781 986 782 G4double dz = std::abs(p.z())-fDz; << 987 // Z planes 783 G4double dist = std::max(dxy,dz); << 988 distz1=fDz-p.z(); >> 989 distz2=fDz+p.z(); >> 990 if (distz1<distz2) >> 991 { >> 992 safe=distz1; >> 993 } >> 994 else >> 995 { >> 996 safe=distz2; >> 997 } >> 998 >> 999 trany=p.y()-fTthetaSphi*p.z(); // Transformed y into `box' system >> 1000 // Transformed x into `box' system >> 1001 cosy=1.0/sqrt(1.0+fTthetaSphi*fTthetaSphi); >> 1002 disty1=(fDy-trany)*cosy; >> 1003 disty2=(fDy+trany)*cosy; >> 1004 >> 1005 if (disty1<safe) safe=disty1; >> 1006 if (disty2<safe) safe=disty2; 784 1007 785 return (dist < 0) ? -dist : 0.; << 1008 tranx=p.x()-fTthetaCphi*p.z()-fTalpha*trany; >> 1009 cosx=1.0/sqrt(1.0+fTalpha*fTalpha+fTthetaCphi*fTthetaCphi); >> 1010 distx1=(fDx-tranx)*cosx; >> 1011 distx2=(fDx+tranx)*cosx; >> 1012 >> 1013 if (distx1<safe) safe=distx1; >> 1014 if (distx2<safe) safe=distx2; >> 1015 >> 1016 if (safe<0) safe=0; >> 1017 return safe; 786 } 1018 } 787 1019 788 ////////////////////////////////////////////// << 1020 //////////////////////////////////////////////////////////////////////////////// 789 // 1021 // 790 // GetEntityType << 1022 // Create a List containing the transformed vertices 791 << 1023 // Ordering [0-3] -fDz cross section 792 G4GeometryType G4Para::GetEntityType() const << 1024 // [4-7] +fDz cross section such that [0] is below [4], 793 { << 1025 // [1] below [5] etc. 794 return {"G4Para"}; << 1026 // Note: >> 1027 // Caller has deletion resposibility >> 1028 >> 1029 G4ThreeVectorList* >> 1030 G4Para::CreateRotatedVertices(const G4AffineTransform& pTransform) const >> 1031 { >> 1032 G4ThreeVectorList *vertices; >> 1033 vertices=new G4ThreeVectorList(); >> 1034 vertices->reserve(8); >> 1035 if (vertices) >> 1036 { >> 1037 G4ThreeVector vertex0(-fDz*fTthetaCphi-fDy*fTalpha-fDx,-fDz*fTthetaSphi-fDy,-fDz); >> 1038 G4ThreeVector vertex1(-fDz*fTthetaCphi-fDy*fTalpha+fDx,-fDz*fTthetaSphi-fDy,-fDz); >> 1039 G4ThreeVector vertex2(-fDz*fTthetaCphi+fDy*fTalpha-fDx,-fDz*fTthetaSphi+fDy,-fDz); >> 1040 G4ThreeVector vertex3(-fDz*fTthetaCphi+fDy*fTalpha+fDx,-fDz*fTthetaSphi+fDy,-fDz); >> 1041 G4ThreeVector vertex4(+fDz*fTthetaCphi-fDy*fTalpha-fDx,+fDz*fTthetaSphi-fDy,+fDz); >> 1042 G4ThreeVector vertex5(+fDz*fTthetaCphi-fDy*fTalpha+fDx,+fDz*fTthetaSphi-fDy,+fDz); >> 1043 G4ThreeVector vertex6(+fDz*fTthetaCphi+fDy*fTalpha-fDx,+fDz*fTthetaSphi+fDy,+fDz); >> 1044 G4ThreeVector vertex7(+fDz*fTthetaCphi+fDy*fTalpha+fDx,+fDz*fTthetaSphi+fDy,+fDz); >> 1045 >> 1046 vertices->push_back(pTransform.TransformPoint(vertex0)); >> 1047 vertices->push_back(pTransform.TransformPoint(vertex1)); >> 1048 vertices->push_back(pTransform.TransformPoint(vertex2)); >> 1049 vertices->push_back(pTransform.TransformPoint(vertex3)); >> 1050 vertices->push_back(pTransform.TransformPoint(vertex4)); >> 1051 vertices->push_back(pTransform.TransformPoint(vertex5)); >> 1052 vertices->push_back(pTransform.TransformPoint(vertex6)); >> 1053 vertices->push_back(pTransform.TransformPoint(vertex7)); >> 1054 } >> 1055 else >> 1056 { >> 1057 G4Exception("G4Para::CreateRotatedVertices - Out of memory !"); >> 1058 } >> 1059 return vertices; 795 } 1060 } 796 1061 797 ////////////////////////////////////////////// << 1062 //////////////////////////////////////////////////////////////////////////// 798 // 1063 // 799 // IsFaceted << 1064 // Methods for visualisation 800 1065 801 G4bool G4Para::IsFaceted() const << 1066 void G4Para::DescribeYourselfTo (G4VGraphicsScene& scene) const 802 { 1067 { 803 return true; << 1068 scene.AddThis (*this); 804 } 1069 } 805 1070 806 ////////////////////////////////////////////// << 1071 G4Polyhedron* G4Para::CreatePolyhedron () const 807 // << 808 // Make a clone of the object << 809 // << 810 G4VSolid* G4Para::Clone() const << 811 { 1072 { 812 return new G4Para(*this); << 1073 G4double phi = atan2(fTthetaSphi, fTthetaCphi); >> 1074 G4double alpha = atan(fTalpha); >> 1075 G4double theta = atan(sqrt(fTthetaCphi*fTthetaCphi >> 1076 +fTthetaSphi*fTthetaSphi)); >> 1077 >> 1078 return new G4PolyhedronPara(fDx, fDy, fDz, alpha, theta, phi); 813 } 1079 } 814 1080 815 ////////////////////////////////////////////// << 1081 G4NURBS* G4Para::CreateNURBS () const 816 // << 817 // Stream object contents to an output stream << 818 << 819 std::ostream& G4Para::StreamInfo( std::ostream << 820 { 1082 { 821 G4double alpha = std::atan(fTalpha); << 1083 // return new G4NURBSbox (fDx, fDy, fDz); 822 G4double theta = std::atan(std::sqrt(fTtheta << 1084 return 0 ; 823 fTtheta << 824 G4double phi = std::atan2(fTthetaSphi,fTth << 825 << 826 G4long oldprc = os.precision(16); << 827 os << "------------------------------------- << 828 << " *** Dump for solid - " << GetName << 829 << " ================================= << 830 << " Solid type: G4Para\n" << 831 << " Parameters:\n" << 832 << " half length X: " << fDx/mm << " m << 833 << " half length Y: " << fDy/mm << " m << 834 << " half length Z: " << fDz/mm << " m << 835 << " alpha: " << alpha/degree << "degr << 836 << " theta: " << theta/degree << "degr << 837 << " phi: " << phi/degree << "degrees\ << 838 << "------------------------------------- << 839 os.precision(oldprc); << 840 << 841 return os; << 842 } 1085 } 843 1086 844 ////////////////////////////////////////////// << 845 // 1087 // 846 // Return a point randomly and uniformly selec << 847 << 848 G4ThreeVector G4Para::GetPointOnSurface() cons << 849 { << 850 G4double DyTalpha = fDy*fTalpha; << 851 G4double DzTthetaSphi = fDz*fTthetaSphi; << 852 G4double DzTthetaCphi = fDz*fTthetaCphi; << 853 << 854 // Set vertices << 855 // << 856 G4ThreeVector pt[8]; << 857 pt[0].set(-DzTthetaCphi-DyTalpha-fDx, -DzTth << 858 pt[1].set(-DzTthetaCphi-DyTalpha+fDx, -DzTth << 859 pt[2].set(-DzTthetaCphi+DyTalpha-fDx, -DzTth << 860 pt[3].set(-DzTthetaCphi+DyTalpha+fDx, -DzTth << 861 pt[4].set( DzTthetaCphi-DyTalpha-fDx, DzTth << 862 pt[5].set( DzTthetaCphi-DyTalpha+fDx, DzTth << 863 pt[6].set( DzTthetaCphi+DyTalpha-fDx, DzTth << 864 pt[7].set( DzTthetaCphi+DyTalpha+fDx, DzTth << 865 << 866 // Set areas (-Z, -Y, +Y, -X, +X, +Z) << 867 // << 868 G4ThreeVector vx(fDx, 0, 0); << 869 G4ThreeVector vy(DyTalpha, fDy, 0); << 870 G4ThreeVector vz(DzTthetaCphi, DzTthetaSphi, << 871 << 872 G4double sxy = fDx*fDy; // (vx.cross(vy)).ma << 873 G4double sxz = (vx.cross(vz)).mag(); << 874 G4double syz = (vy.cross(vz)).mag(); << 875 << 876 G4double sface[6] = { sxy, syz, syz, sxz, sx << 877 for (G4int i=1; i<6; ++i) { sface[i] += sfac << 878 << 879 // Select face << 880 // << 881 G4double select = sface[5]*G4UniformRand(); << 882 G4int k = 5; << 883 if (select <= sface[4]) k = 4; << 884 if (select <= sface[3]) k = 3; << 885 if (select <= sface[2]) k = 2; << 886 if (select <= sface[1]) k = 1; << 887 if (select <= sface[0]) k = 0; << 888 << 889 // Generate point << 890 // << 891 G4int ip[6][3] = {{0,1,2}, {0,4,1}, {2,3,6}, << 892 G4double u = G4UniformRand(); << 893 G4double v = G4UniformRand(); << 894 return (1.-u-v)*pt[ip[k][0]] + u*pt[ip[k][1] << 895 } << 896 << 897 ////////////////////////////////////////////// << 898 // 1088 // 899 // Methods for visualisation << 1089 /////////////////////////// End of G4Para.cc /////////////////////////// 900 << 901 void G4Para::DescribeYourselfTo ( G4VGraphicsS << 902 { << 903 scene.AddSolid (*this); << 904 } << 905 << 906 G4Polyhedron* G4Para::CreatePolyhedron () cons << 907 { << 908 G4double phi = std::atan2(fTthetaSphi, fTthe << 909 G4double alpha = std::atan(fTalpha); << 910 G4double theta = std::atan(std::sqrt(fTtheta << 911 fTtheta << 912 << 913 return new G4PolyhedronPara(fDx, fDy, fDz, a << 914 } << 915 #endif << 916 1090