Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // >> 27 // $Id: G4SubtractionSolid.cc,v 1.31 2007/10/23 14:42:31 grichine Exp $ >> 28 // GEANT4 tag $Name: geant4-09-02 $ >> 29 // 26 // Implementation of methods for the class G4I 30 // Implementation of methods for the class G4IntersectionSolid 27 // 31 // 28 // 22.07.11 T.Nikitina: added detection of inf << 32 // History: 29 // 19.10.98 V.Grichine: new algorithm of Dista << 33 // 30 // 14.10.98 V.Grichine: implementation of the 34 // 14.10.98 V.Grichine: implementation of the first version >> 35 // 19.10.98 V.Grichine: new algorithm of DistanceToIn(p,v) >> 36 // 02.08.99 V.Grichine: bugs fixed in DistanceToOut(p,v,...) >> 37 // while -> do-while & surfaceA limitations >> 38 // 13.09.00 V.Grichine: bug fixed in SurfaceNormal(p), p can be inside >> 39 // 31 // ------------------------------------------- 40 // -------------------------------------------------------------------- 32 41 33 #include "G4SubtractionSolid.hh" 42 #include "G4SubtractionSolid.hh" 34 43 35 #include "G4SystemOfUnits.hh" << 36 #include "G4VoxelLimits.hh" 44 #include "G4VoxelLimits.hh" 37 #include "G4VPVParameterisation.hh" 45 #include "G4VPVParameterisation.hh" 38 #include "G4GeometryTolerance.hh" 46 #include "G4GeometryTolerance.hh" 39 47 40 #include "G4VGraphicsScene.hh" 48 #include "G4VGraphicsScene.hh" 41 #include "G4Polyhedron.hh" 49 #include "G4Polyhedron.hh" 42 #include "G4PolyhedronArbitrary.hh" << 50 #include "G4NURBS.hh" 43 #include "HepPolyhedronProcessor.h" << 51 // #include "G4NURBSbox.hh" 44 << 45 #include "G4IntersectionSolid.hh" << 46 52 47 #include <sstream> 53 #include <sstream> 48 54 49 ////////////////////////////////////////////// << 55 /////////////////////////////////////////////////////////////////// 50 // 56 // 51 // Transfer all data members to G4BooleanSolid 57 // Transfer all data members to G4BooleanSolid which is responsible 52 // for them. pName will be in turn sent to G4V 58 // for them. pName will be in turn sent to G4VSolid 53 59 54 G4SubtractionSolid::G4SubtractionSolid( const 60 G4SubtractionSolid::G4SubtractionSolid( const G4String& pName, 55 61 G4VSolid* pSolidA , 56 62 G4VSolid* pSolidB ) 57 : G4BooleanSolid(pName,pSolidA,pSolidB) 63 : G4BooleanSolid(pName,pSolidA,pSolidB) 58 { 64 { 59 } 65 } 60 66 61 ////////////////////////////////////////////// << 67 /////////////////////////////////////////////////////////////// 62 // 68 // 63 // Constructor 69 // Constructor 64 70 65 G4SubtractionSolid::G4SubtractionSolid( const 71 G4SubtractionSolid::G4SubtractionSolid( const G4String& pName, 66 72 G4VSolid* pSolidA , 67 73 G4VSolid* pSolidB , 68 74 G4RotationMatrix* rotMatrix, 69 const 75 const G4ThreeVector& transVector ) 70 : G4BooleanSolid(pName,pSolidA,pSolidB,rotMa 76 : G4BooleanSolid(pName,pSolidA,pSolidB,rotMatrix,transVector) 71 { 77 { 72 } 78 } 73 79 74 ////////////////////////////////////////////// << 80 /////////////////////////////////////////////////////////////// 75 // 81 // 76 // Constructor 82 // Constructor 77 83 78 G4SubtractionSolid::G4SubtractionSolid( const 84 G4SubtractionSolid::G4SubtractionSolid( const G4String& pName, 79 85 G4VSolid* pSolidA , 80 86 G4VSolid* pSolidB , 81 const 87 const G4Transform3D& transform ) 82 : G4BooleanSolid(pName,pSolidA,pSolidB,trans 88 : G4BooleanSolid(pName,pSolidA,pSolidB,transform) 83 { 89 { 84 } 90 } 85 91 86 ////////////////////////////////////////////// << 92 ////////////////////////////////////////////////////////////////// 87 // 93 // 88 // Fake default constructor - sets only member 94 // Fake default constructor - sets only member data and allocates memory 89 // for usage restri 95 // for usage restricted to object persistency. 90 96 91 G4SubtractionSolid::G4SubtractionSolid( __void 97 G4SubtractionSolid::G4SubtractionSolid( __void__& a ) 92 : G4BooleanSolid(a) 98 : G4BooleanSolid(a) 93 { 99 { 94 } 100 } 95 101 96 ////////////////////////////////////////////// << 102 /////////////////////////////////////////////////////////////// 97 // 103 // 98 // Destructor 104 // Destructor 99 105 100 G4SubtractionSolid::~G4SubtractionSolid() = de << 106 G4SubtractionSolid::~G4SubtractionSolid() 101 << 102 ////////////////////////////////////////////// << 103 // << 104 // Copy constructor << 105 << 106 G4SubtractionSolid::G4SubtractionSolid(const G << 107 << 108 ////////////////////////////////////////////// << 109 // << 110 // Assignment operator << 111 << 112 G4SubtractionSolid& << 113 G4SubtractionSolid::operator = (const G4Subtra << 114 { 107 { 115 // Check assignment to self << 116 // << 117 if (this == &rhs) { return *this; } << 118 << 119 // Copy base class data << 120 // << 121 G4BooleanSolid::operator=(rhs); << 122 << 123 return *this; << 124 } << 125 << 126 ////////////////////////////////////////////// << 127 // << 128 // Get bounding box << 129 << 130 void << 131 G4SubtractionSolid::BoundingLimits(G4ThreeVect << 132 G4ThreeVect << 133 { << 134 // Since it is unclear how the shape of the << 135 // after subtraction, just return its origin << 136 // << 137 fPtrSolidA->BoundingLimits(pMin,pMax); << 138 << 139 // Check correctness of the bounding box << 140 // << 141 if (pMin.x() >= pMax.x() || pMin.y() >= pMax << 142 { << 143 std::ostringstream message; << 144 message << "Bad bounding box (min >= max) << 145 << GetName() << " !" << 146 << "\npMin = " << pMin << 147 << "\npMax = " << pMax; << 148 G4Exception("G4SubtractionSolid::BoundingL << 149 JustWarning, message); << 150 DumpInfo(); << 151 } << 152 } 108 } 153 109 154 ////////////////////////////////////////////// << 110 /////////////////////////////////////////////////////////////// 155 // 111 // 156 // Calculate extent under transform and specif << 112 // CalculateExtent 157 113 158 G4bool 114 G4bool 159 G4SubtractionSolid::CalculateExtent( const EAx 115 G4SubtractionSolid::CalculateExtent( const EAxis pAxis, 160 const G4V 116 const G4VoxelLimits& pVoxelLimit, 161 const G4A 117 const G4AffineTransform& pTransform, 162 G4d 118 G4double& pMin, 163 G4d 119 G4double& pMax ) const 164 { 120 { 165 // Since we cannot be sure how much the seco 121 // Since we cannot be sure how much the second solid subtracts 166 // from the first, we must use the first sol << 122 // from the first, we must use the first solid's extent! 167 123 168 return fPtrSolidA->CalculateExtent( pAxis, p 124 return fPtrSolidA->CalculateExtent( pAxis, pVoxelLimit, 169 pTransfo 125 pTransform, pMin, pMax ); 170 } 126 } 171 127 172 ////////////////////////////////////////////// << 128 ///////////////////////////////////////////////////// 173 // 129 // 174 // Touching ? Empty subtraction ? 130 // Touching ? Empty subtraction ? 175 131 176 EInside G4SubtractionSolid::Inside( const G4Th 132 EInside G4SubtractionSolid::Inside( const G4ThreeVector& p ) const 177 { 133 { 178 EInside positionA = fPtrSolidA->Inside(p); 134 EInside positionA = fPtrSolidA->Inside(p); 179 if (positionA == kOutside) return positionA; << 135 if (positionA == kOutside) return kOutside; 180 136 181 EInside positionB = fPtrSolidB->Inside(p); 137 EInside positionB = fPtrSolidB->Inside(p); 182 if (positionB == kOutside) return positionA; << 138 183 << 139 if(positionA == kInside && positionB == kOutside) 184 if (positionB == kInside) return kOutside; << 140 { 185 if (positionA == kInside) return kSurface; / << 141 return kInside ; 186 << 142 } 187 // Point is on both surfaces << 143 else 188 // << 144 { 189 static const G4double rtol = 1000*kCarTolera << 145 if(( positionA == kInside && positionB == kSurface) || 190 << 146 ( positionB == kOutside && positionA == kSurface) || 191 return ((fPtrSolidA->SurfaceNormal(p) - << 147 ( positionA == kSurface && positionB == kSurface && 192 fPtrSolidB->SurfaceNormal(p)).mag2( << 148 ( fPtrSolidA->SurfaceNormal(p) - >> 149 fPtrSolidB->SurfaceNormal(p) ).mag2() > >> 150 1000*G4GeometryTolerance::GetInstance()->GetRadialTolerance() ) ) >> 151 { >> 152 return kSurface; >> 153 } >> 154 else >> 155 { >> 156 return kOutside; >> 157 } >> 158 } 193 } 159 } 194 160 195 ////////////////////////////////////////////// << 161 ////////////////////////////////////////////////////////////// 196 // 162 // 197 // SurfaceNormal 163 // SurfaceNormal 198 164 199 G4ThreeVector 165 G4ThreeVector 200 G4SubtractionSolid::SurfaceNormal( const G4Thr 166 G4SubtractionSolid::SurfaceNormal( const G4ThreeVector& p ) const 201 { 167 { 202 G4ThreeVector normal; 168 G4ThreeVector normal; 203 << 169 if( Inside(p) == kOutside ) 204 EInside InsideA = fPtrSolidA->Inside(p); << 205 EInside InsideB = fPtrSolidB->Inside(p); << 206 << 207 if( InsideA == kOutside ) << 208 { 170 { 209 #ifdef G4BOOLDEBUG 171 #ifdef G4BOOLDEBUG 210 G4cout << "WARNING - Invalid call [1] in " 172 G4cout << "WARNING - Invalid call [1] in " 211 << "G4SubtractionSolid::SurfaceNorm 173 << "G4SubtractionSolid::SurfaceNormal(p)" << G4endl 212 << " Point p is outside !" << G4en << 174 << " Point p is inside !" << G4endl; 213 G4cout << " p = " << p << G4endl; 175 G4cout << " p = " << p << G4endl; 214 G4cerr << "WARNING - Invalid call [1] in " 176 G4cerr << "WARNING - Invalid call [1] in " 215 << "G4SubtractionSolid::SurfaceNorm 177 << "G4SubtractionSolid::SurfaceNormal(p)" << G4endl 216 << " Point p is outside !" << G4en << 178 << " Point p is inside !" << G4endl; 217 G4cerr << " p = " << p << G4endl; 179 G4cerr << " p = " << p << G4endl; 218 #endif 180 #endif 219 normal = fPtrSolidA->SurfaceNormal(p) ; << 220 } 181 } 221 else if( InsideA == kSurface && << 182 else 222 InsideB != kInside ) << 183 { 223 { << 184 if( fPtrSolidA->Inside(p) == kSurface && 224 normal = fPtrSolidA->SurfaceNormal(p) ; << 185 fPtrSolidB->Inside(p) != kInside ) 225 } << 226 else if( InsideA == kInside && << 227 InsideB != kOutside ) << 228 { << 229 normal = -fPtrSolidB->SurfaceNormal(p) ; << 230 } << 231 else << 232 { << 233 if ( fPtrSolidA->DistanceToOut(p) <= fPtrS << 234 { 186 { 235 normal = fPtrSolidA->SurfaceNormal(p) ; 187 normal = fPtrSolidA->SurfaceNormal(p) ; 236 } 188 } 237 else << 189 else if( fPtrSolidA->Inside(p) == kInside && >> 190 fPtrSolidB->Inside(p) != kOutside ) 238 { 191 { 239 normal = -fPtrSolidB->SurfaceNormal(p) ; 192 normal = -fPtrSolidB->SurfaceNormal(p) ; 240 } 193 } 241 #ifdef G4BOOLDEBUG << 194 else 242 if(Inside(p) == kInside) << 243 { 195 { 244 G4cout << "WARNING - Invalid call [2] in << 196 if ( fPtrSolidA->DistanceToOut(p) <= fPtrSolidB->DistanceToIn(p) ) >> 197 { >> 198 normal = fPtrSolidA->SurfaceNormal(p) ; >> 199 } >> 200 else >> 201 { >> 202 normal = -fPtrSolidB->SurfaceNormal(p) ; >> 203 } >> 204 #ifdef G4BOOLDEBUG >> 205 if(Inside(p) == kInside) >> 206 { >> 207 G4cout << "WARNING - Invalid call [2] in " 245 << "G4SubtractionSolid::SurfaceNo 208 << "G4SubtractionSolid::SurfaceNormal(p)" << G4endl 246 << " Point p is inside !" << G4e 209 << " Point p is inside !" << G4endl; 247 G4cout << " p = " << p << G4end << 210 G4cout << " p = " << p << G4endl; 248 G4cerr << "WARNING - Invalid call [2] in << 211 G4cerr << "WARNING - Invalid call [2] in " 249 << "G4SubtractionSolid::SurfaceNo 212 << "G4SubtractionSolid::SurfaceNormal(p)" << G4endl 250 << " Point p is inside !" << G4e 213 << " Point p is inside !" << G4endl; 251 G4cerr << " p = " << p << G4end << 214 G4cerr << " p = " << p << G4endl; 252 } << 215 } 253 #endif 216 #endif >> 217 } 254 } 218 } 255 return normal; 219 return normal; 256 } 220 } 257 221 258 ////////////////////////////////////////////// << 222 ///////////////////////////////////////////////////////////// 259 // 223 // 260 // The same algorithm as in DistanceToIn(p) 224 // The same algorithm as in DistanceToIn(p) 261 225 262 G4double 226 G4double 263 G4SubtractionSolid::DistanceToIn( const G4Thre << 227 G4SubtractionSolid::DistanceToIn( const G4ThreeVector& p, 264 const G4Thre << 228 const G4ThreeVector& v ) const 265 { 229 { 266 G4double dist = 0.0, dist2 = 0.0, disTmp = 0 << 230 G4double dist = 0.0,disTmp = 0.0 ; 267 231 268 #ifdef G4BOOLDEBUG 232 #ifdef G4BOOLDEBUG 269 if( Inside(p) == kInside ) 233 if( Inside(p) == kInside ) 270 { 234 { 271 G4cout << "WARNING - Invalid call in " 235 G4cout << "WARNING - Invalid call in " 272 << "G4SubtractionSolid::DistanceToI 236 << "G4SubtractionSolid::DistanceToIn(p,v)" << G4endl 273 << " Point p is inside !" << G4end 237 << " Point p is inside !" << G4endl; 274 G4cout << " p = " << p << G4endl; 238 G4cout << " p = " << p << G4endl; 275 G4cout << " v = " << v << G4endl; 239 G4cout << " v = " << v << G4endl; 276 G4cerr << "WARNING - Invalid call in " 240 G4cerr << "WARNING - Invalid call in " 277 << "G4SubtractionSolid::DistanceToI 241 << "G4SubtractionSolid::DistanceToIn(p,v)" << G4endl 278 << " Point p is inside !" << G4end 242 << " Point p is inside !" << G4endl; 279 G4cerr << " p = " << p << G4endl; 243 G4cerr << " p = " << p << G4endl; 280 G4cerr << " v = " << v << G4endl; 244 G4cerr << " v = " << v << G4endl; 281 } 245 } 282 #endif 246 #endif 283 247 284 // if( // ( fPtrSolidA->Inside(p) != kOuts 248 // if( // ( fPtrSolidA->Inside(p) != kOutside) && // case1:p in both A&B 285 if ( fPtrSolidB->Inside(p) != kOutside ) 249 if ( fPtrSolidB->Inside(p) != kOutside ) // start: out of B 286 { 250 { 287 dist = fPtrSolidB->DistanceToOut(p,v) ; 251 dist = fPtrSolidB->DistanceToOut(p,v) ; // ,calcNorm,validNorm,n) ; 288 252 289 if( fPtrSolidA->Inside(p+dist*v) != kIns 253 if( fPtrSolidA->Inside(p+dist*v) != kInside ) 290 { 254 { 291 G4int count1=0; << 255 do 292 do // Loop checking, 13.08.2015, G.C << 293 { 256 { 294 disTmp = fPtrSolidA->DistanceToIn(p+ 257 disTmp = fPtrSolidA->DistanceToIn(p+dist*v,v) ; 295 258 296 if(disTmp == kInfinity) 259 if(disTmp == kInfinity) 297 { 260 { 298 return kInfinity ; 261 return kInfinity ; 299 } 262 } 300 dist += disTmp ; 263 dist += disTmp ; 301 264 302 if( Inside(p+dist*v) == kOutside ) 265 if( Inside(p+dist*v) == kOutside ) 303 { 266 { 304 disTmp = fPtrSolidB->DistanceToOut << 267 disTmp = fPtrSolidB->DistanceToOut(p+dist*v,v) ; 305 dist2 = dist+disTmp; << 268 dist += disTmp ; 306 if (dist == dist2) { return dist; << 269 } 307 dist = dist2 ; << 308 ++count1; << 309 if( count1 > 1000 ) // Infinite l << 310 { << 311 G4String nameB = fPtrSolidB->Get << 312 if(fPtrSolidB->GetEntityType()== << 313 { << 314 nameB = (dynamic_cast<G4Displa << 315 ->GetConstituentMovedS << 316 } << 317 std::ostringstream message; << 318 message << "Illegal condition ca << 319 << fPtrSolidA->GetName() << 320 message.precision(16); << 321 message << "Looping detected in << 322 << ", from original poin << 323 << " and direction " << << 324 << "Computed candidate d << 325 message.precision(6); << 326 DumpInfo(); << 327 G4Exception("G4SubtractionSolid: << 328 "GeomSolids1001", Ju << 329 "Returning candidate << 330 return dist; << 331 } << 332 } << 333 } 270 } 334 while( Inside(p+dist*v) == kOutside ) 271 while( Inside(p+dist*v) == kOutside ) ; 335 } 272 } 336 } 273 } 337 else // p outside A, start in A 274 else // p outside A, start in A 338 { 275 { 339 dist = fPtrSolidA->DistanceToIn(p,v) ; 276 dist = fPtrSolidA->DistanceToIn(p,v) ; 340 277 341 if( dist == kInfinity ) // past A, hence 278 if( dist == kInfinity ) // past A, hence past A\B 342 { 279 { 343 return kInfinity ; 280 return kInfinity ; 344 } 281 } 345 else 282 else 346 { 283 { 347 G4int count2=0; << 348 while( Inside(p+dist*v) == kOutside ) 284 while( Inside(p+dist*v) == kOutside ) // pushing loop 349 { 285 { 350 disTmp = fPtrSolidB->DistanceToOut(p 286 disTmp = fPtrSolidB->DistanceToOut(p+dist*v,v) ; 351 dist += disTmp ; 287 dist += disTmp ; 352 288 353 if( Inside(p+dist*v) == kOutside ) 289 if( Inside(p+dist*v) == kOutside ) 354 { 290 { 355 disTmp = fPtrSolidA->DistanceToIn( 291 disTmp = fPtrSolidA->DistanceToIn(p+dist*v,v) ; 356 292 357 if(disTmp == kInfinity) // past A, 293 if(disTmp == kInfinity) // past A, hence past A\B 358 { 294 { 359 return kInfinity ; 295 return kInfinity ; 360 } 296 } 361 dist2 = dist+disTmp; << 297 dist += disTmp ; 362 if (dist == dist2) { return dist; << 363 dist = dist2 ; << 364 ++count2; << 365 if( count2 > 1000 ) // Infinite l << 366 { << 367 G4String nameB = fPtrSolidB->Get << 368 if(fPtrSolidB->GetEntityType()== << 369 { << 370 nameB = (dynamic_cast<G4Displa << 371 ->GetConstituentMovedS << 372 } << 373 std::ostringstream message; << 374 message << "Illegal condition ca << 375 << fPtrSolidA->GetName() << 376 message.precision(16); << 377 message << "Looping detected in << 378 << ", from original poin << 379 << " and direction " << << 380 << "Computed candidate d << 381 message.precision(6); << 382 DumpInfo(); << 383 G4Exception("G4SubtractionSolid: << 384 "GeomSolids1001", Ju << 385 "Returning candidate << 386 return dist; << 387 } << 388 } 298 } 389 } // Loop checking, 13.08.2015, G.C << 299 } 390 } 300 } 391 } 301 } 392 302 393 return dist ; 303 return dist ; 394 } 304 } 395 305 396 ////////////////////////////////////////////// << 306 //////////////////////////////////////////////////////// 397 // 307 // 398 // Approximate nearest distance from the point 308 // Approximate nearest distance from the point p to the intersection of 399 // two solids. It is usually underestimated fr 309 // two solids. It is usually underestimated from the point of view of 400 // isotropic safety 310 // isotropic safety 401 311 402 G4double 312 G4double 403 G4SubtractionSolid::DistanceToIn( const G4Thre 313 G4SubtractionSolid::DistanceToIn( const G4ThreeVector& p ) const 404 { 314 { 405 G4double dist = 0.0; << 315 G4double dist=0.0; 406 316 407 #ifdef G4BOOLDEBUG 317 #ifdef G4BOOLDEBUG 408 if( Inside(p) == kInside ) 318 if( Inside(p) == kInside ) 409 { 319 { 410 G4cout << "WARNING - Invalid call in " 320 G4cout << "WARNING - Invalid call in " 411 << "G4SubtractionSolid::DistanceToI 321 << "G4SubtractionSolid::DistanceToIn(p)" << G4endl 412 << " Point p is inside !" << G4end 322 << " Point p is inside !" << G4endl; 413 G4cout << " p = " << p << G4endl; 323 G4cout << " p = " << p << G4endl; 414 G4cerr << "WARNING - Invalid call in " 324 G4cerr << "WARNING - Invalid call in " 415 << "G4SubtractionSolid::DistanceToI 325 << "G4SubtractionSolid::DistanceToIn(p)" << G4endl 416 << " Point p is inside !" << G4end 326 << " Point p is inside !" << G4endl; 417 G4cerr << " p = " << p << G4endl; 327 G4cerr << " p = " << p << G4endl; 418 } 328 } 419 #endif 329 #endif 420 330 421 if( ( fPtrSolidA->Inside(p) != kOutside) && 331 if( ( fPtrSolidA->Inside(p) != kOutside) && // case 1 422 ( fPtrSolidB->Inside(p) != kOutside) 332 ( fPtrSolidB->Inside(p) != kOutside) ) 423 { 333 { 424 dist = fPtrSolidB->DistanceToOut(p); << 334 dist= fPtrSolidB->DistanceToOut(p) ; 425 } 335 } 426 else 336 else 427 { 337 { 428 dist = fPtrSolidA->DistanceToIn(p); << 338 dist= fPtrSolidA->DistanceToIn(p) ; 429 } 339 } 430 340 431 return dist; 341 return dist; 432 } 342 } 433 343 434 ////////////////////////////////////////////// << 344 ////////////////////////////////////////////////////////// 435 // 345 // 436 // The same algorithm as DistanceToOut(p) 346 // The same algorithm as DistanceToOut(p) 437 347 438 G4double 348 G4double 439 G4SubtractionSolid::DistanceToOut( const G4Thr 349 G4SubtractionSolid::DistanceToOut( const G4ThreeVector& p, 440 const G4Thr << 350 const G4ThreeVector& v, 441 const G4boo << 351 const G4bool calcNorm, 442 G4boo << 352 G4bool *validNorm, 443 G4Thr << 353 G4ThreeVector *n ) const 444 { 354 { 445 #ifdef G4BOOLDEBUG 355 #ifdef G4BOOLDEBUG 446 if( Inside(p) == kOutside ) 356 if( Inside(p) == kOutside ) 447 { 357 { 448 G4cout << "Position:" << G4endl << G4en 358 G4cout << "Position:" << G4endl << G4endl; 449 G4cout << "p.x() = " << p.x()/mm << " 359 G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl; 450 G4cout << "p.y() = " << p.y()/mm << " 360 G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl; 451 G4cout << "p.z() = " << p.z()/mm << " 361 G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl; 452 G4cout << "Direction:" << G4endl << G4en 362 G4cout << "Direction:" << G4endl << G4endl; 453 G4cout << "v.x() = " << v.x() << G4end 363 G4cout << "v.x() = " << v.x() << G4endl; 454 G4cout << "v.y() = " << v.y() << G4end 364 G4cout << "v.y() = " << v.y() << G4endl; 455 G4cout << "v.z() = " << v.z() << G4end 365 G4cout << "v.z() = " << v.z() << G4endl << G4endl; 456 G4cout << "WARNING - Invalid call in " 366 G4cout << "WARNING - Invalid call in " 457 << "G4SubtractionSolid::DistanceT 367 << "G4SubtractionSolid::DistanceToOut(p,v)" << G4endl 458 << " Point p is outside !" << G4 368 << " Point p is outside !" << G4endl; 459 G4cout << " p = " << p << G4end 369 G4cout << " p = " << p << G4endl; 460 G4cout << " v = " << v << G4end 370 G4cout << " v = " << v << G4endl; 461 G4cerr << "WARNING - Invalid call in " 371 G4cerr << "WARNING - Invalid call in " 462 << "G4SubtractionSolid::DistanceT 372 << "G4SubtractionSolid::DistanceToOut(p,v)" << G4endl 463 << " Point p is outside !" << G4 373 << " Point p is outside !" << G4endl; 464 G4cerr << " p = " << p << G4end 374 G4cerr << " p = " << p << G4endl; 465 G4cerr << " v = " << v << G4end 375 G4cerr << " v = " << v << G4endl; 466 } 376 } 467 #endif 377 #endif 468 378 469 G4double distout; 379 G4double distout; 470 G4double distA = fPtrSolidA->DistanceToOut 380 G4double distA = fPtrSolidA->DistanceToOut(p,v,calcNorm,validNorm,n) ; 471 G4double distB = fPtrSolidB->DistanceToIn( 381 G4double distB = fPtrSolidB->DistanceToIn(p,v) ; 472 if(distB < distA) 382 if(distB < distA) 473 { 383 { 474 if(calcNorm) 384 if(calcNorm) 475 { 385 { 476 *n = -(fPtrSolidB->SurfaceNormal(p+dis 386 *n = -(fPtrSolidB->SurfaceNormal(p+distB*v)) ; 477 *validNorm = false ; 387 *validNorm = false ; 478 } 388 } 479 distout= distB ; 389 distout= distB ; 480 } 390 } 481 else 391 else 482 { 392 { 483 distout= distA ; 393 distout= distA ; 484 } 394 } 485 return distout; 395 return distout; 486 } 396 } 487 397 488 ////////////////////////////////////////////// << 398 ////////////////////////////////////////////////////////////// 489 // 399 // 490 // Inverted algorithm of DistanceToIn(p) 400 // Inverted algorithm of DistanceToIn(p) 491 401 492 G4double 402 G4double 493 G4SubtractionSolid::DistanceToOut( const G4Thr 403 G4SubtractionSolid::DistanceToOut( const G4ThreeVector& p ) const 494 { 404 { 495 G4double dist=0.0; 405 G4double dist=0.0; 496 406 497 if( Inside(p) == kOutside ) 407 if( Inside(p) == kOutside ) 498 { 408 { 499 #ifdef G4BOOLDEBUG 409 #ifdef G4BOOLDEBUG 500 G4cout << "WARNING - Invalid call in " 410 G4cout << "WARNING - Invalid call in " 501 << "G4SubtractionSolid::DistanceToO 411 << "G4SubtractionSolid::DistanceToOut(p)" << G4endl 502 << " Point p is outside" << G4endl 412 << " Point p is outside" << G4endl; 503 G4cout << " p = " << p << G4endl; 413 G4cout << " p = " << p << G4endl; 504 G4cerr << "WARNING - Invalid call in " 414 G4cerr << "WARNING - Invalid call in " 505 << "G4SubtractionSolid::DistanceToO 415 << "G4SubtractionSolid::DistanceToOut(p)" << G4endl 506 << " Point p is outside" << G4endl 416 << " Point p is outside" << G4endl; 507 G4cerr << " p = " << p << G4endl; 417 G4cerr << " p = " << p << G4endl; 508 #endif 418 #endif 509 } 419 } 510 else 420 else 511 { 421 { 512 dist= std::min(fPtrSolidA->DistanceToOut( 422 dist= std::min(fPtrSolidA->DistanceToOut(p), 513 fPtrSolidB->DistanceToIn 423 fPtrSolidB->DistanceToIn(p) ) ; 514 } 424 } 515 return dist; 425 return dist; 516 } 426 } 517 427 518 ////////////////////////////////////////////// << 428 ////////////////////////////////////////////////////////////// 519 // 429 // 520 // 430 // 521 431 522 G4GeometryType G4SubtractionSolid::GetEntityTy 432 G4GeometryType G4SubtractionSolid::GetEntityType() const 523 { 433 { 524 return {"G4SubtractionSolid"}; << 434 return G4String("G4SubtractionSolid"); 525 } 435 } 526 436 527 ////////////////////////////////////////////// << 437 ////////////////////////////////////////////////////////////// 528 // 438 // 529 // Make a clone of the object << 530 << 531 G4VSolid* G4SubtractionSolid::Clone() const << 532 { << 533 return new G4SubtractionSolid(*this); << 534 } << 535 << 536 ////////////////////////////////////////////// << 537 // 439 // 538 // ComputeDimensions << 539 440 540 void 441 void 541 G4SubtractionSolid::ComputeDimensions( G 442 G4SubtractionSolid::ComputeDimensions( G4VPVParameterisation*, 542 const G 443 const G4int, 543 const G 444 const G4VPhysicalVolume* ) 544 { 445 { 545 } 446 } 546 447 547 ////////////////////////////////////////////// << 448 ///////////////////////////////////////////////// 548 // 449 // 549 // DescribeYourselfTo << 450 // 550 451 551 void 452 void 552 G4SubtractionSolid::DescribeYourselfTo ( G4VGr 453 G4SubtractionSolid::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 553 { 454 { 554 scene.AddSolid (*this); 455 scene.AddSolid (*this); 555 } 456 } 556 457 557 ////////////////////////////////////////////// << 458 //////////////////////////////////////////////////// >> 459 // 558 // 460 // 559 // CreatePolyhedron << 560 461 561 G4Polyhedron* G4SubtractionSolid::CreatePolyhe << 462 G4Polyhedron* >> 463 G4SubtractionSolid::CreatePolyhedron () const 562 { 464 { 563 if (fExternalBoolProcessor == nullptr) << 465 G4Polyhedron* pA = fPtrSolidA->GetPolyhedron(); >> 466 G4Polyhedron* pB = fPtrSolidB->GetPolyhedron(); >> 467 if (pA && pB) 564 { 468 { 565 HepPolyhedronProcessor processor; << 469 G4Polyhedron* resultant = new G4Polyhedron (pA->subtract(*pB)); 566 // Stack components and components of comp << 470 return resultant; 567 // See G4BooleanSolid::StackPolyhedron << 568 G4Polyhedron* top = StackPolyhedron(proces << 569 auto result = new G4Polyhedron(*top); << 570 if (processor.execute(*result)) << 571 { << 572 return result; << 573 } << 574 else << 575 { << 576 return nullptr; << 577 } << 578 } 471 } 579 else 472 else 580 { 473 { 581 return fExternalBoolProcessor->Process(thi << 474 std::ostringstream oss; >> 475 oss << "Solid - " << GetName() >> 476 << " - one of the Boolean components has no" << G4endl >> 477 << " corresponding polyhedron. Returning NULL !"; >> 478 G4Exception("G4SubtractionSolid::CreatePolyhedron()", "InvalidSetup", >> 479 JustWarning, oss.str().c_str()); >> 480 return 0; 582 } 481 } 583 } 482 } 584 483 585 ////////////////////////////////////////////// << 484 ///////////////////////////////////////////////////////// 586 // 485 // 587 // GetCubicVolume << 588 // 486 // 589 487 590 G4double G4SubtractionSolid::GetCubicVolume() << 488 G4NURBS* >> 489 G4SubtractionSolid::CreateNURBS () const 591 { 490 { 592 if( fCubicVolume >= 0. ) << 491 // Take into account boolean operation - see CreatePolyhedron. 593 { << 492 // return new G4NURBSbox (1.0, 1.0, 1.0); 594 return fCubicVolume; << 493 return 0; 595 } << 596 G4ThreeVector bminA, bmaxA, bminB, bmaxB; << 597 fPtrSolidA->BoundingLimits(bminA, bmaxA); << 598 fPtrSolidB->BoundingLimits(bminB, bmaxB); << 599 G4bool noIntersection = << 600 bminA.x() >= bmaxB.x() || bminA.y() >= bm << 601 bminB.x() >= bmaxA.x() || bminB.y() >= bm << 602 << 603 if (noIntersection) << 604 { << 605 fCubicVolume = fPtrSolidA->GetCubicVolume( << 606 } << 607 else << 608 { << 609 if (GetNumOfConstituents() > 10) << 610 { << 611 fCubicVolume = G4BooleanSolid::GetCubicV << 612 } << 613 else << 614 { << 615 G4IntersectionSolid intersectVol("Tempor << 616 fPtrSo << 617 intersectVol.SetCubVolStatistics(GetCubV << 618 intersectVol.SetCubVolEpsilon(GetCubVolE << 619 << 620 G4double cubVolumeA = fPtrSolidA->GetCub << 621 fCubicVolume = cubVolumeA - intersectVol << 622 if (fCubicVolume < 0.01*cubVolumeA) fCub << 623 } << 624 } << 625 return fCubicVolume; << 626 } 494 } 627 495