Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // >> 27 // $Id: G4SubtractionSolid.cc 66356 2012-12-18 09:02:32Z gcosmo $ >> 28 // 26 // Implementation of methods for the class G4I 29 // Implementation of methods for the class G4IntersectionSolid 27 // 30 // 28 // 22.07.11 T.Nikitina: added detection of inf << 31 // History: 29 // 19.10.98 V.Grichine: new algorithm of Dista << 32 // 30 // 14.10.98 V.Grichine: implementation of the 33 // 14.10.98 V.Grichine: implementation of the first version >> 34 // 19.10.98 V.Grichine: new algorithm of DistanceToIn(p,v) >> 35 // 02.08.99 V.Grichine: bugs fixed in DistanceToOut(p,v,...) >> 36 // while -> do-while & surfaceA limitations >> 37 // 13.09.00 V.Grichine: bug fixed in SurfaceNormal(p), p can be inside >> 38 // 22.07.11 T.Nikitina: add detection of Infinite Loop in DistanceToIn(p,v) >> 39 // 31 // ------------------------------------------- 40 // -------------------------------------------------------------------- 32 41 33 #include "G4SubtractionSolid.hh" 42 #include "G4SubtractionSolid.hh" 34 43 35 #include "G4SystemOfUnits.hh" 44 #include "G4SystemOfUnits.hh" 36 #include "G4VoxelLimits.hh" 45 #include "G4VoxelLimits.hh" 37 #include "G4VPVParameterisation.hh" 46 #include "G4VPVParameterisation.hh" 38 #include "G4GeometryTolerance.hh" 47 #include "G4GeometryTolerance.hh" 39 48 40 #include "G4VGraphicsScene.hh" 49 #include "G4VGraphicsScene.hh" 41 #include "G4Polyhedron.hh" 50 #include "G4Polyhedron.hh" 42 #include "G4PolyhedronArbitrary.hh" << 43 #include "HepPolyhedronProcessor.h" 51 #include "HepPolyhedronProcessor.h" 44 52 45 #include "G4IntersectionSolid.hh" << 46 << 47 #include <sstream> 53 #include <sstream> 48 54 49 ////////////////////////////////////////////// << 55 /////////////////////////////////////////////////////////////////// 50 // 56 // 51 // Transfer all data members to G4BooleanSolid 57 // Transfer all data members to G4BooleanSolid which is responsible 52 // for them. pName will be in turn sent to G4V 58 // for them. pName will be in turn sent to G4VSolid 53 59 54 G4SubtractionSolid::G4SubtractionSolid( const 60 G4SubtractionSolid::G4SubtractionSolid( const G4String& pName, 55 61 G4VSolid* pSolidA , 56 62 G4VSolid* pSolidB ) 57 : G4BooleanSolid(pName,pSolidA,pSolidB) 63 : G4BooleanSolid(pName,pSolidA,pSolidB) 58 { 64 { 59 } 65 } 60 66 61 ////////////////////////////////////////////// << 67 /////////////////////////////////////////////////////////////// 62 // 68 // 63 // Constructor 69 // Constructor 64 70 65 G4SubtractionSolid::G4SubtractionSolid( const 71 G4SubtractionSolid::G4SubtractionSolid( const G4String& pName, 66 72 G4VSolid* pSolidA , 67 73 G4VSolid* pSolidB , 68 74 G4RotationMatrix* rotMatrix, 69 const 75 const G4ThreeVector& transVector ) 70 : G4BooleanSolid(pName,pSolidA,pSolidB,rotMa 76 : G4BooleanSolid(pName,pSolidA,pSolidB,rotMatrix,transVector) 71 { 77 { 72 } 78 } 73 79 74 ////////////////////////////////////////////// << 80 /////////////////////////////////////////////////////////////// 75 // 81 // 76 // Constructor 82 // Constructor 77 83 78 G4SubtractionSolid::G4SubtractionSolid( const 84 G4SubtractionSolid::G4SubtractionSolid( const G4String& pName, 79 85 G4VSolid* pSolidA , 80 86 G4VSolid* pSolidB , 81 const 87 const G4Transform3D& transform ) 82 : G4BooleanSolid(pName,pSolidA,pSolidB,trans 88 : G4BooleanSolid(pName,pSolidA,pSolidB,transform) 83 { 89 { 84 } 90 } 85 91 86 ////////////////////////////////////////////// << 92 ////////////////////////////////////////////////////////////////// 87 // 93 // 88 // Fake default constructor - sets only member 94 // Fake default constructor - sets only member data and allocates memory 89 // for usage restri 95 // for usage restricted to object persistency. 90 96 91 G4SubtractionSolid::G4SubtractionSolid( __void 97 G4SubtractionSolid::G4SubtractionSolid( __void__& a ) 92 : G4BooleanSolid(a) 98 : G4BooleanSolid(a) 93 { 99 { 94 } 100 } 95 101 96 ////////////////////////////////////////////// << 102 /////////////////////////////////////////////////////////////// 97 // 103 // 98 // Destructor 104 // Destructor 99 105 100 G4SubtractionSolid::~G4SubtractionSolid() = de << 106 G4SubtractionSolid::~G4SubtractionSolid() >> 107 { >> 108 } 101 109 102 ////////////////////////////////////////////// << 110 /////////////////////////////////////////////////////////////// 103 // 111 // 104 // Copy constructor 112 // Copy constructor 105 113 106 G4SubtractionSolid::G4SubtractionSolid(const G << 114 G4SubtractionSolid::G4SubtractionSolid(const G4SubtractionSolid& rhs) >> 115 : G4BooleanSolid (rhs) >> 116 { >> 117 } 107 118 108 ////////////////////////////////////////////// << 119 /////////////////////////////////////////////////////////////// 109 // 120 // 110 // Assignment operator 121 // Assignment operator 111 122 112 G4SubtractionSolid& 123 G4SubtractionSolid& 113 G4SubtractionSolid::operator = (const G4Subtra 124 G4SubtractionSolid::operator = (const G4SubtractionSolid& rhs) 114 { 125 { 115 // Check assignment to self 126 // Check assignment to self 116 // 127 // 117 if (this == &rhs) { return *this; } 128 if (this == &rhs) { return *this; } 118 129 119 // Copy base class data 130 // Copy base class data 120 // 131 // 121 G4BooleanSolid::operator=(rhs); 132 G4BooleanSolid::operator=(rhs); 122 133 123 return *this; 134 return *this; 124 } 135 } 125 136 126 ////////////////////////////////////////////// << 137 /////////////////////////////////////////////////////////////// 127 // << 128 // Get bounding box << 129 << 130 void << 131 G4SubtractionSolid::BoundingLimits(G4ThreeVect << 132 G4ThreeVect << 133 { << 134 // Since it is unclear how the shape of the << 135 // after subtraction, just return its origin << 136 // << 137 fPtrSolidA->BoundingLimits(pMin,pMax); << 138 << 139 // Check correctness of the bounding box << 140 // << 141 if (pMin.x() >= pMax.x() || pMin.y() >= pMax << 142 { << 143 std::ostringstream message; << 144 message << "Bad bounding box (min >= max) << 145 << GetName() << " !" << 146 << "\npMin = " << pMin << 147 << "\npMax = " << pMax; << 148 G4Exception("G4SubtractionSolid::BoundingL << 149 JustWarning, message); << 150 DumpInfo(); << 151 } << 152 } << 153 << 154 ////////////////////////////////////////////// << 155 // 138 // 156 // Calculate extent under transform and specif << 139 // CalculateExtent 157 140 158 G4bool 141 G4bool 159 G4SubtractionSolid::CalculateExtent( const EAx 142 G4SubtractionSolid::CalculateExtent( const EAxis pAxis, 160 const G4V 143 const G4VoxelLimits& pVoxelLimit, 161 const G4A 144 const G4AffineTransform& pTransform, 162 G4d 145 G4double& pMin, 163 G4d 146 G4double& pMax ) const 164 { 147 { 165 // Since we cannot be sure how much the seco 148 // Since we cannot be sure how much the second solid subtracts 166 // from the first, we must use the first sol << 149 // from the first, we must use the first solid's extent! 167 150 168 return fPtrSolidA->CalculateExtent( pAxis, p 151 return fPtrSolidA->CalculateExtent( pAxis, pVoxelLimit, 169 pTransfo 152 pTransform, pMin, pMax ); 170 } 153 } 171 154 172 ////////////////////////////////////////////// << 155 ///////////////////////////////////////////////////// 173 // 156 // 174 // Touching ? Empty subtraction ? 157 // Touching ? Empty subtraction ? 175 158 176 EInside G4SubtractionSolid::Inside( const G4Th 159 EInside G4SubtractionSolid::Inside( const G4ThreeVector& p ) const 177 { 160 { 178 EInside positionA = fPtrSolidA->Inside(p); 161 EInside positionA = fPtrSolidA->Inside(p); 179 if (positionA == kOutside) return positionA; << 162 if (positionA == kOutside) return kOutside; 180 163 181 EInside positionB = fPtrSolidB->Inside(p); 164 EInside positionB = fPtrSolidB->Inside(p); 182 if (positionB == kOutside) return positionA; << 165 183 << 166 if(positionA == kInside && positionB == kOutside) 184 if (positionB == kInside) return kOutside; << 167 { 185 if (positionA == kInside) return kSurface; / << 168 return kInside ; 186 << 169 } 187 // Point is on both surfaces << 170 else 188 // << 171 { 189 static const G4double rtol = 1000*kCarTolera << 172 if(( positionA == kInside && positionB == kSurface) || 190 << 173 ( positionB == kOutside && positionA == kSurface) || 191 return ((fPtrSolidA->SurfaceNormal(p) - << 174 ( positionA == kSurface && positionB == kSurface && 192 fPtrSolidB->SurfaceNormal(p)).mag2( << 175 ( fPtrSolidA->SurfaceNormal(p) - >> 176 fPtrSolidB->SurfaceNormal(p) ).mag2() > >> 177 1000.0*G4GeometryTolerance::GetInstance()->GetRadialTolerance() ) ) >> 178 { >> 179 return kSurface; >> 180 } >> 181 else >> 182 { >> 183 return kOutside; >> 184 } >> 185 } 193 } 186 } 194 187 195 ////////////////////////////////////////////// << 188 ////////////////////////////////////////////////////////////// 196 // 189 // 197 // SurfaceNormal 190 // SurfaceNormal 198 191 199 G4ThreeVector 192 G4ThreeVector 200 G4SubtractionSolid::SurfaceNormal( const G4Thr 193 G4SubtractionSolid::SurfaceNormal( const G4ThreeVector& p ) const 201 { 194 { 202 G4ThreeVector normal; 195 G4ThreeVector normal; 203 << 196 EInside insideThis= Inside(p); 204 EInside InsideA = fPtrSolidA->Inside(p); << 197 if( insideThis == kOutside ) 205 EInside InsideB = fPtrSolidB->Inside(p); << 206 << 207 if( InsideA == kOutside ) << 208 { 198 { 209 #ifdef G4BOOLDEBUG 199 #ifdef G4BOOLDEBUG 210 G4cout << "WARNING - Invalid call [1] in " 200 G4cout << "WARNING - Invalid call [1] in " 211 << "G4SubtractionSolid::SurfaceNorm 201 << "G4SubtractionSolid::SurfaceNormal(p)" << G4endl 212 << " Point p is outside !" << G4en 202 << " Point p is outside !" << G4endl; 213 G4cout << " p = " << p << G4endl; 203 G4cout << " p = " << p << G4endl; 214 G4cerr << "WARNING - Invalid call [1] in " 204 G4cerr << "WARNING - Invalid call [1] in " 215 << "G4SubtractionSolid::SurfaceNorm 205 << "G4SubtractionSolid::SurfaceNormal(p)" << G4endl 216 << " Point p is outside !" << G4en 206 << " Point p is outside !" << G4endl; 217 G4cerr << " p = " << p << G4endl; 207 G4cerr << " p = " << p << G4endl; 218 #endif 208 #endif 219 normal = fPtrSolidA->SurfaceNormal(p) ; << 220 } 209 } 221 else if( InsideA == kSurface && << 210 else 222 InsideB != kInside ) << 211 { 223 { << 212 EInside InsideA = fPtrSolidA->Inside(p); 224 normal = fPtrSolidA->SurfaceNormal(p) ; << 213 EInside InsideB = fPtrSolidB->Inside(p); 225 } << 214 226 else if( InsideA == kInside && << 215 if( InsideA == kSurface && 227 InsideB != kOutside ) << 216 InsideB != kInside ) 228 { << 229 normal = -fPtrSolidB->SurfaceNormal(p) ; << 230 } << 231 else << 232 { << 233 if ( fPtrSolidA->DistanceToOut(p) <= fPtrS << 234 { 217 { 235 normal = fPtrSolidA->SurfaceNormal(p) ; 218 normal = fPtrSolidA->SurfaceNormal(p) ; 236 } 219 } 237 else << 220 else if( InsideA == kInside && >> 221 InsideB != kOutside ) 238 { 222 { 239 normal = -fPtrSolidB->SurfaceNormal(p) ; 223 normal = -fPtrSolidB->SurfaceNormal(p) ; 240 } 224 } 241 #ifdef G4BOOLDEBUG << 225 else 242 if(Inside(p) == kInside) << 243 { 226 { 244 G4cout << "WARNING - Invalid call [2] in << 227 if ( fPtrSolidA->DistanceToOut(p) <= fPtrSolidB->DistanceToIn(p) ) >> 228 { >> 229 normal = fPtrSolidA->SurfaceNormal(p) ; >> 230 } >> 231 else >> 232 { >> 233 normal = -fPtrSolidB->SurfaceNormal(p) ; >> 234 } >> 235 #ifdef G4BOOLDEBUG >> 236 if(insideThis == kInside) >> 237 { >> 238 G4cout << "WARNING - Invalid call [2] in " 245 << "G4SubtractionSolid::SurfaceNo 239 << "G4SubtractionSolid::SurfaceNormal(p)" << G4endl 246 << " Point p is inside !" << G4e 240 << " Point p is inside !" << G4endl; 247 G4cout << " p = " << p << G4end << 241 G4cout << " p = " << p << G4endl; 248 G4cerr << "WARNING - Invalid call [2] in << 242 G4cerr << "WARNING - Invalid call [2] in " 249 << "G4SubtractionSolid::SurfaceNo 243 << "G4SubtractionSolid::SurfaceNormal(p)" << G4endl 250 << " Point p is inside !" << G4e 244 << " Point p is inside !" << G4endl; 251 G4cerr << " p = " << p << G4end << 245 G4cerr << " p = " << p << G4endl; 252 } << 246 } 253 #endif 247 #endif >> 248 } 254 } 249 } 255 return normal; 250 return normal; 256 } 251 } 257 252 258 ////////////////////////////////////////////// << 253 ///////////////////////////////////////////////////////////// 259 // 254 // 260 // The same algorithm as in DistanceToIn(p) 255 // The same algorithm as in DistanceToIn(p) 261 256 262 G4double 257 G4double 263 G4SubtractionSolid::DistanceToIn( const G4Thre << 258 G4SubtractionSolid::DistanceToIn( const G4ThreeVector& p, 264 const G4Thre << 259 const G4ThreeVector& v ) const 265 { 260 { 266 G4double dist = 0.0, dist2 = 0.0, disTmp = 0 << 261 G4double dist = 0.0,disTmp = 0.0 ; 267 262 268 #ifdef G4BOOLDEBUG 263 #ifdef G4BOOLDEBUG 269 if( Inside(p) == kInside ) 264 if( Inside(p) == kInside ) 270 { 265 { 271 G4cout << "WARNING - Invalid call in " 266 G4cout << "WARNING - Invalid call in " 272 << "G4SubtractionSolid::DistanceToI 267 << "G4SubtractionSolid::DistanceToIn(p,v)" << G4endl 273 << " Point p is inside !" << G4end 268 << " Point p is inside !" << G4endl; 274 G4cout << " p = " << p << G4endl; 269 G4cout << " p = " << p << G4endl; 275 G4cout << " v = " << v << G4endl; 270 G4cout << " v = " << v << G4endl; 276 G4cerr << "WARNING - Invalid call in " 271 G4cerr << "WARNING - Invalid call in " 277 << "G4SubtractionSolid::DistanceToI 272 << "G4SubtractionSolid::DistanceToIn(p,v)" << G4endl 278 << " Point p is inside !" << G4end 273 << " Point p is inside !" << G4endl; 279 G4cerr << " p = " << p << G4endl; 274 G4cerr << " p = " << p << G4endl; 280 G4cerr << " v = " << v << G4endl; 275 G4cerr << " v = " << v << G4endl; 281 } 276 } 282 #endif 277 #endif 283 278 284 // if( // ( fPtrSolidA->Inside(p) != kOuts 279 // if( // ( fPtrSolidA->Inside(p) != kOutside) && // case1:p in both A&B 285 if ( fPtrSolidB->Inside(p) != kOutside ) 280 if ( fPtrSolidB->Inside(p) != kOutside ) // start: out of B 286 { 281 { 287 dist = fPtrSolidB->DistanceToOut(p,v) ; 282 dist = fPtrSolidB->DistanceToOut(p,v) ; // ,calcNorm,validNorm,n) ; 288 283 289 if( fPtrSolidA->Inside(p+dist*v) != kIns 284 if( fPtrSolidA->Inside(p+dist*v) != kInside ) 290 { 285 { 291 G4int count1=0; 286 G4int count1=0; 292 do // Loop checking, 13.08.2015, G.C << 287 do 293 { 288 { 294 disTmp = fPtrSolidA->DistanceToIn(p+ 289 disTmp = fPtrSolidA->DistanceToIn(p+dist*v,v) ; 295 290 296 if(disTmp == kInfinity) 291 if(disTmp == kInfinity) 297 { 292 { 298 return kInfinity ; 293 return kInfinity ; 299 } 294 } 300 dist += disTmp ; 295 dist += disTmp ; 301 296 302 if( Inside(p+dist*v) == kOutside ) 297 if( Inside(p+dist*v) == kOutside ) 303 { 298 { 304 disTmp = fPtrSolidB->DistanceToOut << 299 disTmp = fPtrSolidB->DistanceToOut(p+dist*v,v) ; 305 dist2 = dist+disTmp; << 300 dist += disTmp ; 306 if (dist == dist2) { return dist; << 301 count1++; 307 dist = dist2 ; << 308 ++count1; << 309 if( count1 > 1000 ) // Infinite l 302 if( count1 > 1000 ) // Infinite loop detected 310 { 303 { 311 G4String nameB = fPtrSolidB->Get 304 G4String nameB = fPtrSolidB->GetName(); 312 if(fPtrSolidB->GetEntityType()== 305 if(fPtrSolidB->GetEntityType()=="G4DisplacedSolid") 313 { 306 { 314 nameB = (dynamic_cast<G4Displa 307 nameB = (dynamic_cast<G4DisplacedSolid*>(fPtrSolidB)) 315 ->GetConstituentMovedS 308 ->GetConstituentMovedSolid()->GetName(); 316 } 309 } 317 std::ostringstream message; 310 std::ostringstream message; 318 message << "Illegal condition ca 311 message << "Illegal condition caused by solids: " 319 << fPtrSolidA->GetName() 312 << fPtrSolidA->GetName() << " and " << nameB << G4endl; 320 message.precision(16); 313 message.precision(16); 321 message << "Looping detected in 314 message << "Looping detected in point " << p+dist*v 322 << ", from original poin 315 << ", from original point " << p 323 << " and direction " << 316 << " and direction " << v << G4endl 324 << "Computed candidate d 317 << "Computed candidate distance: " << dist << "*mm. "; 325 message.precision(6); 318 message.precision(6); 326 DumpInfo(); 319 DumpInfo(); 327 G4Exception("G4SubtractionSolid: 320 G4Exception("G4SubtractionSolid::DistanceToIn(p,v)", 328 "GeomSolids1001", Ju 321 "GeomSolids1001", JustWarning, message, 329 "Returning candidate 322 "Returning candidate distance."); 330 return dist; 323 return dist; 331 } 324 } 332 } 325 } 333 } 326 } 334 while( Inside(p+dist*v) == kOutside ) 327 while( Inside(p+dist*v) == kOutside ) ; 335 } 328 } 336 } 329 } 337 else // p outside A, start in A 330 else // p outside A, start in A 338 { 331 { 339 dist = fPtrSolidA->DistanceToIn(p,v) ; 332 dist = fPtrSolidA->DistanceToIn(p,v) ; 340 333 341 if( dist == kInfinity ) // past A, hence 334 if( dist == kInfinity ) // past A, hence past A\B 342 { 335 { 343 return kInfinity ; 336 return kInfinity ; 344 } 337 } 345 else 338 else 346 { 339 { 347 G4int count2=0; 340 G4int count2=0; 348 while( Inside(p+dist*v) == kOutside ) 341 while( Inside(p+dist*v) == kOutside ) // pushing loop 349 { 342 { 350 disTmp = fPtrSolidB->DistanceToOut(p 343 disTmp = fPtrSolidB->DistanceToOut(p+dist*v,v) ; 351 dist += disTmp ; 344 dist += disTmp ; 352 345 353 if( Inside(p+dist*v) == kOutside ) 346 if( Inside(p+dist*v) == kOutside ) 354 { 347 { 355 disTmp = fPtrSolidA->DistanceToIn( 348 disTmp = fPtrSolidA->DistanceToIn(p+dist*v,v) ; 356 349 357 if(disTmp == kInfinity) // past A, 350 if(disTmp == kInfinity) // past A, hence past A\B 358 { 351 { 359 return kInfinity ; 352 return kInfinity ; 360 } 353 } 361 dist2 = dist+disTmp; << 354 dist += disTmp ; 362 if (dist == dist2) { return dist; << 355 count2++; 363 dist = dist2 ; << 364 ++count2; << 365 if( count2 > 1000 ) // Infinite l 356 if( count2 > 1000 ) // Infinite loop detected 366 { 357 { 367 G4String nameB = fPtrSolidB->Get 358 G4String nameB = fPtrSolidB->GetName(); 368 if(fPtrSolidB->GetEntityType()== 359 if(fPtrSolidB->GetEntityType()=="G4DisplacedSolid") 369 { 360 { 370 nameB = (dynamic_cast<G4Displa 361 nameB = (dynamic_cast<G4DisplacedSolid*>(fPtrSolidB)) 371 ->GetConstituentMovedS 362 ->GetConstituentMovedSolid()->GetName(); 372 } 363 } 373 std::ostringstream message; 364 std::ostringstream message; 374 message << "Illegal condition ca 365 message << "Illegal condition caused by solids: " 375 << fPtrSolidA->GetName() 366 << fPtrSolidA->GetName() << " and " << nameB << G4endl; 376 message.precision(16); 367 message.precision(16); 377 message << "Looping detected in 368 message << "Looping detected in point " << p+dist*v 378 << ", from original poin 369 << ", from original point " << p 379 << " and direction " << 370 << " and direction " << v << G4endl 380 << "Computed candidate d 371 << "Computed candidate distance: " << dist << "*mm. "; 381 message.precision(6); 372 message.precision(6); 382 DumpInfo(); 373 DumpInfo(); 383 G4Exception("G4SubtractionSolid: 374 G4Exception("G4SubtractionSolid::DistanceToIn(p,v)", 384 "GeomSolids1001", Ju 375 "GeomSolids1001", JustWarning, message, 385 "Returning candidate 376 "Returning candidate distance."); 386 return dist; 377 return dist; 387 } 378 } 388 } 379 } 389 } // Loop checking, 13.08.2015, G.C << 380 } 390 } 381 } 391 } 382 } 392 383 393 return dist ; 384 return dist ; 394 } 385 } 395 386 396 ////////////////////////////////////////////// << 387 //////////////////////////////////////////////////////// 397 // 388 // 398 // Approximate nearest distance from the point 389 // Approximate nearest distance from the point p to the intersection of 399 // two solids. It is usually underestimated fr 390 // two solids. It is usually underestimated from the point of view of 400 // isotropic safety 391 // isotropic safety 401 392 402 G4double 393 G4double 403 G4SubtractionSolid::DistanceToIn( const G4Thre 394 G4SubtractionSolid::DistanceToIn( const G4ThreeVector& p ) const 404 { 395 { 405 G4double dist = 0.0; << 396 G4double dist=0.0; 406 397 407 #ifdef G4BOOLDEBUG 398 #ifdef G4BOOLDEBUG 408 if( Inside(p) == kInside ) 399 if( Inside(p) == kInside ) 409 { 400 { 410 G4cout << "WARNING - Invalid call in " 401 G4cout << "WARNING - Invalid call in " 411 << "G4SubtractionSolid::DistanceToI 402 << "G4SubtractionSolid::DistanceToIn(p)" << G4endl 412 << " Point p is inside !" << G4end 403 << " Point p is inside !" << G4endl; 413 G4cout << " p = " << p << G4endl; 404 G4cout << " p = " << p << G4endl; 414 G4cerr << "WARNING - Invalid call in " 405 G4cerr << "WARNING - Invalid call in " 415 << "G4SubtractionSolid::DistanceToI 406 << "G4SubtractionSolid::DistanceToIn(p)" << G4endl 416 << " Point p is inside !" << G4end 407 << " Point p is inside !" << G4endl; 417 G4cerr << " p = " << p << G4endl; 408 G4cerr << " p = " << p << G4endl; 418 } 409 } 419 #endif 410 #endif 420 411 421 if( ( fPtrSolidA->Inside(p) != kOutside) && 412 if( ( fPtrSolidA->Inside(p) != kOutside) && // case 1 422 ( fPtrSolidB->Inside(p) != kOutside) 413 ( fPtrSolidB->Inside(p) != kOutside) ) 423 { 414 { 424 dist = fPtrSolidB->DistanceToOut(p); << 415 dist= fPtrSolidB->DistanceToOut(p) ; 425 } 416 } 426 else 417 else 427 { 418 { 428 dist = fPtrSolidA->DistanceToIn(p); << 419 dist= fPtrSolidA->DistanceToIn(p) ; 429 } 420 } 430 421 431 return dist; 422 return dist; 432 } 423 } 433 424 434 ////////////////////////////////////////////// << 425 ////////////////////////////////////////////////////////// 435 // 426 // 436 // The same algorithm as DistanceToOut(p) 427 // The same algorithm as DistanceToOut(p) 437 428 438 G4double 429 G4double 439 G4SubtractionSolid::DistanceToOut( const G4Thr 430 G4SubtractionSolid::DistanceToOut( const G4ThreeVector& p, 440 const G4Thr << 431 const G4ThreeVector& v, 441 const G4boo << 432 const G4bool calcNorm, 442 G4boo << 433 G4bool *validNorm, 443 G4Thr << 434 G4ThreeVector *n ) const 444 { 435 { 445 #ifdef G4BOOLDEBUG 436 #ifdef G4BOOLDEBUG 446 if( Inside(p) == kOutside ) 437 if( Inside(p) == kOutside ) 447 { 438 { 448 G4cout << "Position:" << G4endl << G4en 439 G4cout << "Position:" << G4endl << G4endl; 449 G4cout << "p.x() = " << p.x()/mm << " 440 G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl; 450 G4cout << "p.y() = " << p.y()/mm << " 441 G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl; 451 G4cout << "p.z() = " << p.z()/mm << " 442 G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl; 452 G4cout << "Direction:" << G4endl << G4en 443 G4cout << "Direction:" << G4endl << G4endl; 453 G4cout << "v.x() = " << v.x() << G4end 444 G4cout << "v.x() = " << v.x() << G4endl; 454 G4cout << "v.y() = " << v.y() << G4end 445 G4cout << "v.y() = " << v.y() << G4endl; 455 G4cout << "v.z() = " << v.z() << G4end 446 G4cout << "v.z() = " << v.z() << G4endl << G4endl; 456 G4cout << "WARNING - Invalid call in " 447 G4cout << "WARNING - Invalid call in " 457 << "G4SubtractionSolid::DistanceT 448 << "G4SubtractionSolid::DistanceToOut(p,v)" << G4endl 458 << " Point p is outside !" << G4 449 << " Point p is outside !" << G4endl; 459 G4cout << " p = " << p << G4end 450 G4cout << " p = " << p << G4endl; 460 G4cout << " v = " << v << G4end 451 G4cout << " v = " << v << G4endl; 461 G4cerr << "WARNING - Invalid call in " 452 G4cerr << "WARNING - Invalid call in " 462 << "G4SubtractionSolid::DistanceT 453 << "G4SubtractionSolid::DistanceToOut(p,v)" << G4endl 463 << " Point p is outside !" << G4 454 << " Point p is outside !" << G4endl; 464 G4cerr << " p = " << p << G4end 455 G4cerr << " p = " << p << G4endl; 465 G4cerr << " v = " << v << G4end 456 G4cerr << " v = " << v << G4endl; 466 } 457 } 467 #endif 458 #endif 468 459 469 G4double distout; 460 G4double distout; 470 G4double distA = fPtrSolidA->DistanceToOut 461 G4double distA = fPtrSolidA->DistanceToOut(p,v,calcNorm,validNorm,n) ; 471 G4double distB = fPtrSolidB->DistanceToIn( 462 G4double distB = fPtrSolidB->DistanceToIn(p,v) ; 472 if(distB < distA) 463 if(distB < distA) 473 { 464 { 474 if(calcNorm) 465 if(calcNorm) 475 { 466 { 476 *n = -(fPtrSolidB->SurfaceNormal(p+dis 467 *n = -(fPtrSolidB->SurfaceNormal(p+distB*v)) ; 477 *validNorm = false ; 468 *validNorm = false ; 478 } 469 } 479 distout= distB ; 470 distout= distB ; 480 } 471 } 481 else 472 else 482 { 473 { 483 distout= distA ; 474 distout= distA ; 484 } 475 } 485 return distout; 476 return distout; 486 } 477 } 487 478 488 ////////////////////////////////////////////// << 479 ////////////////////////////////////////////////////////////// 489 // 480 // 490 // Inverted algorithm of DistanceToIn(p) 481 // Inverted algorithm of DistanceToIn(p) 491 482 492 G4double 483 G4double 493 G4SubtractionSolid::DistanceToOut( const G4Thr 484 G4SubtractionSolid::DistanceToOut( const G4ThreeVector& p ) const 494 { 485 { 495 G4double dist=0.0; 486 G4double dist=0.0; 496 487 497 if( Inside(p) == kOutside ) 488 if( Inside(p) == kOutside ) 498 { 489 { 499 #ifdef G4BOOLDEBUG 490 #ifdef G4BOOLDEBUG 500 G4cout << "WARNING - Invalid call in " 491 G4cout << "WARNING - Invalid call in " 501 << "G4SubtractionSolid::DistanceToO 492 << "G4SubtractionSolid::DistanceToOut(p)" << G4endl 502 << " Point p is outside" << G4endl 493 << " Point p is outside" << G4endl; 503 G4cout << " p = " << p << G4endl; 494 G4cout << " p = " << p << G4endl; 504 G4cerr << "WARNING - Invalid call in " 495 G4cerr << "WARNING - Invalid call in " 505 << "G4SubtractionSolid::DistanceToO 496 << "G4SubtractionSolid::DistanceToOut(p)" << G4endl 506 << " Point p is outside" << G4endl 497 << " Point p is outside" << G4endl; 507 G4cerr << " p = " << p << G4endl; 498 G4cerr << " p = " << p << G4endl; 508 #endif 499 #endif 509 } 500 } 510 else 501 else 511 { 502 { 512 dist= std::min(fPtrSolidA->DistanceToOut( 503 dist= std::min(fPtrSolidA->DistanceToOut(p), 513 fPtrSolidB->DistanceToIn 504 fPtrSolidB->DistanceToIn(p) ) ; 514 } 505 } 515 return dist; 506 return dist; 516 } 507 } 517 508 518 ////////////////////////////////////////////// << 509 ////////////////////////////////////////////////////////////// 519 // 510 // 520 // 511 // 521 512 522 G4GeometryType G4SubtractionSolid::GetEntityTy 513 G4GeometryType G4SubtractionSolid::GetEntityType() const 523 { 514 { 524 return {"G4SubtractionSolid"}; << 515 return G4String("G4SubtractionSolid"); 525 } 516 } 526 517 527 ////////////////////////////////////////////// 518 ////////////////////////////////////////////////////////////////////////// 528 // 519 // 529 // Make a clone of the object 520 // Make a clone of the object 530 521 531 G4VSolid* G4SubtractionSolid::Clone() const 522 G4VSolid* G4SubtractionSolid::Clone() const 532 { 523 { 533 return new G4SubtractionSolid(*this); 524 return new G4SubtractionSolid(*this); 534 } 525 } 535 526 536 ////////////////////////////////////////////// << 527 ////////////////////////////////////////////////////////////// >> 528 // 537 // 529 // 538 // ComputeDimensions << 539 530 540 void 531 void 541 G4SubtractionSolid::ComputeDimensions( G 532 G4SubtractionSolid::ComputeDimensions( G4VPVParameterisation*, 542 const G 533 const G4int, 543 const G 534 const G4VPhysicalVolume* ) 544 { 535 { 545 } 536 } 546 537 547 ////////////////////////////////////////////// << 538 ///////////////////////////////////////////////// 548 // 539 // 549 // DescribeYourselfTo << 540 // 550 541 551 void 542 void 552 G4SubtractionSolid::DescribeYourselfTo ( G4VGr 543 G4SubtractionSolid::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 553 { 544 { 554 scene.AddSolid (*this); 545 scene.AddSolid (*this); 555 } 546 } 556 547 557 ////////////////////////////////////////////// << 548 //////////////////////////////////////////////////// 558 // 549 // 559 // CreatePolyhedron << 560 << 561 G4Polyhedron* G4SubtractionSolid::CreatePolyhe << 562 { << 563 if (fExternalBoolProcessor == nullptr) << 564 { << 565 HepPolyhedronProcessor processor; << 566 // Stack components and components of comp << 567 // See G4BooleanSolid::StackPolyhedron << 568 G4Polyhedron* top = StackPolyhedron(proces << 569 auto result = new G4Polyhedron(*top); << 570 if (processor.execute(*result)) << 571 { << 572 return result; << 573 } << 574 else << 575 { << 576 return nullptr; << 577 } << 578 } << 579 else << 580 { << 581 return fExternalBoolProcessor->Process(thi << 582 } << 583 } << 584 << 585 ////////////////////////////////////////////// << 586 // << 587 // GetCubicVolume << 588 // 550 // 589 551 590 G4double G4SubtractionSolid::GetCubicVolume() << 552 G4Polyhedron* >> 553 G4SubtractionSolid::CreatePolyhedron () const 591 { 554 { 592 if( fCubicVolume >= 0. ) << 555 HepPolyhedronProcessor processor; 593 { << 556 // Stack components and components of components recursively 594 return fCubicVolume; << 557 // See G4BooleanSolid::StackPolyhedron 595 } << 558 G4Polyhedron* top = StackPolyhedron(processor, this); 596 G4ThreeVector bminA, bmaxA, bminB, bmaxB; << 559 G4Polyhedron* result = new G4Polyhedron(*top); 597 fPtrSolidA->BoundingLimits(bminA, bmaxA); << 560 if (processor.execute(*result)) { return result; } 598 fPtrSolidB->BoundingLimits(bminB, bmaxB); << 561 else { return 0; } 599 G4bool noIntersection = << 600 bminA.x() >= bmaxB.x() || bminA.y() >= bm << 601 bminB.x() >= bmaxA.x() || bminB.y() >= bm << 602 << 603 if (noIntersection) << 604 { << 605 fCubicVolume = fPtrSolidA->GetCubicVolume( << 606 } << 607 else << 608 { << 609 if (GetNumOfConstituents() > 10) << 610 { << 611 fCubicVolume = G4BooleanSolid::GetCubicV << 612 } << 613 else << 614 { << 615 G4IntersectionSolid intersectVol("Tempor << 616 fPtrSo << 617 intersectVol.SetCubVolStatistics(GetCubV << 618 intersectVol.SetCubVolEpsilon(GetCubVolE << 619 << 620 G4double cubVolumeA = fPtrSolidA->GetCub << 621 fCubicVolume = cubVolumeA - intersectVol << 622 if (fCubicVolume < 0.01*cubVolumeA) fCub << 623 } << 624 } << 625 return fCubicVolume; << 626 } 562 } 627 563