Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // Implementation of the base class for solids 26 // Implementation of the base class for solids created by Boolean 27 // operations between other solids 27 // operations between other solids 28 // 28 // 29 // 1998.09.10 V.Grichine - created 29 // 1998.09.10 V.Grichine - created 30 // ------------------------------------------- 30 // -------------------------------------------------------------------- 31 31 32 #include "G4BooleanSolid.hh" 32 #include "G4BooleanSolid.hh" 33 #include "G4VSolid.hh" 33 #include "G4VSolid.hh" 34 #include "G4DisplacedSolid.hh" 34 #include "G4DisplacedSolid.hh" 35 #include "G4ReflectedSolid.hh" 35 #include "G4ReflectedSolid.hh" 36 #include "G4ScaledSolid.hh" 36 #include "G4ScaledSolid.hh" 37 #include "G4Polyhedron.hh" 37 #include "G4Polyhedron.hh" 38 #include "HepPolyhedronProcessor.h" 38 #include "HepPolyhedronProcessor.h" 39 #include "G4QuickRand.hh" 39 #include "G4QuickRand.hh" 40 40 41 #include "G4AutoLock.hh" 41 #include "G4AutoLock.hh" 42 42 43 namespace 43 namespace 44 { 44 { 45 G4RecursiveMutex polyhedronMutex = G4MUTEX_I 45 G4RecursiveMutex polyhedronMutex = G4MUTEX_INITIALIZER; 46 } 46 } 47 47 48 G4VBooleanProcessor* G4BooleanSolid::fExternal << 49 << 50 ////////////////////////////////////////////// 48 ////////////////////////////////////////////////////////////////// 51 // 49 // 52 // Constructor 50 // Constructor 53 51 54 G4BooleanSolid::G4BooleanSolid( const G4String 52 G4BooleanSolid::G4BooleanSolid( const G4String& pName, 55 G4VSolid* pSol 53 G4VSolid* pSolidA , 56 G4VSolid* pSol 54 G4VSolid* pSolidB ) 57 : G4VSolid(pName), fPtrSolidA(pSolidA), fPtr 55 : G4VSolid(pName), fPtrSolidA(pSolidA), fPtrSolidB(pSolidB) 58 { 56 { 59 } 57 } 60 58 61 ////////////////////////////////////////////// 59 ////////////////////////////////////////////////////////////////// 62 // 60 // 63 // Constructor 61 // Constructor 64 62 65 G4BooleanSolid::G4BooleanSolid( const G4String 63 G4BooleanSolid::G4BooleanSolid( const G4String& pName, 66 G4VSolid 64 G4VSolid* pSolidA , 67 G4VSolid 65 G4VSolid* pSolidB , 68 G4Rotati 66 G4RotationMatrix* rotMatrix, 69 const G4ThreeV 67 const G4ThreeVector& transVector ) 70 : G4VSolid(pName), createdDisplacedSolid(tru 68 : G4VSolid(pName), createdDisplacedSolid(true) 71 { 69 { 72 fPtrSolidA = pSolidA ; 70 fPtrSolidA = pSolidA ; 73 fPtrSolidB = new G4DisplacedSolid("placedB", 71 fPtrSolidB = new G4DisplacedSolid("placedB",pSolidB,rotMatrix,transVector) ; 74 } 72 } 75 73 76 ////////////////////////////////////////////// 74 ////////////////////////////////////////////////////////////////// 77 // 75 // 78 // Constructor 76 // Constructor 79 77 80 G4BooleanSolid::G4BooleanSolid( const G4String 78 G4BooleanSolid::G4BooleanSolid( const G4String& pName, 81 G4VSolid 79 G4VSolid* pSolidA , 82 G4VSolid 80 G4VSolid* pSolidB , 83 const G4Transf 81 const G4Transform3D& transform ) 84 : G4VSolid(pName), createdDisplacedSolid(tru 82 : G4VSolid(pName), createdDisplacedSolid(true) 85 { 83 { 86 fPtrSolidA = pSolidA ; 84 fPtrSolidA = pSolidA ; 87 fPtrSolidB = new G4DisplacedSolid("placedB", 85 fPtrSolidB = new G4DisplacedSolid("placedB",pSolidB,transform) ; 88 } 86 } 89 87 90 ////////////////////////////////////////////// 88 /////////////////////////////////////////////////////////////// 91 // 89 // 92 // Fake default constructor - sets only member 90 // Fake default constructor - sets only member data and allocates memory 93 // for usage restri 91 // for usage restricted to object persistency. 94 92 95 G4BooleanSolid::G4BooleanSolid( __void__& a ) 93 G4BooleanSolid::G4BooleanSolid( __void__& a ) 96 : G4VSolid(a) 94 : G4VSolid(a) 97 { 95 { 98 } 96 } 99 97 100 ////////////////////////////////////////////// 98 /////////////////////////////////////////////////////////////// 101 // 99 // 102 // Destructor deletes transformation contents 100 // Destructor deletes transformation contents of the created displaced solid 103 101 104 G4BooleanSolid::~G4BooleanSolid() 102 G4BooleanSolid::~G4BooleanSolid() 105 { 103 { 106 if(createdDisplacedSolid) 104 if(createdDisplacedSolid) 107 { 105 { 108 ((G4DisplacedSolid*)fPtrSolidB)->CleanTran 106 ((G4DisplacedSolid*)fPtrSolidB)->CleanTransformations(); 109 } 107 } 110 delete fpPolyhedron; fpPolyhedron = nullptr; 108 delete fpPolyhedron; fpPolyhedron = nullptr; 111 } 109 } 112 110 113 ////////////////////////////////////////////// 111 /////////////////////////////////////////////////////////////// 114 // 112 // 115 // Copy constructor 113 // Copy constructor 116 114 117 G4BooleanSolid::G4BooleanSolid(const G4Boolean 115 G4BooleanSolid::G4BooleanSolid(const G4BooleanSolid& rhs) 118 : G4VSolid (rhs), fPtrSolidA(rhs.fPtrSolidA) 116 : G4VSolid (rhs), fPtrSolidA(rhs.fPtrSolidA), fPtrSolidB(rhs.fPtrSolidB), 119 fCubicVolume(rhs.fCubicVolume), fSurfaceAr << 117 fCubicVolume(rhs.fCubicVolume), fStatistics(rhs.fStatistics), 120 fCubVolStatistics(rhs.fCubVolStatistics), << 118 fCubVolEpsilon(rhs.fCubVolEpsilon), fAreaAccuracy(rhs.fAreaAccuracy), 121 fAreaStatistics(rhs.fAreaStatistics), << 119 fSurfaceArea(rhs.fSurfaceArea), fRebuildPolyhedron(false), 122 fCubVolEpsilon(rhs.fCubVolEpsilon), << 120 fpPolyhedron(nullptr), createdDisplacedSolid(rhs.createdDisplacedSolid) 123 fAreaAccuracy(rhs.fAreaAccuracy), << 124 createdDisplacedSolid(rhs.createdDisplaced << 125 { 121 { 126 fPrimitives.resize(0); fPrimitivesSurfaceAre 122 fPrimitives.resize(0); fPrimitivesSurfaceArea = 0.; 127 } 123 } 128 124 129 ////////////////////////////////////////////// 125 /////////////////////////////////////////////////////////////// 130 // 126 // 131 // Assignment operator 127 // Assignment operator 132 128 133 G4BooleanSolid& G4BooleanSolid::operator = (co 129 G4BooleanSolid& G4BooleanSolid::operator = (const G4BooleanSolid& rhs) 134 { 130 { 135 // Check assignment to self 131 // Check assignment to self 136 // 132 // 137 if (this == &rhs) { return *this; } 133 if (this == &rhs) { return *this; } 138 134 139 // Copy base class data 135 // Copy base class data 140 // 136 // 141 G4VSolid::operator=(rhs); 137 G4VSolid::operator=(rhs); 142 138 143 // Copy data 139 // Copy data 144 // 140 // 145 fPtrSolidA= rhs.fPtrSolidA; fPtrSolidB= rhs. 141 fPtrSolidA= rhs.fPtrSolidA; fPtrSolidB= rhs.fPtrSolidB; 146 fCubicVolume= rhs.fCubicVolume; fSurfaceArea << 142 fStatistics= rhs.fStatistics; fCubVolEpsilon= rhs.fCubVolEpsilon; 147 fCubVolStatistics = rhs.fCubVolStatistics; f << 143 fAreaAccuracy= rhs.fAreaAccuracy; fCubicVolume= rhs.fCubicVolume; 148 fAreaStatistics = rhs.fAreaStatistics; fArea << 144 fSurfaceArea= rhs.fSurfaceArea; 149 createdDisplacedSolid= rhs.createdDisplacedS 145 createdDisplacedSolid= rhs.createdDisplacedSolid; 150 << 151 fRebuildPolyhedron = false; 146 fRebuildPolyhedron = false; 152 delete fpPolyhedron; fpPolyhedron = nullptr; 147 delete fpPolyhedron; fpPolyhedron = nullptr; 153 fPrimitives.resize(0); fPrimitivesSurfaceAre 148 fPrimitives.resize(0); fPrimitivesSurfaceArea = 0.; 154 149 155 return *this; 150 return *this; 156 } 151 } 157 152 158 ////////////////////////////////////////////// 153 /////////////////////////////////////////////////////////////// 159 // 154 // 160 // If solid is made up from a Boolean operatio 155 // If solid is made up from a Boolean operation of two solids, 161 // return the corresponding solid (for no=0 an 156 // return the corresponding solid (for no=0 and 1) 162 // If the solid is not a "Boolean", return 0 157 // If the solid is not a "Boolean", return 0 163 158 164 const G4VSolid* G4BooleanSolid::GetConstituent 159 const G4VSolid* G4BooleanSolid::GetConstituentSolid(G4int no) const 165 { 160 { 166 const G4VSolid* subSolid = nullptr; 161 const G4VSolid* subSolid = nullptr; 167 if( no == 0 ) 162 if( no == 0 ) 168 subSolid = fPtrSolidA; 163 subSolid = fPtrSolidA; 169 else if( no == 1 ) 164 else if( no == 1 ) 170 subSolid = fPtrSolidB; 165 subSolid = fPtrSolidB; 171 else 166 else 172 { 167 { 173 DumpInfo(); 168 DumpInfo(); 174 G4Exception("G4BooleanSolid::GetConstituen 169 G4Exception("G4BooleanSolid::GetConstituentSolid()", 175 "GeomSolids0002", FatalExcepti 170 "GeomSolids0002", FatalException, "Invalid solid index."); 176 } 171 } 177 return subSolid; 172 return subSolid; 178 } 173 } 179 174 180 ////////////////////////////////////////////// 175 /////////////////////////////////////////////////////////////// 181 // 176 // 182 // If solid is made up from a Boolean operatio 177 // If solid is made up from a Boolean operation of two solids, 183 // return the corresponding solid (for no=0 an 178 // return the corresponding solid (for no=0 and 1) 184 // If the solid is not a "Boolean", return 0 179 // If the solid is not a "Boolean", return 0 185 180 186 G4VSolid* G4BooleanSolid::GetConstituentSolid( 181 G4VSolid* G4BooleanSolid::GetConstituentSolid(G4int no) 187 { 182 { 188 G4VSolid* subSolid = nullptr; 183 G4VSolid* subSolid = nullptr; 189 if( no == 0 ) 184 if( no == 0 ) 190 subSolid = fPtrSolidA; 185 subSolid = fPtrSolidA; 191 else if( no == 1 ) 186 else if( no == 1 ) 192 subSolid = fPtrSolidB; 187 subSolid = fPtrSolidB; 193 else 188 else 194 { 189 { 195 DumpInfo(); 190 DumpInfo(); 196 G4Exception("G4BooleanSolid::GetConstituen 191 G4Exception("G4BooleanSolid::GetConstituentSolid()", 197 "GeomSolids0002", FatalExcepti 192 "GeomSolids0002", FatalException, "Invalid solid index."); 198 } 193 } 199 return subSolid; 194 return subSolid; 200 } 195 } 201 196 202 ////////////////////////////////////////////// 197 ////////////////////////////////////////////////////////////////////////// 203 // 198 // 204 // Returns entity type 199 // Returns entity type 205 200 206 G4GeometryType G4BooleanSolid::GetEntityType() 201 G4GeometryType G4BooleanSolid::GetEntityType() const 207 { 202 { 208 return {"G4BooleanSolid"}; << 203 return G4String("G4BooleanSolid"); 209 } << 210 << 211 ////////////////////////////////////////////// << 212 // << 213 // Set number of random points to be used for << 214 << 215 void G4BooleanSolid::SetCubVolStatistics(G4int << 216 { << 217 if (st != fCubVolStatistics) { fCubicVolume << 218 fCubVolStatistics = st; << 219 << 220 // Propagate st to all components of the 1st << 221 if (fPtrSolidA->GetNumOfConstituents() > 1) << 222 { << 223 G4VSolid* ptr = fPtrSolidA; << 224 while(true) << 225 { << 226 G4String type = ptr->GetEntityType(); << 227 if (type == "G4DisplacedSolid") << 228 { << 229 ptr = ((G4DisplacedSolid*)ptr)->GetCon << 230 continue; << 231 } << 232 if (type == "G4ReflectedSolid") << 233 { << 234 ptr = ((G4ReflectedSolid*)ptr)->GetCon << 235 continue; << 236 } << 237 if (type == "G4ScaledSolid") << 238 { << 239 ptr = ((G4ScaledSolid*)ptr)->GetUnscal << 240 continue; << 241 } << 242 if (type != "G4MultiUnion") // G4MultiUn << 243 { << 244 ((G4BooleanSolid*)ptr)->SetCubVolStatistics( << 245 } << 246 break; << 247 } << 248 } << 249 << 250 // Propagate st to all components of the 2nd << 251 if (fPtrSolidB->GetNumOfConstituents() > 1) << 252 { << 253 G4VSolid* ptr = fPtrSolidB; << 254 while(true) << 255 { << 256 G4String type = ptr->GetEntityType(); << 257 if (type == "G4DisplacedSolid") << 258 { << 259 ptr = ((G4DisplacedSolid*)ptr)->GetCon << 260 continue; << 261 } << 262 if (type == "G4ReflectedSolid") << 263 { << 264 ptr = ((G4ReflectedSolid*)ptr)->GetCon << 265 continue; << 266 } << 267 if (type == "G4ScaledSolid") << 268 { << 269 ptr = ((G4ScaledSolid*)ptr)->GetUnscal << 270 continue; << 271 } << 272 if (type != "G4MultiUnion") // G4MultiUn << 273 { << 274 ((G4BooleanSolid*)ptr)->SetCubVolStatistics( << 275 } << 276 break; << 277 } << 278 } << 279 } << 280 << 281 ////////////////////////////////////////////// << 282 // << 283 // Set epsilon for computing cubic volume << 284 << 285 void G4BooleanSolid::SetCubVolEpsilon(G4double << 286 { << 287 if (ep != fCubVolEpsilon) { fCubicVolume = - << 288 fCubVolEpsilon = ep; << 289 << 290 // Propagate ep to all components of the 1st << 291 if (fPtrSolidA->GetNumOfConstituents() > 1) << 292 { << 293 G4VSolid* ptr = fPtrSolidA; << 294 while(true) << 295 { << 296 G4String type = ptr->GetEntityType(); << 297 if (type == "G4DisplacedSolid") << 298 { << 299 ptr = ((G4DisplacedSolid*)ptr)->GetCon << 300 continue; << 301 } << 302 if (type == "G4ReflectedSolid") << 303 { << 304 ptr = ((G4ReflectedSolid*)ptr)->GetCon << 305 continue; << 306 } << 307 if (type == "G4ScaledSolid") << 308 { << 309 ptr = ((G4ScaledSolid*)ptr)->GetUnscal << 310 continue; << 311 } << 312 if (type != "G4MultiUnion") // G4MultiUn << 313 { << 314 ((G4BooleanSolid*)ptr)->SetCubVolEpsilon(ep) << 315 } << 316 break; << 317 } << 318 } << 319 << 320 // Propagate ep to all components of the 2nd << 321 if (fPtrSolidB->GetNumOfConstituents() > 1) << 322 { << 323 G4VSolid* ptr = fPtrSolidB; << 324 while(true) << 325 { << 326 G4String type = ptr->GetEntityType(); << 327 if (type == "G4DisplacedSolid") << 328 { << 329 ptr = ((G4DisplacedSolid*)ptr)->GetCon << 330 continue; << 331 } << 332 if (type == "G4ReflectedSolid") << 333 { << 334 ptr = ((G4ReflectedSolid*)ptr)->GetCon << 335 continue; << 336 } << 337 if (type == "G4ScaledSolid") << 338 { << 339 ptr = ((G4ScaledSolid*)ptr)->GetUnscal << 340 continue; << 341 } << 342 if (type != "G4MultiUnion") // G4MultiUn << 343 { << 344 ((G4BooleanSolid*)ptr)->SetCubVolEpsilon(ep) << 345 } << 346 break; << 347 } << 348 } << 349 } 204 } 350 205 351 ////////////////////////////////////////////// 206 ////////////////////////////////////////////////////////////////////////// 352 // 207 // 353 // Stream object contents to an output stream 208 // Stream object contents to an output stream 354 209 355 std::ostream& G4BooleanSolid::StreamInfo(std:: 210 std::ostream& G4BooleanSolid::StreamInfo(std::ostream& os) const 356 { 211 { 357 os << "------------------------------------- 212 os << "-----------------------------------------------------------\n" 358 << " *** Dump for Boolean solid - " << 213 << " *** Dump for Boolean solid - " << GetName() << " ***\n" 359 << " ================================= 214 << " ===================================================\n" 360 << " Solid type: " << GetEntityType() << 215 << " Solid type: " << GetEntityType() << "\n" 361 << " Parameters of constituent solids: \n 216 << " Parameters of constituent solids: \n" 362 << "===================================== 217 << "===========================================================\n"; 363 fPtrSolidA->StreamInfo(os); 218 fPtrSolidA->StreamInfo(os); 364 fPtrSolidB->StreamInfo(os); 219 fPtrSolidB->StreamInfo(os); 365 os << "===================================== 220 os << "===========================================================\n"; 366 221 367 return os; 222 return os; 368 } 223 } 369 224 370 ////////////////////////////////////////////// 225 ////////////////////////////////////////////////////////////////////////// 371 // 226 // 372 // Creates list of constituent primitives of a 227 // Creates list of constituent primitives of and their placements 373 228 374 void G4BooleanSolid::GetListOfPrimitives( 229 void G4BooleanSolid::GetListOfPrimitives( 375 std::vector<std::pair<G4VSolid*,G4Trans 230 std::vector<std::pair<G4VSolid*,G4Transform3D>>& primitives, 376 const G4Transform3D& curPlacement) cons 231 const G4Transform3D& curPlacement) const 377 { 232 { 378 G4Transform3D transform; 233 G4Transform3D transform; 379 G4VSolid* solid; 234 G4VSolid* solid; 380 G4String type; 235 G4String type; 381 236 382 // Repeat two times, first time for fPtrSoli 237 // Repeat two times, first time for fPtrSolidA and then for fPtrSolidB 383 // 238 // 384 for (auto i=0; i<2; ++i) 239 for (auto i=0; i<2; ++i) 385 { 240 { 386 transform = curPlacement; 241 transform = curPlacement; 387 solid = (i == 0) ? fPtrSolidA : fPtrSo 242 solid = (i == 0) ? fPtrSolidA : fPtrSolidB; 388 type = solid->GetEntityType(); 243 type = solid->GetEntityType(); 389 244 390 // While current solid is a trasformed sol 245 // While current solid is a trasformed solid just modify transform 391 // 246 // 392 while (type == "G4DisplacedSolid" || 247 while (type == "G4DisplacedSolid" || 393 type == "G4ReflectedSolid" || 248 type == "G4ReflectedSolid" || 394 type == "G4ScaledSolid") 249 type == "G4ScaledSolid") 395 { 250 { 396 if (type == "G4DisplacedSolid") 251 if (type == "G4DisplacedSolid") 397 { 252 { 398 transform = transform * G4Transform3D( 253 transform = transform * G4Transform3D( 399 ((G4DisplacedSolid*)solid) 254 ((G4DisplacedSolid*)solid)->GetObjectRotation(), 400 ((G4DisplacedSolid*)solid) 255 ((G4DisplacedSolid*)solid)->GetObjectTranslation()); 401 solid = ((G4DisplacedSolid*)solid) 256 solid = ((G4DisplacedSolid*)solid)->GetConstituentMovedSolid(); 402 } 257 } 403 else if (type == "G4ReflectedSolid") 258 else if (type == "G4ReflectedSolid") 404 { 259 { 405 transform= transform*((G4ReflectedSoli 260 transform= transform*((G4ReflectedSolid*)solid)->GetDirectTransform3D(); 406 solid = ((G4ReflectedSolid*)solid)- 261 solid = ((G4ReflectedSolid*)solid)->GetConstituentMovedSolid(); 407 } 262 } 408 else if (type == "G4ScaledSolid") 263 else if (type == "G4ScaledSolid") 409 { 264 { 410 transform = transform * ((G4ScaledSoli 265 transform = transform * ((G4ScaledSolid*)solid)->GetScaleTransform(); 411 solid = ((G4ScaledSolid*)solid)->G 266 solid = ((G4ScaledSolid*)solid)->GetUnscaledSolid(); 412 } 267 } 413 type = solid->GetEntityType(); 268 type = solid->GetEntityType(); 414 } 269 } 415 270 416 // If current solid is a Boolean solid the 271 // If current solid is a Boolean solid then continue recursion, 417 // otherwise add it to the list of primiti 272 // otherwise add it to the list of primitives 418 // 273 // 419 if (type == "G4UnionSolid" || 274 if (type == "G4UnionSolid" || 420 type == "G4SubtractionSolid" || 275 type == "G4SubtractionSolid" || 421 type == "G4IntersectionSolid" || 276 type == "G4IntersectionSolid" || 422 type == "G4BooleanSolid") 277 type == "G4BooleanSolid") 423 { 278 { 424 ((G4BooleanSolid *)solid)->GetListOfPrim 279 ((G4BooleanSolid *)solid)->GetListOfPrimitives(primitives,transform); 425 } 280 } 426 else 281 else 427 { 282 { 428 primitives.emplace_back(solid,transform) << 283 primitives.push_back(std::pair<G4VSolid*,G4Transform3D>(solid,transform)); 429 } 284 } 430 } 285 } 431 } 286 } 432 287 433 ////////////////////////////////////////////// 288 ////////////////////////////////////////////////////////////////////////// 434 // 289 // 435 // Returns a point (G4ThreeVector) randomly an 290 // Returns a point (G4ThreeVector) randomly and uniformly selected 436 // on the surface of the solid 291 // on the surface of the solid 437 292 438 G4ThreeVector G4BooleanSolid::GetPointOnSurfac 293 G4ThreeVector G4BooleanSolid::GetPointOnSurface() const 439 { 294 { 440 std::size_t nprims = fPrimitives.size(); << 295 size_t nprims = fPrimitives.size(); 441 std::pair<G4VSolid *, G4Transform3D> prim; 296 std::pair<G4VSolid *, G4Transform3D> prim; 442 297 443 // Get list of primitives and find the total 298 // Get list of primitives and find the total area of their surfaces 444 // 299 // 445 if (nprims == 0) 300 if (nprims == 0) 446 { 301 { 447 GetListOfPrimitives(fPrimitives, G4Transfo 302 GetListOfPrimitives(fPrimitives, G4Transform3D()); 448 nprims = fPrimitives.size(); 303 nprims = fPrimitives.size(); 449 fPrimitivesSurfaceArea = 0.; 304 fPrimitivesSurfaceArea = 0.; 450 for (std::size_t i=0; i<nprims; ++i) << 305 for (size_t i=0; i<nprims; ++i) 451 { 306 { 452 fPrimitivesSurfaceArea += fPrimitives[i] 307 fPrimitivesSurfaceArea += fPrimitives[i].first->GetSurfaceArea(); 453 } 308 } 454 } 309 } 455 310 456 // Select random primitive, get random point 311 // Select random primitive, get random point on its surface and 457 // check that the point belongs to the surfa 312 // check that the point belongs to the surface of the solid 458 // 313 // 459 G4ThreeVector p; 314 G4ThreeVector p; 460 for (std::size_t k=0; k<100000; ++k) // try << 315 for (size_t k=0; k<100000; ++k) // try 100k times 461 { 316 { 462 G4double rand = fPrimitivesSurfaceArea * 317 G4double rand = fPrimitivesSurfaceArea * G4QuickRand(); 463 G4double area = 0.; 318 G4double area = 0.; 464 for (std::size_t i=0; i<nprims; ++i) << 319 for (size_t i=0; i<nprims; ++i) 465 { 320 { 466 prim = fPrimitives[i]; 321 prim = fPrimitives[i]; 467 area += prim.first->GetSurfaceArea(); 322 area += prim.first->GetSurfaceArea(); 468 if (rand < area) break; 323 if (rand < area) break; 469 } 324 } 470 p = prim.first->GetPointOnSurface(); 325 p = prim.first->GetPointOnSurface(); 471 p = prim.second * G4Point3D(p); 326 p = prim.second * G4Point3D(p); 472 if (Inside(p) == kSurface) return p; 327 if (Inside(p) == kSurface) return p; 473 } 328 } 474 std::ostringstream message; 329 std::ostringstream message; 475 message << "Solid - " << GetName() << "\n" 330 message << "Solid - " << GetName() << "\n" 476 << "All 100k attempts to generate a 331 << "All 100k attempts to generate a point on the surface have failed!\n" 477 << "The solid created may be an inva 332 << "The solid created may be an invalid Boolean construct!"; 478 G4Exception("G4BooleanSolid::GetPointOnSurfa 333 G4Exception("G4BooleanSolid::GetPointOnSurface()", 479 "GeomSolids1001", JustWarning, m 334 "GeomSolids1001", JustWarning, message); 480 return p; 335 return p; 481 } 336 } 482 337 483 ////////////////////////////////////////////// 338 ////////////////////////////////////////////////////////////////////////// 484 // 339 // 485 // Return total number of constituents used fo << 486 << 487 G4int G4BooleanSolid::GetNumOfConstituents() c << 488 { << 489 return (fPtrSolidA->GetNumOfConstituents() + << 490 } << 491 << 492 ////////////////////////////////////////////// << 493 // << 494 // Return true if the resulting solid has only << 495 << 496 G4bool G4BooleanSolid::IsFaceted() const << 497 { << 498 return (fPtrSolidA->IsFaceted() && fPtrSolid << 499 } << 500 << 501 ////////////////////////////////////////////// << 502 // << 503 // Returns polyhedron for visualization 340 // Returns polyhedron for visualization 504 341 505 G4Polyhedron* G4BooleanSolid::GetPolyhedron () 342 G4Polyhedron* G4BooleanSolid::GetPolyhedron () const 506 { 343 { 507 if (fpPolyhedron == nullptr || 344 if (fpPolyhedron == nullptr || 508 fRebuildPolyhedron || 345 fRebuildPolyhedron || 509 fpPolyhedron->GetNumberOfRotationStepsAt 346 fpPolyhedron->GetNumberOfRotationStepsAtTimeOfCreation() != 510 fpPolyhedron->GetNumberOfRotationSteps() 347 fpPolyhedron->GetNumberOfRotationSteps()) 511 { 348 { 512 G4RecursiveAutoLock l(&polyhedronMutex); 349 G4RecursiveAutoLock l(&polyhedronMutex); 513 delete fpPolyhedron; 350 delete fpPolyhedron; 514 fpPolyhedron = CreatePolyhedron(); 351 fpPolyhedron = CreatePolyhedron(); 515 fRebuildPolyhedron = false; 352 fRebuildPolyhedron = false; 516 l.unlock(); 353 l.unlock(); 517 } 354 } 518 return fpPolyhedron; 355 return fpPolyhedron; 519 } 356 } 520 357 521 ////////////////////////////////////////////// 358 ////////////////////////////////////////////////////////////////////////// 522 // 359 // 523 // Stacks polyhedra for processing. Returns to 360 // Stacks polyhedra for processing. Returns top polyhedron. 524 361 525 G4Polyhedron* 362 G4Polyhedron* 526 G4BooleanSolid::StackPolyhedron(HepPolyhedronP 363 G4BooleanSolid::StackPolyhedron(HepPolyhedronProcessor& processor, 527 const G4VSolid 364 const G4VSolid* solid) const 528 { 365 { 529 HepPolyhedronProcessor::Operation operation; 366 HepPolyhedronProcessor::Operation operation; 530 const G4String& type = solid->GetEntityType( 367 const G4String& type = solid->GetEntityType(); 531 if (type == "G4UnionSolid") 368 if (type == "G4UnionSolid") 532 { operation = HepPolyhedronProcessor::UNIO 369 { operation = HepPolyhedronProcessor::UNION; } 533 else if (type == "G4IntersectionSolid") 370 else if (type == "G4IntersectionSolid") 534 { operation = HepPolyhedronProcessor::INTE 371 { operation = HepPolyhedronProcessor::INTERSECTION; } 535 else if (type == "G4SubtractionSolid") 372 else if (type == "G4SubtractionSolid") 536 { operation = HepPolyhedronProcessor::SUBT 373 { operation = HepPolyhedronProcessor::SUBTRACTION; } 537 else 374 else 538 { 375 { 539 std::ostringstream message; 376 std::ostringstream message; 540 message << "Solid - " << solid->GetName() 377 message << "Solid - " << solid->GetName() 541 << " - Unrecognised composite soli 378 << " - Unrecognised composite solid" << G4endl 542 << " Returning NULL !"; 379 << " Returning NULL !"; 543 G4Exception("StackPolyhedron()", "GeomSoli 380 G4Exception("StackPolyhedron()", "GeomSolids1001", JustWarning, message); 544 return nullptr; 381 return nullptr; 545 } 382 } 546 383 547 G4Polyhedron* top = nullptr; 384 G4Polyhedron* top = nullptr; 548 const G4VSolid* solidA = solid->GetConstitue 385 const G4VSolid* solidA = solid->GetConstituentSolid(0); 549 const G4VSolid* solidB = solid->GetConstitue 386 const G4VSolid* solidB = solid->GetConstituentSolid(1); 550 387 551 if (solidA->GetConstituentSolid(0) != nullpt 388 if (solidA->GetConstituentSolid(0) != nullptr) 552 { 389 { 553 top = StackPolyhedron(processor, solidA); 390 top = StackPolyhedron(processor, solidA); 554 } 391 } 555 else 392 else 556 { 393 { 557 top = solidA->GetPolyhedron(); 394 top = solidA->GetPolyhedron(); 558 } 395 } 559 G4Polyhedron* operand = solidB->GetPolyhedro 396 G4Polyhedron* operand = solidB->GetPolyhedron(); 560 if (operand != nullptr) 397 if (operand != nullptr) 561 { 398 { 562 processor.push_back (operation, *operand); 399 processor.push_back (operation, *operand); 563 } 400 } 564 else 401 else 565 { 402 { 566 std::ostringstream message; 403 std::ostringstream message; 567 message << "Solid - " << solid->GetName() 404 message << "Solid - " << solid->GetName() 568 << " - No G4Polyhedron for Boolean 405 << " - No G4Polyhedron for Boolean component"; 569 G4Exception("G4BooleanSolid::StackPolyhedr 406 G4Exception("G4BooleanSolid::StackPolyhedron()", 570 "GeomSolids2001", JustWarning, 407 "GeomSolids2001", JustWarning, message); 571 } 408 } 572 409 573 return top; 410 return top; 574 } 411 } 575 412 576 413 577 ////////////////////////////////////////////// 414 ////////////////////////////////////////////////////////////////////////// 578 // 415 // 579 // Estimate Cubic Volume (capacity) and cache << 416 // Estimate Cubic Volume (capacity) and store it for reuse. 580 417 581 G4double G4BooleanSolid::GetCubicVolume() 418 G4double G4BooleanSolid::GetCubicVolume() 582 { 419 { 583 if(fCubicVolume < 0.) 420 if(fCubicVolume < 0.) 584 { 421 { 585 fCubicVolume = EstimateCubicVolume(fCubVol << 422 fCubicVolume = EstimateCubicVolume(fStatistics,fCubVolEpsilon); 586 } 423 } 587 return fCubicVolume; 424 return fCubicVolume; 588 } << 589 << 590 ////////////////////////////////////////////// << 591 // << 592 // Set external Boolean processor. << 593 << 594 void << 595 G4BooleanSolid::SetExternalBooleanProcessor(G4 << 596 { << 597 fExternalBoolProcessor = extProcessor; << 598 } << 599 << 600 ////////////////////////////////////////////// << 601 // << 602 // Get external Boolean processor. << 603 << 604 G4VBooleanProcessor* G4BooleanSolid::GetExtern << 605 { << 606 return fExternalBoolProcessor; << 607 } 425 } 608 426