Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4Navigator << 26 // >> 27 // $Id: G4Navigator.hh,v 1.26 2007/10/18 14:18:36 gcosmo Exp $ >> 28 // GEANT4 tag $Name: geant4-09-01-patch-03 $ >> 29 // >> 30 // >> 31 // class G4Navigator 27 // 32 // 28 // Class description: 33 // Class description: 29 // 34 // 30 // A class for use by the tracking management, 35 // A class for use by the tracking management, able to obtain/calculate 31 // dynamic tracking time information such as t 36 // dynamic tracking time information such as the distance to the next volume, 32 // or to find the physical volume containing a 37 // or to find the physical volume containing a given point in the world 33 // reference system. The navigator maintains a 38 // reference system. The navigator maintains a transformation history and 34 // other information to optimise the tracking 39 // other information to optimise the tracking time performance. 35 << 40 // >> 41 // History: 36 // - Created. 42 // - Created. Paul Kent, Jul 95/96 37 // - Made Navigator Abstract << 38 // - Added check mode << 39 // - Zero step protections 43 // - Zero step protections J.A. / G.C., Nov 2004 40 // ------------------------------------------- << 44 // - Added check mode G. Cosmo, Mar 2004 >> 45 // - Made Navigator Abstract G. Cosmo, Nov 2003 >> 46 // ********************************************************************* >> 47 41 #ifndef G4NAVIGATOR_HH 48 #ifndef G4NAVIGATOR_HH 42 #define G4NAVIGATOR_HH 1 << 49 #define G4NAVIGATOR_HH 43 50 44 #include "geomdefs.hh" 51 #include "geomdefs.hh" 45 52 46 #include "G4ThreeVector.hh" 53 #include "G4ThreeVector.hh" 47 #include "G4AffineTransform.hh" 54 #include "G4AffineTransform.hh" 48 #include "G4RotationMatrix.hh" 55 #include "G4RotationMatrix.hh" 49 56 50 #include "G4LogicalVolume.hh" // U 57 #include "G4LogicalVolume.hh" // Used in inline methods >> 58 #include "G4GRSVolume.hh" // " " >> 59 #include "G4GRSSolid.hh" // " " 51 #include "G4TouchableHandle.hh" // 60 #include "G4TouchableHandle.hh" // " " >> 61 #include "G4TouchableHistoryHandle.hh" 52 62 53 #include "G4NavigationHistory.hh" 63 #include "G4NavigationHistory.hh" 54 #include "G4NormalNavigation.hh" 64 #include "G4NormalNavigation.hh" 55 #include "G4VoxelNavigation.hh" 65 #include "G4VoxelNavigation.hh" 56 #include "G4ParameterisedNavigation.hh" 66 #include "G4ParameterisedNavigation.hh" 57 #include "G4ReplicaNavigation.hh" 67 #include "G4ReplicaNavigation.hh" 58 #include "G4RegularNavigation.hh" 68 #include "G4RegularNavigation.hh" 59 #include "G4VExternalNavigation.hh" << 60 69 61 #include <iostream> 70 #include <iostream> 62 71 63 class G4VPhysicalVolume; 72 class G4VPhysicalVolume; 64 class G4SafetyCalculator; << 65 73 66 class G4Navigator 74 class G4Navigator 67 { 75 { 68 public: << 76 public: // with description 69 << 70 friend std::ostream& operator << (std::ost << 71 77 72 G4Navigator(); << 78 friend std::ostream& operator << (std::ostream &os, const G4Navigator &n); 73 // Constructor - initialisers and setup. << 74 79 75 G4Navigator(const G4Navigator&) = delete; << 80 G4Navigator(); 76 G4Navigator& operator=(const G4Navigator&) << 81 // Constructor - initialisers and setup. 77 // Copy constructor & assignment operato << 78 << 79 virtual ~G4Navigator(); << 80 // Destructor. No actions. << 81 << 82 virtual G4double ComputeStep(const G4Three << 83 const G4Three << 84 const G4doubl << 85 G4doubl << 86 // Calculate the distance to the next bo << 87 // along the specified NORMALISED vector << 88 // from the specified point in the globa << 89 // system. LocateGlobalPointAndSetup or << 90 // must have been called with the same g << 91 // The isotropic distance to the nearest << 92 // calculated (usually an underestimate) << 93 // proposed Step length is used to avoid << 94 // calculations: if it can be determined << 95 // boundary is >pCurrentProposedStepLeng << 96 // is returned together with the compute << 97 // distance. Geometry must be closed. << 98 << 99 G4double CheckNextStep(const G4ThreeVector << 100 const G4ThreeVector << 101 const G4double pCur << 102 G4double& pNe << 103 // Same as above, but do not disturb the << 104 << 105 virtual << 106 G4VPhysicalVolume* ResetHierarchyAndLocate << 107 << 108 << 109 << 110 // Resets the geometrical hierarchy and << 111 // in the hierarchy containing the point << 112 // The direction is used to check if a v << 113 // The search begin is the geometrical h << 114 // last located point, or the endpoint o << 115 // SetGeometricallyLimitedStep() has bee << 116 // << 117 // Important Note: In order to call this << 118 << 119 virtual << 120 G4VPhysicalVolume* LocateGlobalPointAndSet << 121 const G << 122 const G << 123 const G << 124 // Search the geometrical hierarchy for << 125 // containing the point in the global co << 126 // are: << 127 // i) If pRelativeSearch=false it makes << 128 // information. Returns the physical << 129 // with all previous mothers correct << 130 // ii) If pRelativeSearch is set to true << 131 // geometrical hierarchy at the loca << 132 // or the endpoint of previous Step << 133 // has been called immediately befor << 134 // The direction is used (to check if a << 135 // - the argument ignoreDirection is f << 136 // - the Navigator has determined that << 137 // or more volumes. (This is state << 138 // << 139 // Important Note: In order to call this << 140 << 141 virtual << 142 void LocateGlobalPointWithinVolume(const G << 143 // Notify the Navigator that a track has << 144 // 'position', that is known to be withi << 145 // No check is performed to ensure that << 146 // This method can be called instead of << 147 // the caller is certain that the new gl << 148 // the same volume as the previous posit << 149 // Usually this can be guaranteed only i << 150 << 151 inline void LocateGlobalPointAndUpdateTouc << 152 const G4ThreeVector& p << 153 const G4ThreeVector& d << 154 G4TouchableHandle& o << 155 const G4bool R << 156 // First, search the geometrical hierarc << 157 // LocateGlobalPointAndSetup(). Then use << 158 // navigation history to update the touc << 159 << 160 inline void LocateGlobalPointAndUpdateTouc << 161 const G4ThreeVector& p << 162 const G4ThreeVector& d << 163 G4VTouchable* t << 164 const G4bool R << 165 // First, search the geometrical hierarc << 166 // LocateGlobalPointAndSetup(). Then use << 167 // navigation history to update the touc << 168 << 169 inline void LocateGlobalPointAndUpdateTouc << 170 const G4ThreeVector& p << 171 G4VTouchable* t << 172 const G4bool R << 173 // Same as the method above but missing << 174 << 175 inline void SetGeometricallyLimitedStep(); << 176 // Inform the navigator that the previou << 177 // by the geometry was taken in its enti << 178 << 179 virtual G4double ComputeSafety(const G4Thr << 180 const G4dou << 181 const G4boo << 182 // Calculate the isotropic distance to t << 183 // specified point in the global coordin << 184 // The globalpoint utilised must be with << 185 // The value returned is usually an unde << 186 // The proposed maximum length is used t << 187 // calculations. The geometry must be c << 188 // To ensure minimum side effects from t << 189 << 190 inline G4VPhysicalVolume* GetWorldVolume() << 191 // Return the current world (`topmost') << 192 << 193 inline void SetWorldVolume(G4VPhysicalVolu << 194 // Set the world (`topmost') volume. Thi << 195 // origin (0,0,0) and unrotated. << 196 << 197 inline G4TouchableHistory* CreateTouchable << 198 inline G4TouchableHistory* CreateTouchable << 199 // `Touchable' creation methods: caller << 200 << 201 virtual G4TouchableHandle CreateTouchableH << 202 // Returns a reference counted handle to << 203 << 204 virtual G4ThreeVector GetLocalExitNormal(G << 205 virtual G4ThreeVector GetLocalExitNormalAn << 206 << 207 virtual G4ThreeVector GetGlobalExitNormal( << 208 << 209 // Return Exit Surface Normal and validi << 210 // Can only be called if the Navigator's << 211 // volume geometrical boundary. << 212 // It returns the Normal to the surface << 213 // was left behind and/or into the volum << 214 // Convention: << 215 // The *local* normal is in the coordi << 216 // Restriction: << 217 // Normals are not available for repli << 218 // These methods takes full care about h << 219 // but if the surfaces are not convex it << 220 << 221 inline G4int GetVerboseLevel() const; << 222 inline void SetVerboseLevel(G4int level); << 223 // Get/Set Verbose(ness) level. << 224 // [if level>0 && G4VERBOSE, printout ca << 225 << 226 inline G4bool IsActive() const; << 227 // Verify if the navigator is active. << 228 inline void Activate(G4bool flag); << 229 // Activate/inactivate the navigator. << 230 << 231 inline G4bool EnteredDaughterVolume() cons << 232 // The purpose of this function is to in << 233 // entering a daughter volume while exit << 234 // This method returns << 235 // - True only in case 1) above, that is << 236 // the track to arrive at a boundary o << 237 // - False in cases 2), 3) and 4), i.e. << 238 // This function is not guaranteed to wo << 239 // was not called when it should have be << 240 inline G4bool ExitedMotherVolume() const; << 241 // Verify if the step has exited the mot << 242 << 243 inline void CheckMode(G4bool mode); << 244 // Run navigation in "check-mode", there << 245 // verifications and more strict correct << 246 // Is effective only with G4VERBOSE set. << 247 inline G4bool IsCheckModeActive() const; << 248 inline void SetPushVerbosity(G4bool mode); << 249 // Set/unset verbosity for pushed tracks << 250 << 251 void PrintState() const; << 252 // Print the internal state of the Navig << 253 // The level of detail is according to t << 254 << 255 inline const G4AffineTransform& GetGlobalT << 256 inline const G4AffineTransform GetLocalTo << 257 // Obtain the transformations Global/Loc << 258 // Clients of these methods must copy th << 259 << 260 G4AffineTransform GetMotherToDaughterTrans << 261 << 262 << 263 // Obtain mother to daughter transformat << 264 << 265 inline void ResetStackAndState(); << 266 // Reset stack and minimum or navigator << 267 // as needed by LocalGlobalPointAndSetup << 268 // Does not perform clears, resizes, or << 269 << 270 inline G4int SeverityOfZeroStepping( G4int << 271 // Report on severity of error and numbe << 272 // in case Navigator is stuck and is ret << 273 // Values: 1 (small problem), 5 (correc << 274 // 9 (ready to abandon), 10 (aba << 275 << 276 inline G4ThreeVector GetCurrentLocalCoordi << 277 // Return the local coordinate of the po << 278 // of its containing volume that was fou << 279 // The local coordinate of the last loca << 280 << 281 inline G4ThreeVector NetTranslation() cons << 282 inline G4RotationMatrix NetRotation() cons << 283 // Compute+return the local->global tran << 284 << 285 inline void EnableBestSafety( G4bool value << 286 // Enable best-possible evaluation of is << 287 << 288 inline G4VExternalNavigation* GetExternalN << 289 void SetExternalNavigation(G4VExternalNavi << 290 // Accessor & modifier for custom extern << 291 << 292 inline G4VoxelNavigation& GetVoxelNavigato << 293 void SetVoxelNavigation(G4VoxelNavigation* << 294 // Alternative navigator for voxel volum << 295 << 296 inline G4Navigator* Clone() const; << 297 // Cloning feature for use in MT applica << 298 // navigator, including external sub-nav << 299 // Client has responsibility for ownersh << 300 << 301 inline G4ThreeVector GetLastStepEndPoint() << 302 // Get endpoint of last step. << 303 << 304 void InformLastStep(G4double lastStep, << 305 G4bool entersDaughtVol << 306 G4bool exitsMotherVol << 307 // Derived navigators which rely on Loca << 308 // inform size of step, to maintain logi << 309 // for challenging cases. << 310 // Required in order to cope with multip << 311 // => Locate with use direction rather t << 312 << 313 protected: << 314 << 315 void SetSavedState(); << 316 // ( fValidExitNormal, fExitNormal, fExi << 317 // fBlockedPhysicalVolume, fBlockedRep << 318 // Extended to include: << 319 // ( fLastLocatedPointLocal, fLocatedOut << 320 // fEnteredDaughter, fExitedMother << 321 // fPreviousSftOrigin, sPreviousSafety << 322 << 323 void RestoreSavedState(); << 324 // Copy aspects of the state, to enable << 325 // call to ComputeStep(). << 326 << 327 virtual void ResetState(); << 328 // Utility method to reset the navigator << 329 << 330 inline G4ThreeVector ComputeLocalPoint(con << 331 // Return position vector in local coord << 332 // vector in world coordinate system. << 333 << 334 inline G4ThreeVector ComputeLocalAxis(cons << 335 // Return the local direction of the spe << 336 // system of the volume that was found b << 337 // The Local Coordinates of point in wor << 338 << 339 inline EVolume VolumeType(const G4VPhysica << 340 // Characterise `type' of volume - norma << 341 << 342 inline EVolume CharacteriseDaughters(const << 343 // Characterise daughter of logical volu << 344 << 345 inline G4int GetDaughtersRegularStructureI << 346 // Get regular structure ID of first dau << 347 << 348 virtual void SetupHierarchy(); << 349 // Renavigate & reset hierarchy describe << 350 // o Reset volumes and recompute transfo << 351 // replicated/parameterised volumes. << 352 << 353 G4bool CheckOverlapsIterative(G4VPhysicalV << 354 // Utility method to trigger overlaps ch << 355 // overlaps ordered by relevance. Used i << 356 // with zero step are detected. << 357 << 358 private: << 359 << 360 void ComputeStepLog(const G4ThreeVector& p << 361 G4double moveLen << 362 // Log and checks for steps larger than << 363 << 364 protected: << 365 << 366 G4double kCarTolerance, fMinStep, fSqTol; << 367 // Cached tolerances. << 368 << 369 // << 370 // BEGIN State information << 371 // << 372 << 373 G4NavigationHistory fHistory; << 374 // Transformation and history of the cur << 375 // through the geometrical hierarchy. << 376 << 377 G4ThreeVector fStepEndPoint; << 378 // Endpoint of last ComputeStep << 379 // can be used for optimisation (e.g. wh << 380 G4ThreeVector fLastStepEndPointLocal; << 381 // Position of the end-point of the last << 382 // in last Local coordinates. << 383 << 384 G4int fVerbose = 0; << 385 // Verbose(ness) level [if > 0, printou << 386 << 387 G4bool fEnteredDaughter; << 388 // A memory of whether in this Step a da << 389 // (set in Compute & Locate). << 390 // After Compute: it expects to enter a << 391 // After Locate: it has entered a daugh << 392 << 393 G4bool fExitedMother; << 394 // A similar memory whether the Step exi << 395 // completely, not entering daughter. << 396 << 397 G4bool fWasLimitedByGeometry = false; << 398 // Set true if last Step was limited by << 399 << 400 private: << 401 << 402 G4ThreeVector fLastLocatedPointLocal; << 403 // Position of the last located point re << 404 // This is coupled with the bool member << 405 << 406 G4ThreeVector fExitNormal; << 407 // Leaving volume normal, in the volume << 408 // volume's coordinate system. << 409 // This is closely coupled with fValidEx << 410 // we have a (valid) normal for volume w << 411 << 412 G4ThreeVector fGrandMotherExitNormal; << 413 // Leaving volume normal, in its own coo << 414 G4ThreeVector fExitNormalGlobalFrame; << 415 // Leaving volume normal, in the global << 416 << 417 G4ThreeVector fPreviousSftOrigin; << 418 G4double fPreviousSafety; << 419 // Memory of last safety origin & value. << 420 // that origin of current Step is in the << 421 // last relocation. << 422 << 423 G4VPhysicalVolume* fLastMotherPhys = nullp << 424 // Memory of the mother volume during pr << 425 // Intended use: inform user in case of << 426 << 427 G4VPhysicalVolume* fBlockedPhysicalVolume; << 428 G4int fBlockedReplicaNo; << 429 // Identifies the volume and copy / repl << 430 // (after exiting -- because the exit di << 431 // or a candidate for entry (after compu << 432 << 433 G4int fNumberZeroSteps; << 434 // Count zero steps, as one or two can o << 435 // a boundary or at an edge common betwe << 436 // are likely a problem in the geometry << 437 // Number of preceding moves that were Z << 438 G4int fActionThreshold_NoZeroSteps = 10; << 439 // After this many failed/zero steps, ac << 440 G4int fAbandonThreshold_NoZeroSteps = 25; << 441 // After this many failed/zero steps, ab << 442 << 443 G4bool fActive = false; << 444 // States if the navigator is activated << 445 << 446 G4bool fLastTriedStepComputation = false; << 447 // Whether ComputeStep() was called sinc << 448 // Uses: distinguish parts of state whic << 449 // to ComputeStep() or one of the Locate << 450 // calls to compute-step (illegal). << 451 << 452 G4bool fEntering, fExiting; << 453 // Entering/Exiting volumes blocking/set << 454 // o If exiting, volume ptr & replica nu << 455 // used for blocking on redescent of g << 456 // o If entering, volume ptr & replica n << 457 // used by Locate..()) of volume for ' << 458 << 459 G4bool fValidExitNormal; << 460 // Set true if have leaving volume norma << 461 G4bool fLastStepWasZero; << 462 // Whether the last ComputeStep moved Ze << 463 G4bool fLocatedOnEdge; << 464 // Whether the Navigator has detected an << 465 G4bool fLocatedOutsideWorld; << 466 // Whether the last call to Locate metho << 467 << 468 G4bool fChangedGrandMotherRefFrame; << 469 // Whether frame is changed. << 470 G4bool fCalculatedExitNormal; << 471 // Has it been computed since the last c << 472 // Covers both Global and GrandMother. << 473 82 474 // END State information << 83 virtual ~G4Navigator(); 475 // << 84 // Destructor. No actions. >> 85 >> 86 virtual G4double ComputeStep(const G4ThreeVector &pGlobalPoint, >> 87 const G4ThreeVector &pDirection, >> 88 const G4double pCurrentProposedStepLength, >> 89 G4double &pNewSafety); >> 90 // Calculate the distance to the next boundary intersected >> 91 // along the specified NORMALISED vector direction and >> 92 // from the specified point in the global coordinate >> 93 // system. LocateGlobalPointAndSetup or LocateGlobalPointWithinVolume >> 94 // must have been called with the same global point prior to this call. >> 95 // The isotropic distance to the nearest boundary is also >> 96 // calculated (usually an underestimate). The current >> 97 // proposed Step length is used to avoid intersection >> 98 // calculations: if it can be determined that the nearest >> 99 // boundary is >pCurrentProposedStepLength away, kInfinity >> 100 // is returned together with the computed isotropic safety >> 101 // distance. Geometry must be closed. >> 102 >> 103 G4double CheckNextStep(const G4ThreeVector &pGlobalPoint, >> 104 const G4ThreeVector &pDirection, >> 105 const G4double pCurrentProposedStepLength, >> 106 G4double &pNewSafety); >> 107 // Same as above, but do not disturb the state of the Navigator. >> 108 >> 109 virtual >> 110 G4VPhysicalVolume* ResetHierarchyAndLocate(const G4ThreeVector &point, >> 111 const G4ThreeVector &direction, >> 112 const G4TouchableHistory &h); >> 113 >> 114 // Resets the geometrical hierarchy and search for the volumes deepest >> 115 // in the hierarchy containing the point in the global coordinate space. >> 116 // The direction is used to check if a volume is entered. >> 117 // The search begin is the geometrical hierarchy at the location of the >> 118 // last located point, or the endpoint of the previous Step if >> 119 // SetGeometricallyLimitedStep() has been called immediately before. >> 120 // >> 121 // Important Note: In order to call this the geometry MUST be closed. 476 122 477 // Optional State information (created/use << 123 virtual >> 124 G4VPhysicalVolume* LocateGlobalPointAndSetup(const G4ThreeVector& point, >> 125 const G4ThreeVector* direction=0, >> 126 const G4bool pRelativeSearch=true, >> 127 const G4bool ignoreDirection=true); >> 128 // Search the geometrical hierarchy for the volumes deepest in the hierarchy >> 129 // containing the point in the global coordinate space. Two main cases are: >> 130 // i) If pRelativeSearch=false it makes use of no previous/state >> 131 // information. Returns the physical volume containing the point, >> 132 // with all previous mothers correctly set up. >> 133 // ii) If pRelativeSearch is set to true, the search begin is the >> 134 // geometrical hierarchy at the location of the last located point, >> 135 // or the endpoint of the previous Step if SetGeometricallyLimitedStep() >> 136 // has been called immediately before. >> 137 // The direction is used (to check if a volume is entered) if either >> 138 // - the argument ignoreDirection is false, or >> 139 // - the Navigator has determined that it is on an edge shared by two or >> 140 // more volumes. (This is state information.) 478 // 141 // 479 << 142 // Important Note: In order to call this the geometry MUST be closed. 480 // Save key state information (NOT the nav << 481 // << 482 struct G4SaveNavigatorState << 483 { << 484 G4ThreeVector sExitNormal; << 485 G4bool sValidExitNormal; << 486 G4bool sEntering, sExiting; << 487 G4VPhysicalVolume* spBlockedPhysicalVol << 488 G4int sBlockedReplicaNo; << 489 G4int sLastStepWasZero; << 490 G4bool sWasLimitedByGeometry; << 491 << 492 // Potentially relevant << 493 // << 494 G4bool sLocatedOutsideWorld; << 495 G4ThreeVector sLastLocatedPointLocal; << 496 G4bool sEnteredDaughter, sExitedMother; << 497 G4ThreeVector sPreviousSftOrigin; << 498 G4double sPreviousSafety; << 499 } fSaveState; << 500 << 501 // BEGIN -- Tracking Invariants << 502 // ======================================= << 503 << 504 G4VPhysicalVolume* fTopPhysical = nullptr; << 505 // A link to the topmost physical volume << 506 // Must be positioned at the origin and << 507 << 508 // Helpers/Utility classes << 509 // << 510 G4NormalNavigation fnormalNav; << 511 G4VoxelNavigation* fpvoxelNav; << 512 G4ParameterisedNavigation fparamNav; << 513 G4ReplicaNavigation freplicaNav; << 514 G4RegularNavigation fregularNav; << 515 G4VExternalNavigation* fpExternalNav = nul << 516 G4VoxelSafety* fpVoxelSafety; << 517 G4SafetyCalculator* fpSafetyCalculator = n << 518 << 519 // Utility information << 520 // << 521 G4bool fCheck = false; << 522 // Check-mode flag [if true, more stric << 523 G4bool fPushed = false, fWarnPush = true; << 524 // Push flags [if true, means a stuck p << 525 143 526 // End -- Tracking Invariants << 144 virtual >> 145 void LocateGlobalPointWithinVolume(const G4ThreeVector& position); >> 146 // Notify the Navigator that a track has moved to the new Global point >> 147 // 'position', that is known to be within the current safety. >> 148 // No check is performed to ensure that it is within the volume. >> 149 // This method can be called instead of LocateGlobalPointAndSetup ONLY if >> 150 // the caller is certain that the new global point (position) is inside the >> 151 // same volume as the previous position. Usually this can be guaranteed >> 152 // only if the point is within safety. >> 153 >> 154 inline void LocateGlobalPointAndUpdateTouchableHandle( >> 155 const G4ThreeVector& position, >> 156 const G4ThreeVector& direction, >> 157 G4TouchableHandle& oldTouchableToUpdate, >> 158 const G4bool RelativeSearch = true); >> 159 // First, search the geometrical hierarchy like the above method >> 160 // LocateGlobalPointAndSetup(). Then use the volume found and its >> 161 // navigation history to update the touchable. >> 162 >> 163 inline void LocateGlobalPointAndUpdateTouchable( >> 164 const G4ThreeVector& position, >> 165 const G4ThreeVector& direction, >> 166 G4VTouchable* touchableToUpdate, >> 167 const G4bool RelativeSearch = true); >> 168 // First, search the geometrical hierarchy like the above method >> 169 // LocateGlobalPointAndSetup(). Then use the volume found and its >> 170 // navigation history to update the touchable. >> 171 >> 172 inline void LocateGlobalPointAndUpdateTouchable( >> 173 const G4ThreeVector& position, >> 174 G4VTouchable* touchableToUpdate, >> 175 const G4bool RelativeSearch = true); >> 176 // Same as the method above but missing direction. >> 177 >> 178 inline void SetGeometricallyLimitedStep(); >> 179 // Inform the navigator that the previous Step calculated >> 180 // by the geometry was taken in its entirety. >> 181 >> 182 virtual G4double ComputeSafety(const G4ThreeVector &globalpoint, >> 183 const G4double pProposedMaxLength = DBL_MAX); >> 184 // Calculate the isotropic distance to the nearest boundary from the >> 185 // specified point in the global coordinate system. >> 186 // The globalpoint utilised must be within the current volume. >> 187 // The value returned is usually an underestimate. >> 188 // The proposed maximum length is used to avoid volume safety >> 189 // calculations. The geometry must be closed. >> 190 >> 191 inline G4VPhysicalVolume* GetWorldVolume() const; >> 192 // Return the current world (`topmost') volume. >> 193 >> 194 inline void SetWorldVolume(G4VPhysicalVolume* pWorld); >> 195 // Set the world (`topmost') volume. This must be positioned at >> 196 // origin (0,0,0) and unrotated. >> 197 >> 198 inline G4GRSVolume* CreateGRSVolume() const; >> 199 inline G4GRSSolid* CreateGRSSolid() const; >> 200 inline G4TouchableHistory* CreateTouchableHistory() const; >> 201 // `Touchable' creation methods: caller has deletion responsibility. >> 202 >> 203 virtual G4TouchableHistoryHandle CreateTouchableHistoryHandle() const; >> 204 // Returns a reference counted handle to a touchable history. >> 205 >> 206 virtual G4ThreeVector GetLocalExitNormal(G4bool* valid); >> 207 // Returns Exit Surface Normal and validity too. >> 208 // It can only be called if the Navigator's last Step has crossed a >> 209 // volume geometrical boundary. >> 210 // It returns the Normal to the surface pointing out of the volume that >> 211 // was left behind and/or into the volume that was entered. >> 212 // (The normal is in the coordinate system of the final volume.) >> 213 // This function takes full care about how to calculate this normal, >> 214 // but if the surfaces are not convex it will return valid=false. >> 215 >> 216 inline G4int GetVerboseLevel() const; >> 217 inline void SetVerboseLevel(G4int level); >> 218 // Get/Set Verbose(ness) level. >> 219 // [if level>0 && G4VERBOSE, printout can occur] >> 220 >> 221 inline G4bool IsActive() const; >> 222 // Verify if the navigator is active. >> 223 inline void Activate(G4bool flag); >> 224 // Activate/inactivate the navigator. >> 225 >> 226 inline G4bool EnteredDaughterVolume() const; >> 227 // The purpose of this function is to inform the caller if the track is >> 228 // entering a daughter volume while exiting from the current volume. >> 229 // This method returns >> 230 // - True only in case 1) above, that is when the Step has caused >> 231 // the track to arrive at a boundary of a daughter. >> 232 // - False in cases 2), 3) and 4), i.e. in all other cases. >> 233 // This function is not guaranteed to work if SetGeometricallyLimitedStep() >> 234 // was not called when it should have been called. >> 235 inline G4bool ExitedMotherVolume() const; >> 236 // Verify if the step has exited the mother volume. >> 237 >> 238 inline void CheckMode(G4bool mode); >> 239 // Run navigation in "check-mode", therefore using additional >> 240 // verifications and more strict correctness conditions. >> 241 // Is effective only with G4VERBOSE set. >> 242 >> 243 void PrintState() const; >> 244 // Print the internal state of the Navigator (for debugging). >> 245 // The level of detail is according to the verbosity. >> 246 >> 247 inline const G4AffineTransform& GetGlobalToLocalTransform() const; >> 248 inline const G4AffineTransform GetLocalToGlobalTransform() const; >> 249 // Obtain the transformations Global/Local (and inverse). >> 250 // Clients of these methods must copy the data if they need to keep it. >> 251 >> 252 inline void ResetStackAndState(); >> 253 // Reset stack and minimum or navigator state machine necessary for reset >> 254 // as needed by LocalGlobalPointAndSetup. >> 255 // [Does not perform clears, resizes, or reset fLastLocatedPointLocal] >> 256 >> 257 inline G4int SeverityOfZeroStepping( G4int* noZeroSteps ) const; >> 258 // Report on severity of error and number of zero steps, >> 259 // in case Navigator is stuck and is returning zero steps. >> 260 // Values: 1 (small problem), 5 (correcting), >> 261 // 9 (ready to abandon), 10 (abandoned) >> 262 >> 263 // inline >> 264 void SetSavedState(); >> 265 // ( fValidExitNormal, fExitNormal, fExiting, fEntering, >> 266 // fBlockedPhysicalVolume, fBlockedReplicaNo, fLastStepWasZero); >> 267 // inline >> 268 void RestoreSavedState(); >> 269 // Copy aspects of the state, to enable a non-state changing >> 270 // call to ComputeStep >> 271 >> 272 public: // with description >> 273 >> 274 inline G4ThreeVector GetCurrentLocalCoordinate() const; >> 275 // Return the local coordinate of the point in the reference system >> 276 // of its containing volume that was found by LocalGlobalPointAndSetup. >> 277 // The local coordinate of the last located track. >> 278 >> 279 inline G4ThreeVector NetTranslation() const; >> 280 inline G4RotationMatrix NetRotation() const; >> 281 // Compute+return the local->global translation/rotation of current volume. >> 282 >> 283 protected: // with description >> 284 inline G4ThreeVector ComputeLocalPoint(const G4ThreeVector& rGlobPoint) const; >> 285 // Return position vector in local coordinate system, given a position >> 286 // vector in world coordinate system. >> 287 >> 288 inline G4ThreeVector ComputeLocalAxis(const G4ThreeVector& pVec) const; >> 289 // Return the local direction of the specified vector in the reference >> 290 // system of the volume that was found by LocalGlobalPointAndSetup. >> 291 // The Local Coordinates of point in world coordinate system. >> 292 >> 293 virtual void ResetState(); >> 294 // Utility method to reset the navigator state machine. >> 295 >> 296 inline EVolume VolumeType(const G4VPhysicalVolume *pVol) const; >> 297 // Characterise `type' of volume - normal/replicated/parameterised. >> 298 >> 299 inline EVolume CharacteriseDaughters(const G4LogicalVolume *pLog) const; >> 300 // Characterise daughter of logical volume. >> 301 >> 302 inline G4int GetDaughtersRegularStructureId(const G4LogicalVolume *pLog) const; >> 303 // Get regular structure ID of first daughter >> 304 >> 305 virtual void SetupHierarchy(); >> 306 // Renavigate & reset hierarchy described by current history >> 307 // o Reset volumes >> 308 // o Recompute transforms and/or solids of replicated/parameterised >> 309 // volumes. >> 310 >> 311 protected: // without description >> 312 >> 313 G4double kCarTolerance; >> 314 // Geometrical tolerance for surface thickness of shapes. >> 315 >> 316 // >> 317 // BEGIN State information >> 318 // >> 319 >> 320 G4NavigationHistory fHistory; >> 321 // Transformation and history of the current path >> 322 // through the geometrical hierarchy. >> 323 >> 324 G4bool fEnteredDaughter; >> 325 // A memory of whether in this Step a daughter volume is entered >> 326 // (set in Compute & Locate). >> 327 // After Compute: it expects to enter a daughter >> 328 // After Locate: it has entered a daughter >> 329 >> 330 G4bool fExitedMother; >> 331 // A similar memory whether the Step exited current "mother" volume >> 332 // completely, not entering daughter. >> 333 >> 334 G4bool fWasLimitedByGeometry; >> 335 // Set true if last Step was limited by geometry. >> 336 >> 337 G4ThreeVector fStepEndPoint; >> 338 // Endpoint of last ComputeStep >> 339 // - can be used for optimisation (eg when computing safety) >> 340 >> 341 G4int fVerbose; >> 342 // Verbose(ness) level [if > 0, printout can occur]. >> 343 >> 344 private: >> 345 >> 346 G4bool fActive; >> 347 // States if the navigator is activated or not. >> 348 >> 349 G4bool fEntering,fExiting; >> 350 // Entering/Exiting volumes blocking/setup >> 351 // o If exiting >> 352 // volume ptr & replica number (set & used by Locate..()) >> 353 // used for blocking on redescent of geometry >> 354 // o If entering >> 355 // volume ptr & replica number (set by ComputeStep(),used by >> 356 // Locate..()) of volume for `automatic' entry >> 357 >> 358 G4VPhysicalVolume *fBlockedPhysicalVolume; >> 359 G4int fBlockedReplicaNo; >> 360 >> 361 // G4VPhysicalVolume *fCandidatePhysicalVolume; // Unused >> 362 // G4int fCandidateReplicaNo; >> 363 >> 364 G4ThreeVector fLastLocatedPointLocal; >> 365 // Position of the last located point relative to its containing volume. >> 366 G4bool fLocatedOutsideWorld; >> 367 // Whether the last call to Locate methods left the world >> 368 // G4PhysicalVolume* fLastVolumeLocated; >> 369 >> 370 G4bool fValidExitNormal; // Set true if have leaving volume normal >> 371 G4ThreeVector fExitNormal; // Leaving volume normal, in the >> 372 // volume containing the exited >> 373 // volume's coordinate system >> 374 G4ThreeVector fGrandMotherExitNormal; // Leaving volume normal, in its >> 375 // own coordinate system >> 376 >> 377 // Count zero steps - as one or two can occur due to changing momentum at >> 378 // a boundary or at an edge common between volumes >> 379 // - several are likely a problem in the geometry >> 380 // description or in the navigation >> 381 // >> 382 G4bool fLastStepWasZero; >> 383 // Whether the last ComputeStep moved Zero. Used to check for edges. >> 384 >> 385 G4bool fLocatedOnEdge; >> 386 // Whether the Navigator has detected an edge >> 387 G4int fNumberZeroSteps; >> 388 // Number of preceding moves that were Zero. Reset to 0 after finite step >> 389 G4int fActionThreshold_NoZeroSteps; >> 390 // After this many failed/zero steps, act (push etc) >> 391 G4int fAbandonThreshold_NoZeroSteps; >> 392 // After this many failed/zero steps, abandon track >> 393 >> 394 G4ThreeVector fPreviousSftOrigin; >> 395 G4double fPreviousSafety; >> 396 // Memory of last safety origin & value. Used in ComputeStep to ensure >> 397 // that origin of current Step is in the same volume as the point of the >> 398 // last relocation >> 399 >> 400 // >> 401 // END State information >> 402 // >> 403 >> 404 // Save key state information (NOT the navigation history stack) >> 405 // >> 406 struct G4SaveNavigatorState >> 407 { >> 408 G4ThreeVector sExitNormal; >> 409 G4bool sValidExitNormal; >> 410 G4bool sEntering, sExiting; >> 411 G4VPhysicalVolume* spBlockedPhysicalVolume; >> 412 G4int sBlockedReplicaNo; >> 413 G4int sLastStepWasZero; >> 414 >> 415 // Potentially relevant >> 416 // >> 417 G4bool sLocatedOutsideWorld; >> 418 G4ThreeVector sLastLocatedPointLocal; >> 419 G4bool sEnteredDaughter, sExitedMother; >> 420 G4ThreeVector sPreviousSftOrigin; >> 421 G4double sPreviousSafety; >> 422 } fSaveState; >> 423 >> 424 // Tracking Invariants >> 425 // >> 426 G4VPhysicalVolume *fTopPhysical; >> 427 // A link to the topmost physical volume in the detector. >> 428 // Must be positioned at the origin and unrotated. >> 429 >> 430 // Utility information >> 431 // >> 432 G4bool fCheck; >> 433 // Check-mode flag [if true, more strict checks are performed]. >> 434 G4bool fPushed; >> 435 // Push flag [if true, means a stuck particle has been pushed]. >> 436 >> 437 // Helpers/Utility classes >> 438 // >> 439 G4NormalNavigation fnormalNav; >> 440 G4VoxelNavigation fvoxelNav; >> 441 G4ParameterisedNavigation fparamNav; >> 442 G4ReplicaNavigation freplicaNav; >> 443 G4RegularNavigation fregularNav; 527 }; 444 }; 528 445 529 #include "G4Navigator.icc" 446 #include "G4Navigator.icc" 530 447 531 #endif 448 #endif 532 449 533 450 534 // NOTES: 451 // NOTES: 535 // 452 // 536 // The following methods provide detailed info 453 // The following methods provide detailed information when a Step has 537 // arrived at a geometrical boundary. They di 454 // arrived at a geometrical boundary. They distinguish between the different 538 // causes that can result in the track leaving 455 // causes that can result in the track leaving its current volume. 539 // 456 // 540 // Four cases are possible: 457 // Four cases are possible: 541 // 458 // 542 // 1) The particle has reached a boundary of a 459 // 1) The particle has reached a boundary of a daughter of the current volume: 543 // (this could cause the relocation to ent 460 // (this could cause the relocation to enter the daughter itself 544 // or a potential granddaughter or further 461 // or a potential granddaughter or further descendant) 545 // 462 // 546 // 2) The particle has reached a boundary of t 463 // 2) The particle has reached a boundary of the current 547 // volume, exiting into a mother (regardle 464 // volume, exiting into a mother (regardless the level 548 // at which it is located in the tree): 465 // at which it is located in the tree): 549 // 466 // 550 // 3) The particle has reached a boundary of t 467 // 3) The particle has reached a boundary of the current 551 // volume, exiting into a volume which is 468 // volume, exiting into a volume which is not in its 552 // parental hierarchy: 469 // parental hierarchy: 553 // 470 // 554 // 4) The particle is not on a boundary betwee 471 // 4) The particle is not on a boundary between volumes: 555 // the function returns an exception, and 472 // the function returns an exception, and the caller is 556 // reccomended to compare the G4touchables 473 // reccomended to compare the G4touchables associated 557 // to the preStepPoint and postStepPoint t 474 // to the preStepPoint and postStepPoint to handle this case. 558 // 475 // 559 // G4bool EnteredDaughterVolume() 476 // G4bool EnteredDaughterVolume() 560 // G4bool IsExitNormalValid() 477 // G4bool IsExitNormalValid() 561 // G4ThreeVector GetLocalExitNormal() 478 // G4ThreeVector GetLocalExitNormal() 562 // 479 // 563 // The expected usefulness of these methods is 480 // The expected usefulness of these methods is to allow the caller to 564 // determine how to compute the surface normal 481 // determine how to compute the surface normal at the volume boundary. The two 565 // possibilities are to obtain the normal from 482 // possibilities are to obtain the normal from: 566 // 483 // 567 // i) the solid associated with the volume o 484 // i) the solid associated with the volume of the initial point of the Step. 568 // This is valid for cases 2 and 3. 485 // This is valid for cases 2 and 3. 569 // (Note that the initial point is genera 486 // (Note that the initial point is generally the PreStepPoint of a Step). 570 // or 487 // or 571 // 488 // 572 // ii) the solid of the final point, ie of th 489 // ii) the solid of the final point, ie of the volume after the relocation. 573 // This is valid for case 1. 490 // This is valid for case 1. 574 // (Note that the final point is generall 491 // (Note that the final point is generally the PreStepPoint of a Step). 575 // 492 // 576 // This way the caller can always get a valid 493 // This way the caller can always get a valid normal, pointing outside 577 // the solid for which it is computed, that ca 494 // the solid for which it is computed, that can be used at his own 578 // discretion. 495 // discretion. 579 496