Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4Navigator << 26 // >> 27 // $Id: G4Navigator.hh,v 1.14 2006/06/29 18:36:01 gunter Exp $ >> 28 // GEANT4 tag $Name: geant4-08-01 $ >> 29 // >> 30 // >> 31 // class G4Navigator 27 // 32 // 28 // Class description: 33 // Class description: 29 // 34 // 30 // A class for use by the tracking management, 35 // A class for use by the tracking management, able to obtain/calculate 31 // dynamic tracking time information such as t 36 // dynamic tracking time information such as the distance to the next volume, 32 // or to find the physical volume containing a 37 // or to find the physical volume containing a given point in the world 33 // reference system. The navigator maintains a 38 // reference system. The navigator maintains a transformation history and 34 // other information to optimise the tracking 39 // other information to optimise the tracking time performance. 35 << 40 // >> 41 // History: 36 // - Created. 42 // - Created. Paul Kent, Jul 95/96 37 // - Made Navigator Abstract << 38 // - Added check mode << 39 // - Zero step protections 43 // - Zero step protections J.A. / G.C., Nov 2004 40 // ------------------------------------------- << 44 // - Added check mode G. Cosmo, Mar 2004 >> 45 // - Made Navigator Abstract G. Cosmo, Nov 2003 >> 46 // ********************************************************************* >> 47 41 #ifndef G4NAVIGATOR_HH 48 #ifndef G4NAVIGATOR_HH 42 #define G4NAVIGATOR_HH 1 << 49 #define G4NAVIGATOR_HH 43 50 44 #include "geomdefs.hh" 51 #include "geomdefs.hh" 45 52 46 #include "G4ThreeVector.hh" 53 #include "G4ThreeVector.hh" 47 #include "G4AffineTransform.hh" 54 #include "G4AffineTransform.hh" 48 #include "G4RotationMatrix.hh" 55 #include "G4RotationMatrix.hh" 49 56 50 #include "G4LogicalVolume.hh" // U 57 #include "G4LogicalVolume.hh" // Used in inline methods >> 58 #include "G4GRSVolume.hh" // " " >> 59 #include "G4GRSSolid.hh" // " " 51 #include "G4TouchableHandle.hh" // 60 #include "G4TouchableHandle.hh" // " " >> 61 #include "G4TouchableHistoryHandle.hh" 52 62 53 #include "G4NavigationHistory.hh" 63 #include "G4NavigationHistory.hh" 54 #include "G4NormalNavigation.hh" 64 #include "G4NormalNavigation.hh" 55 #include "G4VoxelNavigation.hh" 65 #include "G4VoxelNavigation.hh" 56 #include "G4ParameterisedNavigation.hh" 66 #include "G4ParameterisedNavigation.hh" 57 #include "G4ReplicaNavigation.hh" 67 #include "G4ReplicaNavigation.hh" 58 #include "G4RegularNavigation.hh" << 59 #include "G4VExternalNavigation.hh" << 60 68 61 #include <iostream> 69 #include <iostream> 62 70 63 class G4VPhysicalVolume; 71 class G4VPhysicalVolume; 64 class G4SafetyCalculator; << 65 72 66 class G4Navigator 73 class G4Navigator 67 { 74 { 68 public: << 75 public: // with description 69 76 70 friend std::ostream& operator << (std::ost << 77 friend std::ostream& operator << (std::ostream &os, const G4Navigator &n); 71 78 72 G4Navigator(); << 79 G4Navigator(); 73 // Constructor - initialisers and setup. << 80 // Constructor - initialisers and setup. 74 << 75 G4Navigator(const G4Navigator&) = delete; << 76 G4Navigator& operator=(const G4Navigator&) << 77 // Copy constructor & assignment operato << 78 << 79 virtual ~G4Navigator(); << 80 // Destructor. No actions. << 81 << 82 virtual G4double ComputeStep(const G4Three << 83 const G4Three << 84 const G4doubl << 85 G4doubl << 86 // Calculate the distance to the next bo << 87 // along the specified NORMALISED vector << 88 // from the specified point in the globa << 89 // system. LocateGlobalPointAndSetup or << 90 // must have been called with the same g << 91 // The isotropic distance to the nearest << 92 // calculated (usually an underestimate) << 93 // proposed Step length is used to avoid << 94 // calculations: if it can be determined << 95 // boundary is >pCurrentProposedStepLeng << 96 // is returned together with the compute << 97 // distance. Geometry must be closed. << 98 << 99 G4double CheckNextStep(const G4ThreeVector << 100 const G4ThreeVector << 101 const G4double pCur << 102 G4double& pNe << 103 // Same as above, but do not disturb the << 104 << 105 virtual << 106 G4VPhysicalVolume* ResetHierarchyAndLocate << 107 << 108 << 109 << 110 // Resets the geometrical hierarchy and << 111 // in the hierarchy containing the point << 112 // The direction is used to check if a v << 113 // The search begin is the geometrical h << 114 // last located point, or the endpoint o << 115 // SetGeometricallyLimitedStep() has bee << 116 // << 117 // Important Note: In order to call this << 118 << 119 virtual << 120 G4VPhysicalVolume* LocateGlobalPointAndSet << 121 const G << 122 const G << 123 const G << 124 // Search the geometrical hierarchy for << 125 // containing the point in the global co << 126 // are: << 127 // i) If pRelativeSearch=false it makes << 128 // information. Returns the physical << 129 // with all previous mothers correct << 130 // ii) If pRelativeSearch is set to true << 131 // geometrical hierarchy at the loca << 132 // or the endpoint of previous Step << 133 // has been called immediately befor << 134 // The direction is used (to check if a << 135 // - the argument ignoreDirection is f << 136 // - the Navigator has determined that << 137 // or more volumes. (This is state << 138 // << 139 // Important Note: In order to call this << 140 << 141 virtual << 142 void LocateGlobalPointWithinVolume(const G << 143 // Notify the Navigator that a track has << 144 // 'position', that is known to be withi << 145 // No check is performed to ensure that << 146 // This method can be called instead of << 147 // the caller is certain that the new gl << 148 // the same volume as the previous posit << 149 // Usually this can be guaranteed only i << 150 << 151 inline void LocateGlobalPointAndUpdateTouc << 152 const G4ThreeVector& p << 153 const G4ThreeVector& d << 154 G4TouchableHandle& o << 155 const G4bool R << 156 // First, search the geometrical hierarc << 157 // LocateGlobalPointAndSetup(). Then use << 158 // navigation history to update the touc << 159 << 160 inline void LocateGlobalPointAndUpdateTouc << 161 const G4ThreeVector& p << 162 const G4ThreeVector& d << 163 G4VTouchable* t << 164 const G4bool R << 165 // First, search the geometrical hierarc << 166 // LocateGlobalPointAndSetup(). Then use << 167 // navigation history to update the touc << 168 << 169 inline void LocateGlobalPointAndUpdateTouc << 170 const G4ThreeVector& p << 171 G4VTouchable* t << 172 const G4bool R << 173 // Same as the method above but missing << 174 << 175 inline void SetGeometricallyLimitedStep(); << 176 // Inform the navigator that the previou << 177 // by the geometry was taken in its enti << 178 << 179 virtual G4double ComputeSafety(const G4Thr << 180 const G4dou << 181 const G4boo << 182 // Calculate the isotropic distance to t << 183 // specified point in the global coordin << 184 // The globalpoint utilised must be with << 185 // The value returned is usually an unde << 186 // The proposed maximum length is used t << 187 // calculations. The geometry must be c << 188 // To ensure minimum side effects from t << 189 << 190 inline G4VPhysicalVolume* GetWorldVolume() << 191 // Return the current world (`topmost') << 192 << 193 inline void SetWorldVolume(G4VPhysicalVolu << 194 // Set the world (`topmost') volume. Thi << 195 // origin (0,0,0) and unrotated. << 196 << 197 inline G4TouchableHistory* CreateTouchable << 198 inline G4TouchableHistory* CreateTouchable << 199 // `Touchable' creation methods: caller << 200 << 201 virtual G4TouchableHandle CreateTouchableH << 202 // Returns a reference counted handle to << 203 << 204 virtual G4ThreeVector GetLocalExitNormal(G << 205 virtual G4ThreeVector GetLocalExitNormalAn << 206 << 207 virtual G4ThreeVector GetGlobalExitNormal( << 208 << 209 // Return Exit Surface Normal and validi << 210 // Can only be called if the Navigator's << 211 // volume geometrical boundary. << 212 // It returns the Normal to the surface << 213 // was left behind and/or into the volum << 214 // Convention: << 215 // The *local* normal is in the coordi << 216 // Restriction: << 217 // Normals are not available for repli << 218 // These methods takes full care about h << 219 // but if the surfaces are not convex it << 220 << 221 inline G4int GetVerboseLevel() const; << 222 inline void SetVerboseLevel(G4int level); << 223 // Get/Set Verbose(ness) level. << 224 // [if level>0 && G4VERBOSE, printout ca << 225 << 226 inline G4bool IsActive() const; << 227 // Verify if the navigator is active. << 228 inline void Activate(G4bool flag); << 229 // Activate/inactivate the navigator. << 230 << 231 inline G4bool EnteredDaughterVolume() cons << 232 // The purpose of this function is to in << 233 // entering a daughter volume while exit << 234 // This method returns << 235 // - True only in case 1) above, that is << 236 // the track to arrive at a boundary o << 237 // - False in cases 2), 3) and 4), i.e. << 238 // This function is not guaranteed to wo << 239 // was not called when it should have be << 240 inline G4bool ExitedMotherVolume() const; << 241 // Verify if the step has exited the mot << 242 << 243 inline void CheckMode(G4bool mode); << 244 // Run navigation in "check-mode", there << 245 // verifications and more strict correct << 246 // Is effective only with G4VERBOSE set. << 247 inline G4bool IsCheckModeActive() const; << 248 inline void SetPushVerbosity(G4bool mode); << 249 // Set/unset verbosity for pushed tracks << 250 << 251 void PrintState() const; << 252 // Print the internal state of the Navig << 253 // The level of detail is according to t << 254 << 255 inline const G4AffineTransform& GetGlobalT << 256 inline const G4AffineTransform GetLocalTo << 257 // Obtain the transformations Global/Loc << 258 // Clients of these methods must copy th << 259 << 260 G4AffineTransform GetMotherToDaughterTrans << 261 << 262 << 263 // Obtain mother to daughter transformat << 264 << 265 inline void ResetStackAndState(); << 266 // Reset stack and minimum or navigator << 267 // as needed by LocalGlobalPointAndSetup << 268 // Does not perform clears, resizes, or << 269 << 270 inline G4int SeverityOfZeroStepping( G4int << 271 // Report on severity of error and numbe << 272 // in case Navigator is stuck and is ret << 273 // Values: 1 (small problem), 5 (correc << 274 // 9 (ready to abandon), 10 (aba << 275 << 276 inline G4ThreeVector GetCurrentLocalCoordi << 277 // Return the local coordinate of the po << 278 // of its containing volume that was fou << 279 // The local coordinate of the last loca << 280 << 281 inline G4ThreeVector NetTranslation() cons << 282 inline G4RotationMatrix NetRotation() cons << 283 // Compute+return the local->global tran << 284 << 285 inline void EnableBestSafety( G4bool value << 286 // Enable best-possible evaluation of is << 287 << 288 inline G4VExternalNavigation* GetExternalN << 289 void SetExternalNavigation(G4VExternalNavi << 290 // Accessor & modifier for custom extern << 291 << 292 inline G4VoxelNavigation& GetVoxelNavigato << 293 void SetVoxelNavigation(G4VoxelNavigation* << 294 // Alternative navigator for voxel volum << 295 << 296 inline G4Navigator* Clone() const; << 297 // Cloning feature for use in MT applica << 298 // navigator, including external sub-nav << 299 // Client has responsibility for ownersh << 300 << 301 inline G4ThreeVector GetLastStepEndPoint() << 302 // Get endpoint of last step. << 303 << 304 void InformLastStep(G4double lastStep, << 305 G4bool entersDaughtVol << 306 G4bool exitsMotherVol << 307 // Derived navigators which rely on Loca << 308 // inform size of step, to maintain logi << 309 // for challenging cases. << 310 // Required in order to cope with multip << 311 // => Locate with use direction rather t << 312 << 313 protected: << 314 << 315 void SetSavedState(); << 316 // ( fValidExitNormal, fExitNormal, fExi << 317 // fBlockedPhysicalVolume, fBlockedRep << 318 // Extended to include: << 319 // ( fLastLocatedPointLocal, fLocatedOut << 320 // fEnteredDaughter, fExitedMother << 321 // fPreviousSftOrigin, sPreviousSafety << 322 << 323 void RestoreSavedState(); << 324 // Copy aspects of the state, to enable << 325 // call to ComputeStep(). << 326 << 327 virtual void ResetState(); << 328 // Utility method to reset the navigator << 329 81 330 inline G4ThreeVector ComputeLocalPoint(con << 82 virtual ~G4Navigator(); 331 // Return position vector in local coord << 83 // Destructor. No actions. 332 // vector in world coordinate system. << 84 333 << 85 virtual G4double ComputeStep(const G4ThreeVector &pGlobalPoint, 334 inline G4ThreeVector ComputeLocalAxis(cons << 86 const G4ThreeVector &pDirection, 335 // Return the local direction of the spe << 87 const G4double pCurrentProposedStepLength, 336 // system of the volume that was found b << 88 G4double &pNewSafety); 337 // The Local Coordinates of point in wor << 89 // Calculate the distance to the next boundary intersected 338 << 90 // along the specified NORMALISED vector direction and 339 inline EVolume VolumeType(const G4VPhysica << 91 // from the specified point in the global coordinate 340 // Characterise `type' of volume - norma << 92 // system. LocateGlobalPointAndSetup or LocateGlobalPointWithinVolume 341 << 93 // must have been called with the same global point prior to this call. 342 inline EVolume CharacteriseDaughters(const << 94 // The isotropic distance to the nearest boundary is also 343 // Characterise daughter of logical volu << 95 // calculated (usually an underestimate). The current 344 << 96 // proposed Step length is used to avoid intersection 345 inline G4int GetDaughtersRegularStructureI << 97 // calculations: if it can be determined that the nearest 346 // Get regular structure ID of first dau << 98 // boundary is >pCurrentProposedStepLength away, kInfinity 347 << 99 // is returned together with the computed isotropic safety 348 virtual void SetupHierarchy(); << 100 // distance. Geometry must be closed. 349 // Renavigate & reset hierarchy describe << 101 350 // o Reset volumes and recompute transfo << 102 virtual 351 // replicated/parameterised volumes. << 103 G4VPhysicalVolume* ResetHierarchyAndLocate(const G4ThreeVector &point, 352 << 104 const G4ThreeVector &direction, 353 G4bool CheckOverlapsIterative(G4VPhysicalV << 105 const G4TouchableHistory &h); 354 // Utility method to trigger overlaps ch << 106 355 // overlaps ordered by relevance. Used i << 107 // Resets the geometrical hierarchy and search for the volumes deepest 356 // with zero step are detected. << 108 // in the hierarchy containing the point in the global coordinate space. 357 << 109 // The direction is used to check if a volume is entered. 358 private: << 110 // The search begin is the geometrical hierarchy at the location of the 359 << 111 // last located point, or the endpoint of the previous Step if 360 void ComputeStepLog(const G4ThreeVector& p << 112 // SetGeometricallyLimitedStep() has been called immediately before. 361 G4double moveLen << 113 // 362 // Log and checks for steps larger than << 114 // Important Note: In order to call this the geometry MUST be closed. 363 << 364 protected: << 365 << 366 G4double kCarTolerance, fMinStep, fSqTol; << 367 // Cached tolerances. << 368 << 369 // << 370 // BEGIN State information << 371 // << 372 << 373 G4NavigationHistory fHistory; << 374 // Transformation and history of the cur << 375 // through the geometrical hierarchy. << 376 << 377 G4ThreeVector fStepEndPoint; << 378 // Endpoint of last ComputeStep << 379 // can be used for optimisation (e.g. wh << 380 G4ThreeVector fLastStepEndPointLocal; << 381 // Position of the end-point of the last << 382 // in last Local coordinates. << 383 << 384 G4int fVerbose = 0; << 385 // Verbose(ness) level [if > 0, printou << 386 << 387 G4bool fEnteredDaughter; << 388 // A memory of whether in this Step a da << 389 // (set in Compute & Locate). << 390 // After Compute: it expects to enter a << 391 // After Locate: it has entered a daugh << 392 << 393 G4bool fExitedMother; << 394 // A similar memory whether the Step exi << 395 // completely, not entering daughter. << 396 << 397 G4bool fWasLimitedByGeometry = false; << 398 // Set true if last Step was limited by << 399 << 400 private: << 401 << 402 G4ThreeVector fLastLocatedPointLocal; << 403 // Position of the last located point re << 404 // This is coupled with the bool member << 405 << 406 G4ThreeVector fExitNormal; << 407 // Leaving volume normal, in the volume << 408 // volume's coordinate system. << 409 // This is closely coupled with fValidEx << 410 // we have a (valid) normal for volume w << 411 << 412 G4ThreeVector fGrandMotherExitNormal; << 413 // Leaving volume normal, in its own coo << 414 G4ThreeVector fExitNormalGlobalFrame; << 415 // Leaving volume normal, in the global << 416 << 417 G4ThreeVector fPreviousSftOrigin; << 418 G4double fPreviousSafety; << 419 // Memory of last safety origin & value. << 420 // that origin of current Step is in the << 421 // last relocation. << 422 << 423 G4VPhysicalVolume* fLastMotherPhys = nullp << 424 // Memory of the mother volume during pr << 425 // Intended use: inform user in case of << 426 << 427 G4VPhysicalVolume* fBlockedPhysicalVolume; << 428 G4int fBlockedReplicaNo; << 429 // Identifies the volume and copy / repl << 430 // (after exiting -- because the exit di << 431 // or a candidate for entry (after compu << 432 << 433 G4int fNumberZeroSteps; << 434 // Count zero steps, as one or two can o << 435 // a boundary or at an edge common betwe << 436 // are likely a problem in the geometry << 437 // Number of preceding moves that were Z << 438 G4int fActionThreshold_NoZeroSteps = 10; << 439 // After this many failed/zero steps, ac << 440 G4int fAbandonThreshold_NoZeroSteps = 25; << 441 // After this many failed/zero steps, ab << 442 << 443 G4bool fActive = false; << 444 // States if the navigator is activated << 445 << 446 G4bool fLastTriedStepComputation = false; << 447 // Whether ComputeStep() was called sinc << 448 // Uses: distinguish parts of state whic << 449 // to ComputeStep() or one of the Locate << 450 // calls to compute-step (illegal). << 451 << 452 G4bool fEntering, fExiting; << 453 // Entering/Exiting volumes blocking/set << 454 // o If exiting, volume ptr & replica nu << 455 // used for blocking on redescent of g << 456 // o If entering, volume ptr & replica n << 457 // used by Locate..()) of volume for ' << 458 << 459 G4bool fValidExitNormal; << 460 // Set true if have leaving volume norma << 461 G4bool fLastStepWasZero; << 462 // Whether the last ComputeStep moved Ze << 463 G4bool fLocatedOnEdge; << 464 // Whether the Navigator has detected an << 465 G4bool fLocatedOutsideWorld; << 466 // Whether the last call to Locate metho << 467 << 468 G4bool fChangedGrandMotherRefFrame; << 469 // Whether frame is changed. << 470 G4bool fCalculatedExitNormal; << 471 // Has it been computed since the last c << 472 // Covers both Global and GrandMother. << 473 << 474 // END State information << 475 // << 476 115 477 // Optional State information (created/use << 116 G4VPhysicalVolume* LocateGlobalPointAndSetup(const G4ThreeVector& point, >> 117 const G4ThreeVector* direction=0, >> 118 const G4bool pRelativeSearch=true, >> 119 const G4bool ignoreDirection=true); >> 120 // Search the geometrical hierarchy for the volumes deepest in the hierarchy >> 121 // containing the point in the global coordinate space. Two main cases are: >> 122 // i) If pRelativeSearch=false it makes use of no previous/state >> 123 // information. Returns the physical volume containing the point, >> 124 // with all previous mothers correctly set up. >> 125 // ii) If pRelativeSearch is set to true, the search begin is the >> 126 // geometrical hierarchy at the location of the last located point, >> 127 // or the endpoint of the previous Step if SetGeometricallyLimitedStep() >> 128 // has been called immediately before. >> 129 // The direction is used (to check if a volume is entered) if either >> 130 // - the argument ignoreDirection is false, or >> 131 // - the Navigator has determined that it is on an edge shared by two or >> 132 // more volumes. (This is state information.) 478 // 133 // 479 << 134 // Important Note: In order to call this the geometry MUST be closed. 480 // Save key state information (NOT the nav << 481 // << 482 struct G4SaveNavigatorState << 483 { << 484 G4ThreeVector sExitNormal; << 485 G4bool sValidExitNormal; << 486 G4bool sEntering, sExiting; << 487 G4VPhysicalVolume* spBlockedPhysicalVol << 488 G4int sBlockedReplicaNo; << 489 G4int sLastStepWasZero; << 490 G4bool sWasLimitedByGeometry; << 491 << 492 // Potentially relevant << 493 // << 494 G4bool sLocatedOutsideWorld; << 495 G4ThreeVector sLastLocatedPointLocal; << 496 G4bool sEnteredDaughter, sExitedMother; << 497 G4ThreeVector sPreviousSftOrigin; << 498 G4double sPreviousSafety; << 499 } fSaveState; << 500 << 501 // BEGIN -- Tracking Invariants << 502 // ======================================= << 503 << 504 G4VPhysicalVolume* fTopPhysical = nullptr; << 505 // A link to the topmost physical volume << 506 // Must be positioned at the origin and << 507 << 508 // Helpers/Utility classes << 509 // << 510 G4NormalNavigation fnormalNav; << 511 G4VoxelNavigation* fpvoxelNav; << 512 G4ParameterisedNavigation fparamNav; << 513 G4ReplicaNavigation freplicaNav; << 514 G4RegularNavigation fregularNav; << 515 G4VExternalNavigation* fpExternalNav = nul << 516 G4VoxelSafety* fpVoxelSafety; << 517 G4SafetyCalculator* fpSafetyCalculator = n << 518 << 519 // Utility information << 520 // << 521 G4bool fCheck = false; << 522 // Check-mode flag [if true, more stric << 523 G4bool fPushed = false, fWarnPush = true; << 524 // Push flags [if true, means a stuck p << 525 135 526 // End -- Tracking Invariants << 136 virtual void LocateGlobalPointWithinVolume(const G4ThreeVector& position); >> 137 // Notify the Navigator that a track has moved to the new Global point >> 138 // 'position', that is known to be within the current safety. >> 139 // No check is performed to ensure that it is within the volume. >> 140 // This method can be called instead of LocateGlobalPointAndSetup ONLY if >> 141 // the caller is certain that the new global point (position) is inside the >> 142 // same volume as the previous position. Usually this can be guaranteed >> 143 // only if the point is within safety. >> 144 >> 145 virtual void LocateGlobalPointAndUpdateTouchableHandle( >> 146 const G4ThreeVector& position, >> 147 const G4ThreeVector& direction, >> 148 G4TouchableHandle& oldTouchableToUpdate, >> 149 const G4bool RelativeSearch = true); >> 150 // First, search the geometrical hierarchy like the above method >> 151 // LocateGlobalPointAndSetup(). Then use the volume found and its >> 152 // navigation history to update the touchable. >> 153 >> 154 inline void LocateGlobalPointAndUpdateTouchable( >> 155 const G4ThreeVector& position, >> 156 const G4ThreeVector& direction, >> 157 G4VTouchable* touchableToUpdate, >> 158 const G4bool RelativeSearch = true); >> 159 // First, search the geometrical hierarchy like the above method >> 160 // LocateGlobalPointAndSetup(). Then use the volume found and its >> 161 // navigation history to update the touchable. >> 162 >> 163 inline void LocateGlobalPointAndUpdateTouchable( >> 164 const G4ThreeVector& position, >> 165 G4VTouchable* touchableToUpdate, >> 166 const G4bool RelativeSearch = true); >> 167 // Old version (missing direction). >> 168 // Not recommended replace with newer version above. >> 169 >> 170 inline void SetGeometricallyLimitedStep(); >> 171 // Inform the navigator that the previous Step calculated >> 172 // by the geometry was taken in its entirety. >> 173 >> 174 virtual G4double ComputeSafety(const G4ThreeVector &globalpoint, >> 175 const G4double pProposedMaxLength = DBL_MAX); >> 176 // Calculate the isotropic distance to the nearest boundary from the >> 177 // specified point in the global coordinate system. >> 178 // The globalpoint utilised must be within the current volume. >> 179 // The value returned is usually an underestimate. >> 180 // The proposed maximum length is used to avoid volume safety >> 181 // calculations. The geometry must be closed. >> 182 >> 183 inline G4VPhysicalVolume* GetWorldVolume() const; >> 184 // Return the current world (`topmost') volume. >> 185 >> 186 inline void SetWorldVolume(G4VPhysicalVolume* pWorld); >> 187 // Set the world (`topmost') volume. This must be positioned at >> 188 // origin (0,0,0) and unrotated. >> 189 >> 190 inline G4GRSVolume* CreateGRSVolume() const; >> 191 inline G4GRSSolid* CreateGRSSolid() const; >> 192 inline G4TouchableHistory* CreateTouchableHistory() const; >> 193 // `Touchable' creation methods: caller has deletion responsibility. >> 194 >> 195 virtual G4TouchableHistoryHandle CreateTouchableHistoryHandle() const; >> 196 // Returns a reference counted handle to a touchable history. >> 197 >> 198 virtual G4ThreeVector GetLocalExitNormal(G4bool* valid); >> 199 // Returns Exit Surface Normal and validity too. >> 200 // It can only be called if the Navigator's last Step has crossed a >> 201 // volume geometrical boundary. >> 202 // It returns the Normal to the surface pointing out of the volume that >> 203 // was left behind and/or into the volume that was entered. >> 204 // (The normal is in the coordinate system of the final volume.) >> 205 // This function takes full care about how to calculate this normal, >> 206 // but if the surfaces are not convex it will return valid=false. >> 207 >> 208 inline G4int GetVerboseLevel() const; >> 209 inline void SetVerboseLevel(G4int level); >> 210 // Get/Set Verbose(ness) level. >> 211 // [if level>0 && G4VERBOSE, printout can occur] >> 212 >> 213 inline G4bool IsActive() const; >> 214 // Verify if the navigator is active. >> 215 inline void Activate(G4bool flag); >> 216 // Activate/inactivate the navigator. >> 217 >> 218 inline void CheckMode(G4bool mode); >> 219 // Run navigation in "check-mode", therefore using additional >> 220 // verifications and more strict correctness conditions. >> 221 // Is effective only with G4VERBOSE set. >> 222 >> 223 void PrintState(); >> 224 // Print the internal state of the Navigator (for debugging). >> 225 // The level of detail is according to the verbosity. >> 226 >> 227 inline const G4AffineTransform& GetGlobalToLocalTransform() const; >> 228 inline const G4AffineTransform GetLocalToGlobalTransform() const; >> 229 // Obtain the transformations Global/Local (and inverse). >> 230 // Clients of these methods must copy the data if they need to keep it. >> 231 >> 232 inline void ResetStackAndState(); >> 233 // Reset stack and minimum or navigator state machine necessary for reset >> 234 // as needed by LocalGlobalPointAndSetup. >> 235 // [Does not perform clears, resizes, or reset fLastLocatedPointLocal] >> 236 >> 237 inline G4int SeverityOfZeroStepping( G4int* noZeroSteps ) const; >> 238 // Report on severity of error and number of zero steps, >> 239 // in case Navigator is stuck and is returning zero steps. >> 240 // Values: 1 (small problem), 5 (correcting), >> 241 // 9 (ready to abandon), 10 (abandoned) >> 242 >> 243 protected: // with description >> 244 >> 245 inline G4ThreeVector GetCurrentLocalCoordinate() const; >> 246 // Return the local coordinate of the point in the reference system >> 247 // of its containing volume that was found by LocalGlobalPointAndSetup. >> 248 // The local coordinate of the last located track. >> 249 >> 250 inline G4ThreeVector ComputeLocalPoint(const G4ThreeVector& rGlobPoint) const; >> 251 // Return position vector in local coordinate system, given a position >> 252 // vector in world coordinate system. >> 253 >> 254 inline G4ThreeVector ComputeLocalAxis(const G4ThreeVector& pVec) const; >> 255 // Return the local direction of the specified vector in the reference >> 256 // system of the volume that was found by LocalGlobalPointAndSetup. >> 257 // The Local Coordinates of point in world coordinate system. >> 258 >> 259 inline G4ThreeVector NetTranslation() const; >> 260 inline G4RotationMatrix NetRotation() const; >> 261 // Compute+return the local->global translation/rotation of current volume. >> 262 >> 263 inline G4bool EnteredDaughterVolume(); >> 264 // The purpose of this function is to inform the caller if the track is >> 265 // entering a daughter volume while exiting from the current volume. >> 266 // This method returns >> 267 // - True only in case 1) above, that is when the Step has caused >> 268 // the track to arrive at a boundary of a daughter. >> 269 // - False in cases 2), 3) and 4), i.e. in all other cases. >> 270 // This function is not guaranteed to work if SetGeometricallyLimitedStep() >> 271 // was not called when it should have been called. >> 272 >> 273 virtual void ResetState(); >> 274 // Utility method to reset the navigator state machine. >> 275 >> 276 inline EVolume VolumeType(const G4VPhysicalVolume *pVol) const; >> 277 // Characterise `type' of volume - normal/replicated/parameterised. >> 278 >> 279 inline EVolume CharacteriseDaughters(const G4LogicalVolume *pLog) const; >> 280 // Characterise daughter of logical volume. >> 281 >> 282 virtual void SetupHierarchy(); >> 283 // Renavigate & reset hierarchy described by current history >> 284 // o Reset volumes >> 285 // o Recompute transforms and/or solids of replicated/parameterised >> 286 // volumes. >> 287 >> 288 private: >> 289 >> 290 // >> 291 // BEGIN State information >> 292 // >> 293 >> 294 G4bool fActive; >> 295 // States if the navigator is activated or not. >> 296 >> 297 G4ThreeVector fLastLocatedPointLocal; >> 298 // Position of the last located point relative to its containing volume. >> 299 >> 300 G4bool fWasLimitedByGeometry; >> 301 // Set true if last Step was limited by geometry. >> 302 G4bool fEntering,fExiting; >> 303 // Entering/Exiting volumes blocking/setup >> 304 // o If exiting >> 305 // volume ptr & replica number (set & used by Locate..()) >> 306 // used for blocking on redescent of geometry >> 307 // o If entering >> 308 // volume ptr & replica number (set by ComputeStep(),used by >> 309 // Locate..()) of volume for `automatic' entry >> 310 >> 311 G4VPhysicalVolume *fBlockedPhysicalVolume; >> 312 G4int fBlockedReplicaNo; >> 313 >> 314 G4VPhysicalVolume *fCandidatePhysicalVolume; >> 315 G4int fCandidateReplicaNo; >> 316 >> 317 G4bool fEnteredDaughter; // A memory of whether in this Step a daughter >> 318 // volume is entered (set in Compute & Locate) >> 319 // After Compute: it expects to enter a daughter >> 320 // After Locate: it has entered a daughter >> 321 G4bool fExitedMother; // A similar memory whether the Step exited >> 322 // current "mother" volume completely, >> 323 // not entering daughter. >> 324 >> 325 G4bool fValidExitNormal; // Set true if have leaving volume normal >> 326 G4ThreeVector fExitNormal; // Leaving volume normal, in the >> 327 // volume containing the exited >> 328 // volume's coordinate system >> 329 G4ThreeVector fGrandMotherExitNormal; // Leaving volume normal, in its >> 330 // own coordinate system >> 331 G4NavigationHistory fHistory; >> 332 // Transformation & `path' history of current path >> 333 // through geomtrical hierarchy >> 334 >> 335 // Count zero steps - as one or two can occur due to changing momentum at >> 336 // a boundary or at an edge common between volumes >> 337 // - several are likely a problem in the geometry >> 338 // description or in the navigation >> 339 // >> 340 G4bool fLastStepWasZero; >> 341 // Whether the last ComputeStep moved Zero. Used to check for edges. >> 342 >> 343 G4bool fLocatedOnEdge; >> 344 // Whether the Navigator has detected an edge >> 345 G4int fNumberZeroSteps; >> 346 // Number of preceding moves that were Zero. Reset to 0 after finite step >> 347 G4int fActionThreshold_NoZeroSteps; >> 348 // After this many failed/zero steps, act (push etc) >> 349 G4int fAbandonThreshold_NoZeroSteps; >> 350 // After this many failed/zero steps, abandon track >> 351 >> 352 G4ThreeVector fPreviousSftOrigin; >> 353 G4double fPreviousSafety; >> 354 // Memory of last safety origin & value. Used in ComputeStep to ensure >> 355 // that origin of current Step is in the same volume as the point of the >> 356 // last relocation >> 357 >> 358 // >> 359 // END State information >> 360 // >> 361 >> 362 // >> 363 // BEGIN Tracking Invariants >> 364 // >> 365 >> 366 G4VPhysicalVolume *fTopPhysical; >> 367 // A link to the topmost physical volume in the detector. >> 368 // Must be positioned at the origin and unrotated. >> 369 >> 370 // >> 371 // END Tracking Invariants >> 372 // >> 373 >> 374 // >> 375 // BEGIN Utility information >> 376 // >> 377 >> 378 G4bool fCheck; >> 379 // Check-mode flag [if true, more strict checks are performed]. >> 380 G4bool fPushed; >> 381 // Push flag [if true, means a stuck particle has been pushed]. >> 382 G4int fVerbose; >> 383 // Verbose(ness) level [if > 0, printout can occur]. >> 384 >> 385 // >> 386 // END Utility Invariants >> 387 // >> 388 >> 389 // >> 390 // Helpers/Utility classes >> 391 // >> 392 G4NormalNavigation fnormalNav; >> 393 G4VoxelNavigation fvoxelNav; >> 394 G4ParameterisedNavigation fparamNav; >> 395 G4ReplicaNavigation freplicaNav; 527 }; 396 }; 528 397 529 #include "G4Navigator.icc" 398 #include "G4Navigator.icc" 530 399 531 #endif 400 #endif 532 401 533 402 534 // NOTES: 403 // NOTES: 535 // 404 // 536 // The following methods provide detailed info 405 // The following methods provide detailed information when a Step has 537 // arrived at a geometrical boundary. They di 406 // arrived at a geometrical boundary. They distinguish between the different 538 // causes that can result in the track leaving 407 // causes that can result in the track leaving its current volume. 539 // 408 // 540 // Four cases are possible: 409 // Four cases are possible: 541 // 410 // 542 // 1) The particle has reached a boundary of a 411 // 1) The particle has reached a boundary of a daughter of the current volume: 543 // (this could cause the relocation to ent 412 // (this could cause the relocation to enter the daughter itself 544 // or a potential granddaughter or further 413 // or a potential granddaughter or further descendant) 545 // 414 // 546 // 2) The particle has reached a boundary of t 415 // 2) The particle has reached a boundary of the current 547 // volume, exiting into a mother (regardle 416 // volume, exiting into a mother (regardless the level 548 // at which it is located in the tree): 417 // at which it is located in the tree): 549 // 418 // 550 // 3) The particle has reached a boundary of t 419 // 3) The particle has reached a boundary of the current 551 // volume, exiting into a volume which is 420 // volume, exiting into a volume which is not in its 552 // parental hierarchy: 421 // parental hierarchy: 553 // 422 // 554 // 4) The particle is not on a boundary betwee 423 // 4) The particle is not on a boundary between volumes: 555 // the function returns an exception, and 424 // the function returns an exception, and the caller is 556 // reccomended to compare the G4touchables 425 // reccomended to compare the G4touchables associated 557 // to the preStepPoint and postStepPoint t 426 // to the preStepPoint and postStepPoint to handle this case. 558 // 427 // 559 // G4bool EnteredDaughterVolume() 428 // G4bool EnteredDaughterVolume() 560 // G4bool IsExitNormalValid() 429 // G4bool IsExitNormalValid() 561 // G4ThreeVector GetLocalExitNormal() 430 // G4ThreeVector GetLocalExitNormal() 562 // 431 // 563 // The expected usefulness of these methods is 432 // The expected usefulness of these methods is to allow the caller to 564 // determine how to compute the surface normal 433 // determine how to compute the surface normal at the volume boundary. The two 565 // possibilities are to obtain the normal from 434 // possibilities are to obtain the normal from: 566 // 435 // 567 // i) the solid associated with the volume o 436 // i) the solid associated with the volume of the initial point of the Step. 568 // This is valid for cases 2 and 3. 437 // This is valid for cases 2 and 3. 569 // (Note that the initial point is genera 438 // (Note that the initial point is generally the PreStepPoint of a Step). 570 // or 439 // or 571 // 440 // 572 // ii) the solid of the final point, ie of th 441 // ii) the solid of the final point, ie of the volume after the relocation. 573 // This is valid for case 1. 442 // This is valid for case 1. 574 // (Note that the final point is generall 443 // (Note that the final point is generally the PreStepPoint of a Step). 575 // 444 // 576 // This way the caller can always get a valid 445 // This way the caller can always get a valid normal, pointing outside 577 // the solid for which it is computed, that ca 446 // the solid for which it is computed, that can be used at his own 578 // discretion. 447 // discretion. 579 448