Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4VSolid implementation for solid base clas << 27 // 26 // 28 // 10.10.18 E.Tcherniaev, more robust Estimate << 27 // $Id: G4VSolid.cc,v 1.39 2008/09/23 13:07:41 gcosmo Exp $ 29 // 30.06.95 P.Kent, Created. << 28 // GEANT4 tag $Name: geant4-09-02-patch-04 $ >> 29 // >> 30 // class G4VSolid >> 31 // >> 32 // Implementation for solid base class >> 33 // >> 34 // History: >> 35 // >> 36 // 06.12.02 V.Grichine, restored original conditions in ClipPolygon() >> 37 // 10.05.02 V.Grichine, ClipPolygon(): clip only other axis and limited voxels >> 38 // 15.04.02 V.Grichine, bug fixed in ClipPolygon(): clip only one axis >> 39 // 13.03.02 V.Grichine, cosmetics of voxel limit functions >> 40 // 15.11.00 D.Williams, V.Grichine, fix in CalculateClippedPolygonExtent() >> 41 // 10.07.95 P.Kent, Added == operator, solid Store entry >> 42 // 30.06.95 P.Kent, Created. 30 // ------------------------------------------- 43 // -------------------------------------------------------------------- 31 44 32 #include "G4VSolid.hh" 45 #include "G4VSolid.hh" 33 #include "G4SolidStore.hh" 46 #include "G4SolidStore.hh" 34 #include "globals.hh" 47 #include "globals.hh" 35 #include "G4QuickRand.hh" << 48 #include "Randomize.hh" 36 #include "G4GeometryTolerance.hh" 49 #include "G4GeometryTolerance.hh" 37 50 38 #include "G4VoxelLimits.hh" 51 #include "G4VoxelLimits.hh" 39 #include "G4AffineTransform.hh" 52 #include "G4AffineTransform.hh" 40 #include "G4VisExtent.hh" 53 #include "G4VisExtent.hh" 41 54 42 ////////////////////////////////////////////// 55 ////////////////////////////////////////////////////////////////////////// 43 // 56 // 44 // Streaming operator dumping solid contents << 45 << 46 std::ostream& operator<< ( std::ostream& os, c << 47 { << 48 return e.StreamInfo(os); << 49 } << 50 << 51 ////////////////////////////////////////////// << 52 // << 53 // Constructor 57 // Constructor 54 // - Copies name 58 // - Copies name 55 // - Add ourselves to solid Store 59 // - Add ourselves to solid Store 56 60 57 G4VSolid::G4VSolid(const G4String& name) 61 G4VSolid::G4VSolid(const G4String& name) 58 : fshapeName(name) 62 : fshapeName(name) 59 { 63 { 60 kCarTolerance = G4GeometryTolerance::GetIn 64 kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance(); 61 65 62 // Register to store 66 // Register to store 63 // 67 // 64 G4SolidStore::GetInstance()->Register(this 68 G4SolidStore::GetInstance()->Register(this); 65 } 69 } 66 70 67 ////////////////////////////////////////////// 71 ////////////////////////////////////////////////////////////////////////// 68 // 72 // 69 // Copy constructor 73 // Copy constructor 70 // 74 // 71 75 72 G4VSolid::G4VSolid(const G4VSolid& rhs) 76 G4VSolid::G4VSolid(const G4VSolid& rhs) 73 : kCarTolerance(rhs.kCarTolerance), fshapeNa 77 : kCarTolerance(rhs.kCarTolerance), fshapeName(rhs.fshapeName) 74 { 78 { 75 // Register to store 79 // Register to store 76 // 80 // 77 G4SolidStore::GetInstance()->Register(this 81 G4SolidStore::GetInstance()->Register(this); 78 } 82 } 79 83 80 ////////////////////////////////////////////// 84 ////////////////////////////////////////////////////////////////////////// 81 // 85 // 82 // Fake default constructor - sets only member 86 // Fake default constructor - sets only member data and allocates memory 83 // for usage restri 87 // for usage restricted to object persistency. 84 // 88 // 85 G4VSolid::G4VSolid( __void__& ) 89 G4VSolid::G4VSolid( __void__& ) 86 : fshapeName("") 90 : fshapeName("") 87 { 91 { 88 // Register to store 92 // Register to store 89 // 93 // 90 G4SolidStore::GetInstance()->Register(this 94 G4SolidStore::GetInstance()->Register(this); 91 } 95 } 92 96 93 ////////////////////////////////////////////// 97 ////////////////////////////////////////////////////////////////////////// 94 // 98 // 95 // Destructor (virtual) 99 // Destructor (virtual) 96 // - Remove ourselves from solid Store 100 // - Remove ourselves from solid Store 97 101 98 G4VSolid::~G4VSolid() 102 G4VSolid::~G4VSolid() 99 { 103 { 100 G4SolidStore::GetInstance()->DeRegister(th 104 G4SolidStore::GetInstance()->DeRegister(this); 101 } 105 } 102 106 103 ////////////////////////////////////////////// 107 ////////////////////////////////////////////////////////////////////////// 104 // 108 // 105 // Assignment operator 109 // Assignment operator 106 110 107 G4VSolid& G4VSolid::operator = (const G4VSolid << 111 G4VSolid& G4VSolid::operator = (const G4VSolid& rhs) 108 { 112 { 109 // Check assignment to self 113 // Check assignment to self 110 // 114 // 111 if (this == &rhs) { return *this; } 115 if (this == &rhs) { return *this; } 112 116 113 // Copy data 117 // Copy data 114 // 118 // 115 kCarTolerance = rhs.kCarTolerance; 119 kCarTolerance = rhs.kCarTolerance; 116 fshapeName = rhs.fshapeName; 120 fshapeName = rhs.fshapeName; 117 121 118 return *this; 122 return *this; 119 } << 123 } 120 << 121 << 122 124 123 ////////////////////////////////////////////// 125 ////////////////////////////////////////////////////////////////////////// 124 // 126 // 125 // Set solid name and notify store of the chan << 127 // Streaming operator dumping solid contents 126 128 127 void G4VSolid::SetName(const G4String& name) << 129 std::ostream& operator<< ( std::ostream& os, const G4VSolid& e ) 128 { 130 { 129 fshapeName = name; << 131 return e.StreamInfo(os); 130 G4SolidStore::GetInstance()->SetMapValid(fal << 131 } 132 } 132 133 133 ////////////////////////////////////////////// 134 ////////////////////////////////////////////////////////////////////////// 134 // 135 // 135 // Throw exception if ComputeDimensions called 136 // Throw exception if ComputeDimensions called for illegal derived class 136 137 137 void G4VSolid::ComputeDimensions(G4VPVParamete 138 void G4VSolid::ComputeDimensions(G4VPVParameterisation*, 138 const G4int, 139 const G4int, 139 const G4VPhys 140 const G4VPhysicalVolume*) 140 { 141 { 141 std::ostringstream message; << 142 G4cerr << "ERROR - Illegal call to G4VSolid::ComputeDimensions()" << G4endl 142 message << "Illegal call to G4VSolid::Comp << 143 << " Method not overloaded by derived class !" << G4endl; 143 << "Method not overloaded by deriv << 144 G4Exception("G4VSolid::ComputeDimensions()", "NotApplicable", 144 G4Exception("G4VSolid::ComputeDimensions() << 145 FatalException, "Illegal call to case class."); 145 FatalException, message); << 146 } 146 } 147 147 148 ////////////////////////////////////////////// 148 ////////////////////////////////////////////////////////////////////////// 149 // 149 // 150 // Throw exception (warning) for solids not im 150 // Throw exception (warning) for solids not implementing the method 151 151 152 G4ThreeVector G4VSolid::GetPointOnSurface() co 152 G4ThreeVector G4VSolid::GetPointOnSurface() const 153 { 153 { 154 std::ostringstream message; << 154 G4cerr << "WARNING - G4VSolid::GetPointOnSurface()" << G4endl 155 message << "Not implemented for solid: " << 155 << " Not implemented for solid: " 156 << GetEntityType() << " !" << G4en << 156 << this->GetEntityType() << " !" << G4endl; 157 << "Returning origin."; << 157 G4Exception("G4VSolid::GetPointOnSurface()", "NotImplemented", 158 G4Exception("G4VSolid::GetPointOnSurface() << 158 JustWarning, "Not implemented for this solid ! Returning origin."); 159 JustWarning, message); << 159 return G4ThreeVector(0,0,0); 160 return {0,0,0}; << 161 } << 162 << 163 ////////////////////////////////////////////// << 164 // << 165 // Returns total number of constituents that w << 166 // of the solid. For non-Boolean solids the re << 167 << 168 G4int G4VSolid::GetNumOfConstituents() const << 169 { return 1; } << 170 << 171 ////////////////////////////////////////////// << 172 // << 173 // Returns true if the solid has only planar f << 174 << 175 G4bool G4VSolid::IsFaceted() const << 176 { return false; } << 177 << 178 ////////////////////////////////////////////// << 179 // << 180 // Dummy implementations ... << 181 << 182 const G4VSolid* G4VSolid::GetConstituentSolid( << 183 { return nullptr; } << 184 << 185 G4VSolid* G4VSolid::GetConstituentSolid(G4int) << 186 { return nullptr; } << 187 << 188 const G4DisplacedSolid* G4VSolid::GetDisplaced << 189 { return nullptr; } << 190 << 191 G4DisplacedSolid* G4VSolid::GetDisplacedSolidP << 192 { return nullptr; } << 193 << 194 ////////////////////////////////////////////// << 195 // << 196 // Returns an estimation of the solid volume i << 197 // The number of statistics and error accuracy << 198 // This method may be overloaded by derived cl << 199 // exact geometrical quantity for solids where << 200 // or anyway to cache the computed value. << 201 // This implementation does NOT cache the comp << 202 << 203 G4double G4VSolid::GetCubicVolume() << 204 { << 205 G4int cubVolStatistics = 1000000; << 206 G4double cubVolEpsilon = 0.001; << 207 return EstimateCubicVolume(cubVolStatistics, << 208 } << 209 << 210 ////////////////////////////////////////////// << 211 // << 212 // Calculate cubic volume based on Inside() me << 213 // Accuracy is limited by the second argument << 214 // expressed by the first argument. << 215 // Implementation is courtesy of Vasiliki Desp << 216 // University of Athens. << 217 << 218 G4double G4VSolid::EstimateCubicVolume(G4int n << 219 { << 220 G4int iInside=0; << 221 G4double px,py,pz,minX,maxX,minY,maxY,minZ,m << 222 G4ThreeVector p; << 223 EInside in; << 224 << 225 // values needed for CalculateExtent signatu << 226 << 227 G4VoxelLimits limit; // Unlim << 228 G4AffineTransform origin; << 229 << 230 // min max extents of pSolid along X,Y,Z << 231 << 232 CalculateExtent(kXAxis,limit,origin,minX,max << 233 CalculateExtent(kYAxis,limit,origin,minY,max << 234 CalculateExtent(kZAxis,limit,origin,minZ,max << 235 << 236 // limits << 237 << 238 if(nStat < 100) nStat = 100; << 239 if(epsilon > 0.01) epsilon = 0.01; << 240 halfepsilon = 0.5*epsilon; << 241 << 242 for(auto i = 0; i < nStat; ++i ) << 243 { << 244 px = minX-halfepsilon+(maxX-minX+epsilon)* << 245 py = minY-halfepsilon+(maxY-minY+epsilon)* << 246 pz = minZ-halfepsilon+(maxZ-minZ+epsilon)* << 247 p = G4ThreeVector(px,py,pz); << 248 in = Inside(p); << 249 if(in != kOutside) ++iInside; << 250 } << 251 volume = (maxX-minX+epsilon)*(maxY-minY+epsi << 252 * (maxZ-minZ+epsilon)*iInside/nStat; << 253 return volume; << 254 } << 255 << 256 ////////////////////////////////////////////// << 257 // << 258 // Returns an estimation of the solid surface << 259 // The number of statistics and error accuracy << 260 // This method may be overloaded by derived cl << 261 // exact geometrical quantity for solids where << 262 // or anyway to cache the computed value. << 263 // This implementation does NOT cache the comp << 264 << 265 G4double G4VSolid::GetSurfaceArea() << 266 { << 267 G4int stat = 1000000; << 268 G4double ell = -1.; << 269 return EstimateSurfaceArea(stat,ell); << 270 } << 271 << 272 ////////////////////////////////////////////// << 273 // << 274 // Calculate surface area by estimating volume << 275 // surrounding the surface using Monte-Carlo m << 276 // Input parameters: << 277 // nstat - statistics (number of random poi << 278 // eps - shell thinkness << 279 << 280 G4double G4VSolid::EstimateSurfaceArea(G4int n << 281 { << 282 static const G4double s2 = 1./std::sqrt(2.); << 283 static const G4double s3 = 1./std::sqrt(3.); << 284 static const G4ThreeVector directions[64] = << 285 { << 286 G4ThreeVector( 0, 0, 0), G4ThreeVector( << 287 G4ThreeVector( 1, 0, 0), G4ThreeVector( << 288 G4ThreeVector( 0, -1, 0), G4ThreeVector( << 289 G4ThreeVector( s2, -s2, 0), G4ThreeVector( << 290 << 291 G4ThreeVector( 0, 1, 0), G4ThreeVector( << 292 G4ThreeVector( s2, s2, 0), G4ThreeVector( << 293 G4ThreeVector( 0, -1, 0), G4ThreeVector( << 294 G4ThreeVector( 1, 0, 0), G4ThreeVector( << 295 << 296 G4ThreeVector( 0, 0, -1), G4ThreeVector( << 297 G4ThreeVector( s2, 0,-s2), G4ThreeVector( << 298 G4ThreeVector( 0,-s2,-s2), G4ThreeVector( << 299 G4ThreeVector( s3,-s3,-s3), G4ThreeVector( << 300 << 301 G4ThreeVector( 0, s2,-s2), G4ThreeVector( << 302 G4ThreeVector( s3, s3,-s3), G4ThreeVector( << 303 G4ThreeVector( 0, 0, -1), G4ThreeVector( << 304 G4ThreeVector( s2, 0,-s2), G4ThreeVector( << 305 << 306 G4ThreeVector( 0, 0, 1), G4ThreeVector( << 307 G4ThreeVector( s2, 0, s2), G4ThreeVector( << 308 G4ThreeVector( 0,-s2, s2), G4ThreeVector( << 309 G4ThreeVector( s3,-s3, s3), G4ThreeVector( << 310 << 311 G4ThreeVector( 0, s2, s2), G4ThreeVector( << 312 G4ThreeVector( s3, s3, s3), G4ThreeVector( << 313 G4ThreeVector( 0, 0, 1), G4ThreeVector( << 314 G4ThreeVector( s2, 0, s2), G4ThreeVector( << 315 << 316 G4ThreeVector( 0, 0, -1), G4ThreeVector( << 317 G4ThreeVector( 1, 0, 0), G4ThreeVector( << 318 G4ThreeVector( 0, -1, 0), G4ThreeVector( << 319 G4ThreeVector( s2, -s2, 0), G4ThreeVector( << 320 << 321 G4ThreeVector( 0, 1, 0), G4ThreeVector( << 322 G4ThreeVector( s2, s2, 0), G4ThreeVector( << 323 G4ThreeVector( 0, -1, 0), G4ThreeVector( << 324 G4ThreeVector( 1, 0, 0), G4ThreeVector( << 325 }; << 326 << 327 G4ThreeVector bmin, bmax; << 328 BoundingLimits(bmin, bmax); << 329 << 330 G4double dX = bmax.x() - bmin.x(); << 331 G4double dY = bmax.y() - bmin.y(); << 332 G4double dZ = bmax.z() - bmin.z(); << 333 << 334 // Define statistics and shell thickness << 335 // << 336 G4int npoints = (nstat < 1000) ? 1000 : nsta << 337 G4double coeff = 0.5 / std::cbrt(G4double(np << 338 G4double eps = (ell > 0) ? ell : coeff * std << 339 G4double del = 1.8 * eps; // shold be more t << 340 << 341 G4double minX = bmin.x() - eps; << 342 G4double minY = bmin.y() - eps; << 343 G4double minZ = bmin.z() - eps; << 344 << 345 G4double dd = 2. * eps; << 346 dX += dd; << 347 dY += dd; << 348 dZ += dd; << 349 << 350 // Calculate surface area << 351 // << 352 G4int icount = 0; << 353 for(auto i = 0; i < npoints; ++i) << 354 { << 355 G4double px = minX + dX*G4QuickRand(); << 356 G4double py = minY + dY*G4QuickRand(); << 357 G4double pz = minZ + dZ*G4QuickRand(); << 358 G4ThreeVector p = G4ThreeVector(px, py, p << 359 EInside in = Inside(p); << 360 G4double dist = 0; << 361 if (in == kInside) << 362 { << 363 if (DistanceToOut(p) >= eps) continue; << 364 G4int icase = 0; << 365 if (Inside(G4ThreeVector(px-del, py, pz) << 366 if (Inside(G4ThreeVector(px+del, py, pz) << 367 if (Inside(G4ThreeVector(px, py-del, pz) << 368 if (Inside(G4ThreeVector(px, py+del, pz) << 369 if (Inside(G4ThreeVector(px, py, pz-del) << 370 if (Inside(G4ThreeVector(px, py, pz+del) << 371 if (icase == 0) continue; << 372 G4ThreeVector v = directions[icase]; << 373 dist = DistanceToOut(p, v); << 374 G4ThreeVector n = SurfaceNormal(p + v*di << 375 dist *= v.dot(n); << 376 } << 377 else if (in == kOutside) << 378 { << 379 if (DistanceToIn(p) >= eps) continue; << 380 G4int icase = 0; << 381 if (Inside(G4ThreeVector(px-del, py, pz) << 382 if (Inside(G4ThreeVector(px+del, py, pz) << 383 if (Inside(G4ThreeVector(px, py-del, pz) << 384 if (Inside(G4ThreeVector(px, py+del, pz) << 385 if (Inside(G4ThreeVector(px, py, pz-del) << 386 if (Inside(G4ThreeVector(px, py, pz+del) << 387 if (icase == 0) continue; << 388 G4ThreeVector v = directions[icase]; << 389 dist = DistanceToIn(p, v); << 390 if (dist == kInfinity) continue; << 391 G4ThreeVector n = SurfaceNormal(p + v*di << 392 dist *= -(v.dot(n)); << 393 } << 394 if (dist < eps) ++icount; << 395 } << 396 return dX*dY*dZ*icount/npoints/dd; << 397 } << 398 << 399 ////////////////////////////////////////////// << 400 // << 401 // Returns a pointer of a dynamically allocate << 402 // Returns NULL pointer with warning in case t << 403 // implement this method. The caller has respo << 404 // << 405 << 406 G4VSolid* G4VSolid::Clone() const << 407 { << 408 std::ostringstream message; << 409 message << "Clone() method not implemented f << 410 << GetEntityType() << "!" << G4endl << 411 << "Returning NULL pointer!"; << 412 G4Exception("G4VSolid::Clone()", "GeomMgt100 << 413 return nullptr; << 414 } 160 } 415 161 416 ////////////////////////////////////////////// 162 /////////////////////////////////////////////////////////////////////////// 417 // << 163 // 418 // Calculate the maximum and minimum extents o 164 // Calculate the maximum and minimum extents of the polygon described 419 // by the vertices: pSectionIndex->pSectionInd 165 // by the vertices: pSectionIndex->pSectionIndex+1-> 420 // pSectionIndex+2->pSection 166 // pSectionIndex+2->pSectionIndex+3->pSectionIndex 421 // in the List pVertices 167 // in the List pVertices 422 // 168 // 423 // If the minimum is <pMin pMin is set to the 169 // If the minimum is <pMin pMin is set to the new minimum 424 // If the maximum is >pMax pMax is set to the 170 // If the maximum is >pMax pMax is set to the new maximum 425 // 171 // 426 // No modifications are made to pVertices 172 // No modifications are made to pVertices 427 // 173 // 428 174 429 void G4VSolid::ClipCrossSection( G4Three 175 void G4VSolid::ClipCrossSection( G4ThreeVectorList* pVertices, 430 const G4int p 176 const G4int pSectionIndex, 431 const G4Voxel 177 const G4VoxelLimits& pVoxelLimit, 432 const EAxis p << 178 const EAxis pAxis, 433 G4doubl 179 G4double& pMin, G4double& pMax) const 434 { 180 { 435 181 436 G4ThreeVectorList polygon; 182 G4ThreeVectorList polygon; 437 polygon.reserve(4); 183 polygon.reserve(4); 438 polygon.push_back((*pVertices)[pSectionIndex 184 polygon.push_back((*pVertices)[pSectionIndex]); 439 polygon.push_back((*pVertices)[pSectionIndex 185 polygon.push_back((*pVertices)[pSectionIndex+1]); 440 polygon.push_back((*pVertices)[pSectionIndex 186 polygon.push_back((*pVertices)[pSectionIndex+2]); 441 polygon.push_back((*pVertices)[pSectionIndex 187 polygon.push_back((*pVertices)[pSectionIndex+3]); >> 188 // G4cout<<"ClipCrossSection: 0-1-2-3"<<G4endl; 442 CalculateClippedPolygonExtent(polygon,pVoxel 189 CalculateClippedPolygonExtent(polygon,pVoxelLimit,pAxis,pMin,pMax); 443 return; 190 return; 444 } 191 } 445 192 446 ////////////////////////////////////////////// 193 ////////////////////////////////////////////////////////////////////////////////// 447 // 194 // 448 // Calculate the maximum and minimum extents o 195 // Calculate the maximum and minimum extents of the polygons 449 // joining the CrossSections at pSectionIndex- 196 // joining the CrossSections at pSectionIndex->pSectionIndex+3 and 450 // pSectionIndex+ 197 // pSectionIndex+4->pSectionIndex7 451 // 198 // 452 // in the List pVertices, within the boundarie 199 // in the List pVertices, within the boundaries of the voxel limits pVoxelLimit 453 // 200 // 454 // If the minimum is <pMin pMin is set to the 201 // If the minimum is <pMin pMin is set to the new minimum 455 // If the maximum is >pMax pMax is set to the 202 // If the maximum is >pMax pMax is set to the new maximum 456 // 203 // 457 // No modifications are made to pVertices 204 // No modifications are made to pVertices 458 205 459 void G4VSolid::ClipBetweenSections( G4Thr 206 void G4VSolid::ClipBetweenSections( G4ThreeVectorList* pVertices, 460 const G4int 207 const G4int pSectionIndex, 461 const G4Vox 208 const G4VoxelLimits& pVoxelLimit, 462 const EAxis << 209 const EAxis pAxis, 463 G4dou 210 G4double& pMin, G4double& pMax) const 464 { 211 { 465 G4ThreeVectorList polygon; 212 G4ThreeVectorList polygon; 466 polygon.reserve(4); 213 polygon.reserve(4); 467 polygon.push_back((*pVertices)[pSectionIndex 214 polygon.push_back((*pVertices)[pSectionIndex]); 468 polygon.push_back((*pVertices)[pSectionIndex 215 polygon.push_back((*pVertices)[pSectionIndex+4]); 469 polygon.push_back((*pVertices)[pSectionIndex 216 polygon.push_back((*pVertices)[pSectionIndex+5]); 470 polygon.push_back((*pVertices)[pSectionIndex 217 polygon.push_back((*pVertices)[pSectionIndex+1]); >> 218 // G4cout<<"ClipBetweenSections: 0-4-5-1"<<G4endl; 471 CalculateClippedPolygonExtent(polygon,pVoxel 219 CalculateClippedPolygonExtent(polygon,pVoxelLimit,pAxis,pMin,pMax); 472 polygon.clear(); 220 polygon.clear(); 473 221 474 polygon.push_back((*pVertices)[pSectionIndex 222 polygon.push_back((*pVertices)[pSectionIndex+1]); 475 polygon.push_back((*pVertices)[pSectionIndex 223 polygon.push_back((*pVertices)[pSectionIndex+5]); 476 polygon.push_back((*pVertices)[pSectionIndex 224 polygon.push_back((*pVertices)[pSectionIndex+6]); 477 polygon.push_back((*pVertices)[pSectionIndex 225 polygon.push_back((*pVertices)[pSectionIndex+2]); >> 226 // G4cout<<"ClipBetweenSections: 1-5-6-2"<<G4endl; 478 CalculateClippedPolygonExtent(polygon,pVoxel 227 CalculateClippedPolygonExtent(polygon,pVoxelLimit,pAxis,pMin,pMax); 479 polygon.clear(); 228 polygon.clear(); 480 229 481 polygon.push_back((*pVertices)[pSectionIndex 230 polygon.push_back((*pVertices)[pSectionIndex+2]); 482 polygon.push_back((*pVertices)[pSectionIndex 231 polygon.push_back((*pVertices)[pSectionIndex+6]); 483 polygon.push_back((*pVertices)[pSectionIndex 232 polygon.push_back((*pVertices)[pSectionIndex+7]); 484 polygon.push_back((*pVertices)[pSectionIndex 233 polygon.push_back((*pVertices)[pSectionIndex+3]); >> 234 // G4cout<<"ClipBetweenSections: 2-6-7-3"<<G4endl; 485 CalculateClippedPolygonExtent(polygon,pVoxel 235 CalculateClippedPolygonExtent(polygon,pVoxelLimit,pAxis,pMin,pMax); 486 polygon.clear(); 236 polygon.clear(); 487 237 488 polygon.push_back((*pVertices)[pSectionIndex 238 polygon.push_back((*pVertices)[pSectionIndex+3]); 489 polygon.push_back((*pVertices)[pSectionIndex 239 polygon.push_back((*pVertices)[pSectionIndex+7]); 490 polygon.push_back((*pVertices)[pSectionIndex 240 polygon.push_back((*pVertices)[pSectionIndex+4]); 491 polygon.push_back((*pVertices)[pSectionIndex 241 polygon.push_back((*pVertices)[pSectionIndex]); >> 242 // G4cout<<"ClipBetweenSections: 3-7-4-0"<<G4endl; 492 CalculateClippedPolygonExtent(polygon,pVoxel 243 CalculateClippedPolygonExtent(polygon,pVoxelLimit,pAxis,pMin,pMax); 493 return; 244 return; 494 } 245 } 495 246 496 247 497 ////////////////////////////////////////////// 248 /////////////////////////////////////////////////////////////////////////////// 498 // 249 // 499 // Calculate the maximum and minimum extents o 250 // Calculate the maximum and minimum extents of the convex polygon pPolygon 500 // along the axis pAxis, within the limits pVo 251 // along the axis pAxis, within the limits pVoxelLimit 501 // 252 // 502 253 503 void 254 void 504 G4VSolid::CalculateClippedPolygonExtent(G4Thre 255 G4VSolid::CalculateClippedPolygonExtent(G4ThreeVectorList& pPolygon, 505 const G4Voxe 256 const G4VoxelLimits& pVoxelLimit, 506 const EAxis << 257 const EAxis pAxis, 507 G4doub 258 G4double& pMin, 508 G4doub 259 G4double& pMax) const 509 { 260 { 510 G4int noLeft,i; 261 G4int noLeft,i; 511 G4double component; 262 G4double component; 512 << 263 /* >> 264 G4cout<<G4endl; >> 265 for(i = 0 ; i < pPolygon.size() ; i++ ) >> 266 { >> 267 G4cout << i << "\t" >> 268 << "p.x = " << pPolygon[i].operator()(pAxis) << "\t" >> 269 // << "p.y = " << pPolygon[i].y() << "\t" >> 270 // << "p.z = " << pPolygon[i].z() << "\t" >> 271 << G4endl; >> 272 } >> 273 G4cout<<G4endl; >> 274 */ 513 ClipPolygon(pPolygon,pVoxelLimit,pAxis); 275 ClipPolygon(pPolygon,pVoxelLimit,pAxis); 514 noLeft = (G4int)pPolygon.size(); << 276 noLeft = pPolygon.size(); 515 277 516 if ( noLeft != 0 ) << 278 if ( noLeft ) 517 { 279 { 518 for (i=0; i<noLeft; ++i) << 280 // G4cout<<G4endl; >> 281 for (i=0;i<noLeft;i++) 519 { 282 { 520 component = pPolygon[i].operator()(pAxis 283 component = pPolygon[i].operator()(pAxis); 521 << 284 // G4cout <<i<<"\t"<<component<<G4endl; 522 if (component < pMin) << 285 523 { << 286 if (component < pMin) 524 pMin = component; << 287 { >> 288 // G4cout <<i<<"\t"<<"Pmin = "<<component<<G4endl; >> 289 pMin = component; 525 } 290 } 526 if (component > pMax) 291 if (component > pMax) 527 { << 292 { 528 pMax = component; << 293 // G4cout <<i<<"\t"<<"PMax = "<<component<<G4endl; 529 } << 294 pMax = component; >> 295 } 530 } 296 } >> 297 // G4cout<<G4endl; 531 } 298 } >> 299 // G4cout<<"pMin = "<<pMin<<"\t"<<"pMax = "<<pMax<<G4endl; 532 } 300 } 533 301 534 ////////////////////////////////////////////// 302 ///////////////////////////////////////////////////////////////////////////// 535 // 303 // 536 // Clip the convex polygon described by the ve 304 // Clip the convex polygon described by the vertices at 537 // pSectionIndex ->pSectionIndex+3 within pVer 305 // pSectionIndex ->pSectionIndex+3 within pVertices to the limits pVoxelLimit 538 // 306 // 539 // Set pMin to the smallest 307 // Set pMin to the smallest 540 // 308 // 541 // Calculate the extent of the polygon along p 309 // Calculate the extent of the polygon along pAxis, when clipped to the 542 // limits pVoxelLimit. If the polygon exists a 310 // limits pVoxelLimit. If the polygon exists after clippin, set pMin to 543 // the polygon's minimum extent along the axis 311 // the polygon's minimum extent along the axis if <pMin, and set pMax to 544 // the polygon's maximum extent along the axis 312 // the polygon's maximum extent along the axis if >pMax. 545 // 313 // 546 // The polygon is described by a set of vector 314 // The polygon is described by a set of vectors, where each vector represents 547 // a vertex, so that the polygon is described 315 // a vertex, so that the polygon is described by the vertex sequence: 548 // 0th->1st 1st->2nd 2nd->... nth->0th 316 // 0th->1st 1st->2nd 2nd->... nth->0th 549 // 317 // 550 // Modifications to the polygon are made 318 // Modifications to the polygon are made 551 // 319 // 552 // NOTE: Execessive copying during clipping 320 // NOTE: Execessive copying during clipping 553 321 554 void G4VSolid::ClipPolygon( G4ThreeVector 322 void G4VSolid::ClipPolygon( G4ThreeVectorList& pPolygon, 555 const G4VoxelLimits 323 const G4VoxelLimits& pVoxelLimit, 556 const EAxis 324 const EAxis ) const 557 { 325 { 558 G4ThreeVectorList outputPolygon; 326 G4ThreeVectorList outputPolygon; 559 327 560 if ( pVoxelLimit.IsLimited() ) 328 if ( pVoxelLimit.IsLimited() ) 561 { 329 { 562 if (pVoxelLimit.IsXLimited() ) // && pAxis 330 if (pVoxelLimit.IsXLimited() ) // && pAxis != kXAxis) 563 { 331 { 564 G4VoxelLimits simpleLimit1; 332 G4VoxelLimits simpleLimit1; 565 simpleLimit1.AddLimit(kXAxis,pVoxelLimit 333 simpleLimit1.AddLimit(kXAxis,pVoxelLimit.GetMinXExtent(),kInfinity); >> 334 // G4cout<<"MinXExtent()"<<G4endl; 566 ClipPolygonToSimpleLimits(pPolygon,outpu 335 ClipPolygonToSimpleLimits(pPolygon,outputPolygon,simpleLimit1); 567 << 336 568 pPolygon.clear(); 337 pPolygon.clear(); 569 338 570 if ( outputPolygon.empty() ) return; << 339 if ( !outputPolygon.size() ) return; 571 340 572 G4VoxelLimits simpleLimit2; 341 G4VoxelLimits simpleLimit2; >> 342 // G4cout<<"MaxXExtent()"<<G4endl; 573 simpleLimit2.AddLimit(kXAxis,-kInfinity, 343 simpleLimit2.AddLimit(kXAxis,-kInfinity,pVoxelLimit.GetMaxXExtent()); 574 ClipPolygonToSimpleLimits(outputPolygon, 344 ClipPolygonToSimpleLimits(outputPolygon,pPolygon,simpleLimit2); 575 345 576 if ( pPolygon.empty() ) return; << 346 if ( !pPolygon.size() ) return; 577 else outputPoly 347 else outputPolygon.clear(); 578 } 348 } 579 if ( pVoxelLimit.IsYLimited() ) // && pAxi 349 if ( pVoxelLimit.IsYLimited() ) // && pAxis != kYAxis) 580 { 350 { 581 G4VoxelLimits simpleLimit1; 351 G4VoxelLimits simpleLimit1; 582 simpleLimit1.AddLimit(kYAxis,pVoxelLimit 352 simpleLimit1.AddLimit(kYAxis,pVoxelLimit.GetMinYExtent(),kInfinity); 583 ClipPolygonToSimpleLimits(pPolygon,outpu 353 ClipPolygonToSimpleLimits(pPolygon,outputPolygon,simpleLimit1); 584 354 585 // Must always clear pPolygon - for clip 355 // Must always clear pPolygon - for clip to simpleLimit2 and in case of 586 // early exit 356 // early exit 587 357 588 pPolygon.clear(); 358 pPolygon.clear(); 589 359 590 if ( outputPolygon.empty() ) return; << 360 if ( !outputPolygon.size() ) return; 591 361 592 G4VoxelLimits simpleLimit2; 362 G4VoxelLimits simpleLimit2; 593 simpleLimit2.AddLimit(kYAxis,-kInfinity, 363 simpleLimit2.AddLimit(kYAxis,-kInfinity,pVoxelLimit.GetMaxYExtent()); 594 ClipPolygonToSimpleLimits(outputPolygon, 364 ClipPolygonToSimpleLimits(outputPolygon,pPolygon,simpleLimit2); 595 365 596 if ( pPolygon.empty() ) return; << 366 if ( !pPolygon.size() ) return; 597 else outputPoly 367 else outputPolygon.clear(); 598 } 368 } 599 if ( pVoxelLimit.IsZLimited() ) // && pAxi 369 if ( pVoxelLimit.IsZLimited() ) // && pAxis != kZAxis) 600 { 370 { 601 G4VoxelLimits simpleLimit1; 371 G4VoxelLimits simpleLimit1; 602 simpleLimit1.AddLimit(kZAxis,pVoxelLimit 372 simpleLimit1.AddLimit(kZAxis,pVoxelLimit.GetMinZExtent(),kInfinity); 603 ClipPolygonToSimpleLimits(pPolygon,outpu 373 ClipPolygonToSimpleLimits(pPolygon,outputPolygon,simpleLimit1); 604 374 605 // Must always clear pPolygon - for clip 375 // Must always clear pPolygon - for clip to simpleLimit2 and in case of 606 // early exit 376 // early exit 607 377 608 pPolygon.clear(); 378 pPolygon.clear(); 609 379 610 if ( outputPolygon.empty() ) return; << 380 if ( !outputPolygon.size() ) return; 611 381 612 G4VoxelLimits simpleLimit2; 382 G4VoxelLimits simpleLimit2; 613 simpleLimit2.AddLimit(kZAxis,-kInfinity, 383 simpleLimit2.AddLimit(kZAxis,-kInfinity,pVoxelLimit.GetMaxZExtent()); 614 ClipPolygonToSimpleLimits(outputPolygon, 384 ClipPolygonToSimpleLimits(outputPolygon,pPolygon,simpleLimit2); 615 385 616 // Return after final clip - no cleanup 386 // Return after final clip - no cleanup 617 } 387 } 618 } 388 } 619 } 389 } 620 390 621 ////////////////////////////////////////////// 391 //////////////////////////////////////////////////////////////////////////// 622 // 392 // 623 // pVoxelLimits must be only limited along one 393 // pVoxelLimits must be only limited along one axis, and either the maximum 624 // along the axis must be +kInfinity, or the m 394 // along the axis must be +kInfinity, or the minimum -kInfinity 625 395 626 void 396 void 627 G4VSolid::ClipPolygonToSimpleLimits( G4ThreeVe 397 G4VSolid::ClipPolygonToSimpleLimits( G4ThreeVectorList& pPolygon, 628 G4ThreeVe 398 G4ThreeVectorList& outputPolygon, 629 const G4VoxelLi 399 const G4VoxelLimits& pVoxelLimit ) const 630 { 400 { 631 G4int i; 401 G4int i; 632 auto noVertices = (G4int)pPolygon.size(); << 402 G4int noVertices=pPolygon.size(); 633 G4ThreeVector vEnd,vStart; 403 G4ThreeVector vEnd,vStart; 634 404 635 for (i = 0 ; i < noVertices ; ++i ) << 405 for (i = 0 ; i < noVertices ; i++ ) 636 { 406 { 637 vStart = pPolygon[i]; 407 vStart = pPolygon[i]; >> 408 // G4cout << "i = " << i << G4endl; 638 if ( i == noVertices-1 ) vEnd = pPolygo 409 if ( i == noVertices-1 ) vEnd = pPolygon[0]; 639 else vEnd = pPolygo 410 else vEnd = pPolygon[i+1]; 640 411 641 if ( pVoxelLimit.Inside(vStart) ) 412 if ( pVoxelLimit.Inside(vStart) ) 642 { 413 { 643 if (pVoxelLimit.Inside(vEnd)) 414 if (pVoxelLimit.Inside(vEnd)) 644 { 415 { 645 // vStart and vEnd inside -> output en 416 // vStart and vEnd inside -> output end point 646 // 417 // 647 outputPolygon.push_back(vEnd); 418 outputPolygon.push_back(vEnd); 648 } 419 } 649 else 420 else 650 { 421 { 651 // vStart inside, vEnd outside -> outp 422 // vStart inside, vEnd outside -> output crossing point 652 // 423 // >> 424 // G4cout << "vStart inside, vEnd outside" << G4endl; 653 pVoxelLimit.ClipToLimits(vStart,vEnd); 425 pVoxelLimit.ClipToLimits(vStart,vEnd); 654 outputPolygon.push_back(vEnd); 426 outputPolygon.push_back(vEnd); 655 } << 427 } 656 } 428 } 657 else 429 else 658 { 430 { 659 if (pVoxelLimit.Inside(vEnd)) 431 if (pVoxelLimit.Inside(vEnd)) 660 { 432 { 661 // vStart outside, vEnd inside -> outp 433 // vStart outside, vEnd inside -> output inside section 662 // 434 // >> 435 // G4cout << "vStart outside, vEnd inside" << G4endl; 663 pVoxelLimit.ClipToLimits(vStart,vEnd); 436 pVoxelLimit.ClipToLimits(vStart,vEnd); 664 outputPolygon.push_back(vStart); 437 outputPolygon.push_back(vStart); 665 outputPolygon.push_back(vEnd); << 438 outputPolygon.push_back(vEnd); 666 } 439 } 667 else // Both point outside -> no output 440 else // Both point outside -> no output 668 { 441 { 669 // outputPolygon.push_back(vStart); 442 // outputPolygon.push_back(vStart); 670 // outputPolygon.push_back(vEnd); << 443 // outputPolygon.push_back(vEnd); 671 } 444 } 672 } 445 } 673 } 446 } 674 } 447 } 675 448 676 ////////////////////////////////////////////// << 449 const G4VSolid* G4VSolid::GetConstituentSolid(G4int) const 677 // << 450 { return 0; } 678 // Throw exception (warning) for solids not im << 679 451 680 void G4VSolid::BoundingLimits(G4ThreeVector& p << 452 G4VSolid* G4VSolid::GetConstituentSolid(G4int) 681 { << 453 { return 0; } 682 std::ostringstream message; << 683 message << "Not implemented for solid: " << 684 << GetEntityType() << " !" << 685 << "\nReturning infinite boundinx bo << 686 G4Exception("G4VSolid::BoundingLimits()", "G << 687 JustWarning, message); << 688 454 689 pMin.set(-kInfinity,-kInfinity,-kInfinity); << 455 const G4DisplacedSolid* G4VSolid::GetDisplacedSolidPtr() const 690 pMax.set( kInfinity, kInfinity, kInfinity); << 456 { return 0; } 691 } << 692 457 693 ////////////////////////////////////////////// << 458 G4DisplacedSolid* G4VSolid::GetDisplacedSolidPtr() 694 // << 459 { return 0; } 695 // Get G4VisExtent - bounding box for graphics << 696 460 697 G4VisExtent G4VSolid::GetExtent () const << 461 G4VisExtent G4VSolid::GetExtent () const 698 { 462 { 699 G4VisExtent extent; 463 G4VisExtent extent; 700 G4VoxelLimits voxelLimits; // Defaults to " 464 G4VoxelLimits voxelLimits; // Defaults to "infinite" limits. 701 G4AffineTransform affineTransform; 465 G4AffineTransform affineTransform; 702 G4double vmin, vmax; 466 G4double vmin, vmax; 703 CalculateExtent(kXAxis,voxelLimits,affineTra 467 CalculateExtent(kXAxis,voxelLimits,affineTransform,vmin,vmax); 704 extent.SetXmin (vmin); 468 extent.SetXmin (vmin); 705 extent.SetXmax (vmax); 469 extent.SetXmax (vmax); 706 CalculateExtent(kYAxis,voxelLimits,affineTra 470 CalculateExtent(kYAxis,voxelLimits,affineTransform,vmin,vmax); 707 extent.SetYmin (vmin); 471 extent.SetYmin (vmin); 708 extent.SetYmax (vmax); 472 extent.SetYmax (vmax); 709 CalculateExtent(kZAxis,voxelLimits,affineTra 473 CalculateExtent(kZAxis,voxelLimits,affineTransform,vmin,vmax); 710 extent.SetZmin (vmin); 474 extent.SetZmin (vmin); 711 extent.SetZmax (vmax); 475 extent.SetZmax (vmax); 712 return extent; 476 return extent; 713 } 477 } 714 478 715 G4Polyhedron* G4VSolid::CreatePolyhedron () co 479 G4Polyhedron* G4VSolid::CreatePolyhedron () const 716 { 480 { 717 return nullptr; << 481 return 0; >> 482 } >> 483 >> 484 G4NURBS* G4VSolid::CreateNURBS () const >> 485 { >> 486 return 0; 718 } 487 } 719 488 720 G4Polyhedron* G4VSolid::GetPolyhedron () const 489 G4Polyhedron* G4VSolid::GetPolyhedron () const 721 { 490 { 722 return nullptr; << 491 return 0; >> 492 } >> 493 >> 494 //////////////////////////////////////////////////////////////// >> 495 // >> 496 // Returns an estimation of the solid volume in internal units. >> 497 // The number of statistics and error accuracy is fixed. >> 498 // This method may be overloaded by derived classes to compute the >> 499 // exact geometrical quantity for solids where this is possible. >> 500 // or anyway to cache the computed value. >> 501 // This implementation does NOT cache the computed value. >> 502 >> 503 G4double G4VSolid::GetCubicVolume() >> 504 { >> 505 G4int cubVolStatistics = 1000000; >> 506 G4double cubVolEpsilon = 0.001; >> 507 return EstimateCubicVolume(cubVolStatistics, cubVolEpsilon); >> 508 } >> 509 >> 510 //////////////////////////////////////////////////////////////// >> 511 // >> 512 // Calculate cubic volume based on Inside() method. >> 513 // Accuracy is limited by the second argument or the statistics >> 514 // expressed by the first argument. >> 515 // Implementation is courtesy of Vasiliki Despoina Mitsou, >> 516 // University of Athens. >> 517 >> 518 G4double G4VSolid::EstimateCubicVolume(G4int nStat, G4double epsilon) const >> 519 { >> 520 G4int iInside=0; >> 521 G4double px,py,pz,minX,maxX,minY,maxY,minZ,maxZ,volume; >> 522 G4bool yesno; >> 523 G4ThreeVector p; >> 524 EInside in; >> 525 >> 526 // values needed for CalculateExtent signature >> 527 >> 528 G4VoxelLimits limit; // Unlimited >> 529 G4AffineTransform origin; >> 530 >> 531 // min max extents of pSolid along X,Y,Z >> 532 >> 533 yesno = this->CalculateExtent(kXAxis,limit,origin,minX,maxX); >> 534 yesno = this->CalculateExtent(kYAxis,limit,origin,minY,maxY); >> 535 yesno = this->CalculateExtent(kZAxis,limit,origin,minZ,maxZ); >> 536 >> 537 // limits >> 538 >> 539 if(nStat < 100) nStat = 100; >> 540 if(epsilon > 0.01) epsilon = 0.01; >> 541 >> 542 for(G4int i = 0; i < nStat; i++ ) >> 543 { >> 544 px = minX+(maxX-minX)*G4UniformRand(); >> 545 py = minY+(maxY-minY)*G4UniformRand(); >> 546 pz = minZ+(maxZ-minZ)*G4UniformRand(); >> 547 p = G4ThreeVector(px,py,pz); >> 548 in = this->Inside(p); >> 549 if(in != kOutside) iInside++; >> 550 } >> 551 volume = (maxX-minX)*(maxY-minY)*(maxZ-minZ)*iInside/nStat; >> 552 return volume; >> 553 } >> 554 >> 555 //////////////////////////////////////////////////////////////// >> 556 // >> 557 // Returns an estimation of the solid surface area in internal units. >> 558 // The number of statistics and error accuracy is fixed. >> 559 // This method may be overloaded by derived classes to compute the >> 560 // exact geometrical quantity for solids where this is possible. >> 561 // or anyway to cache the computed value. >> 562 // This implementation does NOT cache the computed value. >> 563 >> 564 G4double G4VSolid::GetSurfaceArea() >> 565 { >> 566 G4int stat = 1000000; >> 567 G4double ell = -1.; >> 568 return EstimateSurfaceArea(stat,ell); >> 569 } >> 570 >> 571 //////////////////////////////////////////////////////////////// >> 572 // >> 573 // Estimate surface area based on Inside(), DistanceToIn(), and >> 574 // DistanceToOut() methods. Accuracy is limited by the statistics >> 575 // defined by the first argument. Implemented by Mikhail Kosov. >> 576 >> 577 G4double G4VSolid::EstimateSurfaceArea(G4int nStat, G4double ell) const >> 578 { >> 579 G4int inside=0; >> 580 G4double px,py,pz,minX,maxX,minY,maxY,minZ,maxZ,surf; >> 581 G4bool yesno; >> 582 G4ThreeVector p; >> 583 EInside in; >> 584 >> 585 // values needed for CalculateExtent signature >> 586 >> 587 G4VoxelLimits limit; // Unlimited >> 588 G4AffineTransform origin; >> 589 >> 590 // min max extents of pSolid along X,Y,Z >> 591 >> 592 yesno = this->CalculateExtent(kXAxis,limit,origin,minX,maxX); >> 593 yesno = this->CalculateExtent(kYAxis,limit,origin,minY,maxY); >> 594 yesno = this->CalculateExtent(kZAxis,limit,origin,minZ,maxZ); >> 595 >> 596 // limits >> 597 >> 598 if(nStat < 100) { nStat = 100; } >> 599 >> 600 G4double dX=maxX-minX; >> 601 G4double dY=maxY-minY; >> 602 G4double dZ=maxZ-minZ; >> 603 if(ell<=0.) // Automatic definition of skin thickness >> 604 { >> 605 G4double minval=dX; >> 606 if(dY<dX) { minval=dY; } >> 607 if(dZ<minval) { minval=dZ; } >> 608 ell=.01*minval; >> 609 } >> 610 >> 611 G4double dd=2*ell; >> 612 minX-=ell; minY-=ell; minZ-=ell; dX+=dd; dY+=dd; dZ+=dd; >> 613 >> 614 for(G4int i = 0; i < nStat; i++ ) >> 615 { >> 616 px = minX+dX*G4UniformRand(); >> 617 py = minY+dY*G4UniformRand(); >> 618 pz = minZ+dZ*G4UniformRand(); >> 619 p = G4ThreeVector(px,py,pz); >> 620 in = this->Inside(p); >> 621 if(in != kOutside) >> 622 { >> 623 if (DistanceToOut(p)<ell) { inside++; } >> 624 } >> 625 else if(DistanceToIn(p)<ell) { inside++; } >> 626 } >> 627 // @@ The conformal correction can be upgraded >> 628 surf = dX*dY*dZ*inside/dd/nStat; >> 629 return surf; 723 } 630 } 724 631