Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4VSolid implementation for solid base clas << 27 // 26 // 28 // 10.10.18 E.Tcherniaev, more robust Estimate << 27 // $Id: G4VSolid.cc,v 1.33 2006/10/23 08:33:40 gcosmo Exp $ 29 // 30.06.95 P.Kent, Created. << 28 // GEANT4 tag $Name: geant4-08-02-patch-01-ref $ >> 29 // >> 30 // class G4VSolid >> 31 // >> 32 // Implementation for solid base class >> 33 // >> 34 // History: >> 35 // >> 36 // 06.12.02 V.Grichine, restored original conditions in ClipPolygon() >> 37 // 10.05.02 V.Grichine, ClipPolygon(): clip only other axis and limited voxels >> 38 // 15.04.02 V.Grichine, bug fixed in ClipPolygon(): clip only one axis >> 39 // 13.03.02 V.Grichine, cosmetics of voxel limit functions >> 40 // 15.11.00 D.Williams, V.Grichine, fix in CalculateClippedPolygonExtent() >> 41 // 10.07.95 P.Kent, Added == operator, solid Store entry >> 42 // 30.06.95 P.Kent, Created. 30 // ------------------------------------------- 43 // -------------------------------------------------------------------- 31 44 32 #include "G4VSolid.hh" 45 #include "G4VSolid.hh" 33 #include "G4SolidStore.hh" 46 #include "G4SolidStore.hh" 34 #include "globals.hh" 47 #include "globals.hh" 35 #include "G4QuickRand.hh" << 48 #include "Randomize.hh" 36 #include "G4GeometryTolerance.hh" << 37 49 38 #include "G4VoxelLimits.hh" 50 #include "G4VoxelLimits.hh" 39 #include "G4AffineTransform.hh" 51 #include "G4AffineTransform.hh" 40 #include "G4VisExtent.hh" 52 #include "G4VisExtent.hh" 41 53 42 ////////////////////////////////////////////// 54 ////////////////////////////////////////////////////////////////////////// 43 // 55 // 44 // Streaming operator dumping solid contents << 45 << 46 std::ostream& operator<< ( std::ostream& os, c << 47 { << 48 return e.StreamInfo(os); << 49 } << 50 << 51 ////////////////////////////////////////////// << 52 // << 53 // Constructor 56 // Constructor 54 // - Copies name 57 // - Copies name 55 // - Add ourselves to solid Store 58 // - Add ourselves to solid Store 56 59 57 G4VSolid::G4VSolid(const G4String& name) 60 G4VSolid::G4VSolid(const G4String& name) 58 : fshapeName(name) 61 : fshapeName(name) 59 { 62 { 60 kCarTolerance = G4GeometryTolerance::GetIn << 61 << 62 // Register to store << 63 // << 64 G4SolidStore::GetInstance()->Register(this << 65 } << 66 << 67 ////////////////////////////////////////////// << 68 // << 69 // Copy constructor << 70 // << 71 << 72 G4VSolid::G4VSolid(const G4VSolid& rhs) << 73 : kCarTolerance(rhs.kCarTolerance), fshapeNa << 74 { << 75 // Register to store 63 // Register to store 76 // 64 // 77 G4SolidStore::GetInstance()->Register(this 65 G4SolidStore::GetInstance()->Register(this); 78 } 66 } 79 67 80 ////////////////////////////////////////////// 68 ////////////////////////////////////////////////////////////////////////// 81 // 69 // 82 // Fake default constructor - sets only member 70 // Fake default constructor - sets only member data and allocates memory 83 // for usage restri 71 // for usage restricted to object persistency. 84 // 72 // 85 G4VSolid::G4VSolid( __void__& ) 73 G4VSolid::G4VSolid( __void__& ) 86 : fshapeName("") 74 : fshapeName("") 87 { 75 { 88 // Register to store 76 // Register to store 89 // 77 // 90 G4SolidStore::GetInstance()->Register(this 78 G4SolidStore::GetInstance()->Register(this); 91 } 79 } 92 80 93 ////////////////////////////////////////////// 81 ////////////////////////////////////////////////////////////////////////// 94 // 82 // 95 // Destructor (virtual) 83 // Destructor (virtual) 96 // - Remove ourselves from solid Store 84 // - Remove ourselves from solid Store 97 85 98 G4VSolid::~G4VSolid() 86 G4VSolid::~G4VSolid() 99 { 87 { 100 G4SolidStore::GetInstance()->DeRegister(th 88 G4SolidStore::GetInstance()->DeRegister(this); 101 } 89 } 102 90 103 ////////////////////////////////////////////// 91 ////////////////////////////////////////////////////////////////////////// 104 // 92 // 105 // Assignment operator << 93 // Streaming operator dumping solid contents 106 << 107 G4VSolid& G4VSolid::operator = (const G4VSolid << 108 { << 109 // Check assignment to self << 110 // << 111 if (this == &rhs) { return *this; } << 112 << 113 // Copy data << 114 // << 115 kCarTolerance = rhs.kCarTolerance; << 116 fshapeName = rhs.fshapeName; << 117 << 118 return *this; << 119 } << 120 << 121 << 122 << 123 ////////////////////////////////////////////// << 124 // << 125 // Set solid name and notify store of the chan << 126 94 127 void G4VSolid::SetName(const G4String& name) << 95 std::ostream& operator<< ( std::ostream& os, const G4VSolid& e ) 128 { 96 { 129 fshapeName = name; << 97 return e.StreamInfo(os); 130 G4SolidStore::GetInstance()->SetMapValid(fal << 131 } 98 } 132 99 133 ////////////////////////////////////////////// 100 ////////////////////////////////////////////////////////////////////////// 134 // 101 // 135 // Throw exception if ComputeDimensions called 102 // Throw exception if ComputeDimensions called for illegal derived class 136 103 137 void G4VSolid::ComputeDimensions(G4VPVParamete 104 void G4VSolid::ComputeDimensions(G4VPVParameterisation*, 138 const G4int, 105 const G4int, 139 const G4VPhys 106 const G4VPhysicalVolume*) 140 { 107 { 141 std::ostringstream message; << 108 G4cerr << "ERROR - Illegal call to G4VSolid::ComputeDimensions()" << G4endl 142 message << "Illegal call to G4VSolid::Comp << 109 << " Method not overloaded by derived class !" << G4endl; 143 << "Method not overloaded by deriv << 110 G4Exception("G4VSolid::ComputeDimensions()", "NotApplicable", 144 G4Exception("G4VSolid::ComputeDimensions() << 111 FatalException, "Illegal call to case class."); 145 FatalException, message); << 146 } 112 } 147 113 148 ////////////////////////////////////////////// 114 ////////////////////////////////////////////////////////////////////////// 149 // 115 // 150 // Throw exception (warning) for solids not im 116 // Throw exception (warning) for solids not implementing the method 151 117 152 G4ThreeVector G4VSolid::GetPointOnSurface() co 118 G4ThreeVector G4VSolid::GetPointOnSurface() const 153 { 119 { 154 std::ostringstream message; << 120 G4cerr << "WARNING - G4VSolid::GetPointOnSurface()" << G4endl 155 message << "Not implemented for solid: " << 121 << " Not implemented for solid: " 156 << GetEntityType() << " !" << G4en << 122 << this->GetEntityType() << " !" << G4endl; 157 << "Returning origin."; << 123 G4Exception("G4VSolid::GetPointOnSurface()", "NotImplemented", 158 G4Exception("G4VSolid::GetPointOnSurface() << 124 JustWarning, "Not implemented for this solid ! Returning origin."); 159 JustWarning, message); << 125 return G4ThreeVector(0,0,0); 160 return {0,0,0}; << 161 } << 162 << 163 ////////////////////////////////////////////// << 164 // << 165 // Returns total number of constituents that w << 166 // of the solid. For non-Boolean solids the re << 167 << 168 G4int G4VSolid::GetNumOfConstituents() const << 169 { return 1; } << 170 << 171 ////////////////////////////////////////////// << 172 // << 173 // Returns true if the solid has only planar f << 174 << 175 G4bool G4VSolid::IsFaceted() const << 176 { return false; } << 177 << 178 ////////////////////////////////////////////// << 179 // << 180 // Dummy implementations ... << 181 << 182 const G4VSolid* G4VSolid::GetConstituentSolid( << 183 { return nullptr; } << 184 << 185 G4VSolid* G4VSolid::GetConstituentSolid(G4int) << 186 { return nullptr; } << 187 << 188 const G4DisplacedSolid* G4VSolid::GetDisplaced << 189 { return nullptr; } << 190 << 191 G4DisplacedSolid* G4VSolid::GetDisplacedSolidP << 192 { return nullptr; } << 193 << 194 ////////////////////////////////////////////// << 195 // << 196 // Returns an estimation of the solid volume i << 197 // The number of statistics and error accuracy << 198 // This method may be overloaded by derived cl << 199 // exact geometrical quantity for solids where << 200 // or anyway to cache the computed value. << 201 // This implementation does NOT cache the comp << 202 << 203 G4double G4VSolid::GetCubicVolume() << 204 { << 205 G4int cubVolStatistics = 1000000; << 206 G4double cubVolEpsilon = 0.001; << 207 return EstimateCubicVolume(cubVolStatistics, << 208 } << 209 << 210 ////////////////////////////////////////////// << 211 // << 212 // Calculate cubic volume based on Inside() me << 213 // Accuracy is limited by the second argument << 214 // expressed by the first argument. << 215 // Implementation is courtesy of Vasiliki Desp << 216 // University of Athens. << 217 << 218 G4double G4VSolid::EstimateCubicVolume(G4int n << 219 { << 220 G4int iInside=0; << 221 G4double px,py,pz,minX,maxX,minY,maxY,minZ,m << 222 G4ThreeVector p; << 223 EInside in; << 224 << 225 // values needed for CalculateExtent signatu << 226 << 227 G4VoxelLimits limit; // Unlim << 228 G4AffineTransform origin; << 229 << 230 // min max extents of pSolid along X,Y,Z << 231 << 232 CalculateExtent(kXAxis,limit,origin,minX,max << 233 CalculateExtent(kYAxis,limit,origin,minY,max << 234 CalculateExtent(kZAxis,limit,origin,minZ,max << 235 << 236 // limits << 237 << 238 if(nStat < 100) nStat = 100; << 239 if(epsilon > 0.01) epsilon = 0.01; << 240 halfepsilon = 0.5*epsilon; << 241 << 242 for(auto i = 0; i < nStat; ++i ) << 243 { << 244 px = minX-halfepsilon+(maxX-minX+epsilon)* << 245 py = minY-halfepsilon+(maxY-minY+epsilon)* << 246 pz = minZ-halfepsilon+(maxZ-minZ+epsilon)* << 247 p = G4ThreeVector(px,py,pz); << 248 in = Inside(p); << 249 if(in != kOutside) ++iInside; << 250 } << 251 volume = (maxX-minX+epsilon)*(maxY-minY+epsi << 252 * (maxZ-minZ+epsilon)*iInside/nStat; << 253 return volume; << 254 } << 255 << 256 ////////////////////////////////////////////// << 257 // << 258 // Returns an estimation of the solid surface << 259 // The number of statistics and error accuracy << 260 // This method may be overloaded by derived cl << 261 // exact geometrical quantity for solids where << 262 // or anyway to cache the computed value. << 263 // This implementation does NOT cache the comp << 264 << 265 G4double G4VSolid::GetSurfaceArea() << 266 { << 267 G4int stat = 1000000; << 268 G4double ell = -1.; << 269 return EstimateSurfaceArea(stat,ell); << 270 } << 271 << 272 ////////////////////////////////////////////// << 273 // << 274 // Calculate surface area by estimating volume << 275 // surrounding the surface using Monte-Carlo m << 276 // Input parameters: << 277 // nstat - statistics (number of random poi << 278 // eps - shell thinkness << 279 << 280 G4double G4VSolid::EstimateSurfaceArea(G4int n << 281 { << 282 static const G4double s2 = 1./std::sqrt(2.); << 283 static const G4double s3 = 1./std::sqrt(3.); << 284 static const G4ThreeVector directions[64] = << 285 { << 286 G4ThreeVector( 0, 0, 0), G4ThreeVector( << 287 G4ThreeVector( 1, 0, 0), G4ThreeVector( << 288 G4ThreeVector( 0, -1, 0), G4ThreeVector( << 289 G4ThreeVector( s2, -s2, 0), G4ThreeVector( << 290 << 291 G4ThreeVector( 0, 1, 0), G4ThreeVector( << 292 G4ThreeVector( s2, s2, 0), G4ThreeVector( << 293 G4ThreeVector( 0, -1, 0), G4ThreeVector( << 294 G4ThreeVector( 1, 0, 0), G4ThreeVector( << 295 << 296 G4ThreeVector( 0, 0, -1), G4ThreeVector( << 297 G4ThreeVector( s2, 0,-s2), G4ThreeVector( << 298 G4ThreeVector( 0,-s2,-s2), G4ThreeVector( << 299 G4ThreeVector( s3,-s3,-s3), G4ThreeVector( << 300 << 301 G4ThreeVector( 0, s2,-s2), G4ThreeVector( << 302 G4ThreeVector( s3, s3,-s3), G4ThreeVector( << 303 G4ThreeVector( 0, 0, -1), G4ThreeVector( << 304 G4ThreeVector( s2, 0,-s2), G4ThreeVector( << 305 << 306 G4ThreeVector( 0, 0, 1), G4ThreeVector( << 307 G4ThreeVector( s2, 0, s2), G4ThreeVector( << 308 G4ThreeVector( 0,-s2, s2), G4ThreeVector( << 309 G4ThreeVector( s3,-s3, s3), G4ThreeVector( << 310 << 311 G4ThreeVector( 0, s2, s2), G4ThreeVector( << 312 G4ThreeVector( s3, s3, s3), G4ThreeVector( << 313 G4ThreeVector( 0, 0, 1), G4ThreeVector( << 314 G4ThreeVector( s2, 0, s2), G4ThreeVector( << 315 << 316 G4ThreeVector( 0, 0, -1), G4ThreeVector( << 317 G4ThreeVector( 1, 0, 0), G4ThreeVector( << 318 G4ThreeVector( 0, -1, 0), G4ThreeVector( << 319 G4ThreeVector( s2, -s2, 0), G4ThreeVector( << 320 << 321 G4ThreeVector( 0, 1, 0), G4ThreeVector( << 322 G4ThreeVector( s2, s2, 0), G4ThreeVector( << 323 G4ThreeVector( 0, -1, 0), G4ThreeVector( << 324 G4ThreeVector( 1, 0, 0), G4ThreeVector( << 325 }; << 326 << 327 G4ThreeVector bmin, bmax; << 328 BoundingLimits(bmin, bmax); << 329 << 330 G4double dX = bmax.x() - bmin.x(); << 331 G4double dY = bmax.y() - bmin.y(); << 332 G4double dZ = bmax.z() - bmin.z(); << 333 << 334 // Define statistics and shell thickness << 335 // << 336 G4int npoints = (nstat < 1000) ? 1000 : nsta << 337 G4double coeff = 0.5 / std::cbrt(G4double(np << 338 G4double eps = (ell > 0) ? ell : coeff * std << 339 G4double del = 1.8 * eps; // shold be more t << 340 << 341 G4double minX = bmin.x() - eps; << 342 G4double minY = bmin.y() - eps; << 343 G4double minZ = bmin.z() - eps; << 344 << 345 G4double dd = 2. * eps; << 346 dX += dd; << 347 dY += dd; << 348 dZ += dd; << 349 << 350 // Calculate surface area << 351 // << 352 G4int icount = 0; << 353 for(auto i = 0; i < npoints; ++i) << 354 { << 355 G4double px = minX + dX*G4QuickRand(); << 356 G4double py = minY + dY*G4QuickRand(); << 357 G4double pz = minZ + dZ*G4QuickRand(); << 358 G4ThreeVector p = G4ThreeVector(px, py, p << 359 EInside in = Inside(p); << 360 G4double dist = 0; << 361 if (in == kInside) << 362 { << 363 if (DistanceToOut(p) >= eps) continue; << 364 G4int icase = 0; << 365 if (Inside(G4ThreeVector(px-del, py, pz) << 366 if (Inside(G4ThreeVector(px+del, py, pz) << 367 if (Inside(G4ThreeVector(px, py-del, pz) << 368 if (Inside(G4ThreeVector(px, py+del, pz) << 369 if (Inside(G4ThreeVector(px, py, pz-del) << 370 if (Inside(G4ThreeVector(px, py, pz+del) << 371 if (icase == 0) continue; << 372 G4ThreeVector v = directions[icase]; << 373 dist = DistanceToOut(p, v); << 374 G4ThreeVector n = SurfaceNormal(p + v*di << 375 dist *= v.dot(n); << 376 } << 377 else if (in == kOutside) << 378 { << 379 if (DistanceToIn(p) >= eps) continue; << 380 G4int icase = 0; << 381 if (Inside(G4ThreeVector(px-del, py, pz) << 382 if (Inside(G4ThreeVector(px+del, py, pz) << 383 if (Inside(G4ThreeVector(px, py-del, pz) << 384 if (Inside(G4ThreeVector(px, py+del, pz) << 385 if (Inside(G4ThreeVector(px, py, pz-del) << 386 if (Inside(G4ThreeVector(px, py, pz+del) << 387 if (icase == 0) continue; << 388 G4ThreeVector v = directions[icase]; << 389 dist = DistanceToIn(p, v); << 390 if (dist == kInfinity) continue; << 391 G4ThreeVector n = SurfaceNormal(p + v*di << 392 dist *= -(v.dot(n)); << 393 } << 394 if (dist < eps) ++icount; << 395 } << 396 return dX*dY*dZ*icount/npoints/dd; << 397 } << 398 << 399 ////////////////////////////////////////////// << 400 // << 401 // Returns a pointer of a dynamically allocate << 402 // Returns NULL pointer with warning in case t << 403 // implement this method. The caller has respo << 404 // << 405 << 406 G4VSolid* G4VSolid::Clone() const << 407 { << 408 std::ostringstream message; << 409 message << "Clone() method not implemented f << 410 << GetEntityType() << "!" << G4endl << 411 << "Returning NULL pointer!"; << 412 G4Exception("G4VSolid::Clone()", "GeomMgt100 << 413 return nullptr; << 414 } 126 } 415 127 416 ////////////////////////////////////////////// 128 /////////////////////////////////////////////////////////////////////////// 417 // << 129 // 418 // Calculate the maximum and minimum extents o 130 // Calculate the maximum and minimum extents of the polygon described 419 // by the vertices: pSectionIndex->pSectionInd 131 // by the vertices: pSectionIndex->pSectionIndex+1-> 420 // pSectionIndex+2->pSection 132 // pSectionIndex+2->pSectionIndex+3->pSectionIndex 421 // in the List pVertices 133 // in the List pVertices 422 // 134 // 423 // If the minimum is <pMin pMin is set to the 135 // If the minimum is <pMin pMin is set to the new minimum 424 // If the maximum is >pMax pMax is set to the 136 // If the maximum is >pMax pMax is set to the new maximum 425 // 137 // 426 // No modifications are made to pVertices 138 // No modifications are made to pVertices 427 // 139 // 428 140 429 void G4VSolid::ClipCrossSection( G4Three 141 void G4VSolid::ClipCrossSection( G4ThreeVectorList* pVertices, 430 const G4int p 142 const G4int pSectionIndex, 431 const G4Voxel 143 const G4VoxelLimits& pVoxelLimit, 432 const EAxis p << 144 const EAxis pAxis, 433 G4doubl 145 G4double& pMin, G4double& pMax) const 434 { 146 { 435 147 436 G4ThreeVectorList polygon; 148 G4ThreeVectorList polygon; 437 polygon.reserve(4); << 438 polygon.push_back((*pVertices)[pSectionIndex 149 polygon.push_back((*pVertices)[pSectionIndex]); 439 polygon.push_back((*pVertices)[pSectionIndex 150 polygon.push_back((*pVertices)[pSectionIndex+1]); 440 polygon.push_back((*pVertices)[pSectionIndex 151 polygon.push_back((*pVertices)[pSectionIndex+2]); 441 polygon.push_back((*pVertices)[pSectionIndex 152 polygon.push_back((*pVertices)[pSectionIndex+3]); >> 153 // G4cout<<"ClipCrossSection: 0-1-2-3"<<G4endl; 442 CalculateClippedPolygonExtent(polygon,pVoxel 154 CalculateClippedPolygonExtent(polygon,pVoxelLimit,pAxis,pMin,pMax); 443 return; 155 return; 444 } 156 } 445 157 446 ////////////////////////////////////////////// 158 ////////////////////////////////////////////////////////////////////////////////// 447 // 159 // 448 // Calculate the maximum and minimum extents o 160 // Calculate the maximum and minimum extents of the polygons 449 // joining the CrossSections at pSectionIndex- 161 // joining the CrossSections at pSectionIndex->pSectionIndex+3 and 450 // pSectionIndex+ 162 // pSectionIndex+4->pSectionIndex7 451 // 163 // 452 // in the List pVertices, within the boundarie 164 // in the List pVertices, within the boundaries of the voxel limits pVoxelLimit 453 // 165 // 454 // If the minimum is <pMin pMin is set to the 166 // If the minimum is <pMin pMin is set to the new minimum 455 // If the maximum is >pMax pMax is set to the 167 // If the maximum is >pMax pMax is set to the new maximum 456 // 168 // 457 // No modifications are made to pVertices 169 // No modifications are made to pVertices 458 170 459 void G4VSolid::ClipBetweenSections( G4Thr 171 void G4VSolid::ClipBetweenSections( G4ThreeVectorList* pVertices, 460 const G4int 172 const G4int pSectionIndex, 461 const G4Vox 173 const G4VoxelLimits& pVoxelLimit, 462 const EAxis << 174 const EAxis pAxis, 463 G4dou 175 G4double& pMin, G4double& pMax) const 464 { 176 { 465 G4ThreeVectorList polygon; 177 G4ThreeVectorList polygon; 466 polygon.reserve(4); << 467 polygon.push_back((*pVertices)[pSectionIndex 178 polygon.push_back((*pVertices)[pSectionIndex]); 468 polygon.push_back((*pVertices)[pSectionIndex 179 polygon.push_back((*pVertices)[pSectionIndex+4]); 469 polygon.push_back((*pVertices)[pSectionIndex 180 polygon.push_back((*pVertices)[pSectionIndex+5]); 470 polygon.push_back((*pVertices)[pSectionIndex 181 polygon.push_back((*pVertices)[pSectionIndex+1]); >> 182 // G4cout<<"ClipBetweenSections: 0-4-5-1"<<G4endl; 471 CalculateClippedPolygonExtent(polygon,pVoxel 183 CalculateClippedPolygonExtent(polygon,pVoxelLimit,pAxis,pMin,pMax); 472 polygon.clear(); 184 polygon.clear(); 473 185 474 polygon.push_back((*pVertices)[pSectionIndex 186 polygon.push_back((*pVertices)[pSectionIndex+1]); 475 polygon.push_back((*pVertices)[pSectionIndex 187 polygon.push_back((*pVertices)[pSectionIndex+5]); 476 polygon.push_back((*pVertices)[pSectionIndex 188 polygon.push_back((*pVertices)[pSectionIndex+6]); 477 polygon.push_back((*pVertices)[pSectionIndex 189 polygon.push_back((*pVertices)[pSectionIndex+2]); >> 190 // G4cout<<"ClipBetweenSections: 1-5-6-2"<<G4endl; 478 CalculateClippedPolygonExtent(polygon,pVoxel 191 CalculateClippedPolygonExtent(polygon,pVoxelLimit,pAxis,pMin,pMax); 479 polygon.clear(); 192 polygon.clear(); 480 193 481 polygon.push_back((*pVertices)[pSectionIndex 194 polygon.push_back((*pVertices)[pSectionIndex+2]); 482 polygon.push_back((*pVertices)[pSectionIndex 195 polygon.push_back((*pVertices)[pSectionIndex+6]); 483 polygon.push_back((*pVertices)[pSectionIndex 196 polygon.push_back((*pVertices)[pSectionIndex+7]); 484 polygon.push_back((*pVertices)[pSectionIndex 197 polygon.push_back((*pVertices)[pSectionIndex+3]); >> 198 // G4cout<<"ClipBetweenSections: 2-6-7-3"<<G4endl; 485 CalculateClippedPolygonExtent(polygon,pVoxel 199 CalculateClippedPolygonExtent(polygon,pVoxelLimit,pAxis,pMin,pMax); 486 polygon.clear(); 200 polygon.clear(); 487 201 488 polygon.push_back((*pVertices)[pSectionIndex 202 polygon.push_back((*pVertices)[pSectionIndex+3]); 489 polygon.push_back((*pVertices)[pSectionIndex 203 polygon.push_back((*pVertices)[pSectionIndex+7]); 490 polygon.push_back((*pVertices)[pSectionIndex 204 polygon.push_back((*pVertices)[pSectionIndex+4]); 491 polygon.push_back((*pVertices)[pSectionIndex 205 polygon.push_back((*pVertices)[pSectionIndex]); >> 206 // G4cout<<"ClipBetweenSections: 3-7-4-0"<<G4endl; 492 CalculateClippedPolygonExtent(polygon,pVoxel 207 CalculateClippedPolygonExtent(polygon,pVoxelLimit,pAxis,pMin,pMax); 493 return; 208 return; 494 } 209 } 495 210 496 211 497 ////////////////////////////////////////////// 212 /////////////////////////////////////////////////////////////////////////////// 498 // 213 // 499 // Calculate the maximum and minimum extents o 214 // Calculate the maximum and minimum extents of the convex polygon pPolygon 500 // along the axis pAxis, within the limits pVo 215 // along the axis pAxis, within the limits pVoxelLimit 501 // 216 // 502 217 503 void 218 void 504 G4VSolid::CalculateClippedPolygonExtent(G4Thre 219 G4VSolid::CalculateClippedPolygonExtent(G4ThreeVectorList& pPolygon, 505 const G4Voxe 220 const G4VoxelLimits& pVoxelLimit, 506 const EAxis << 221 const EAxis pAxis, 507 G4doub 222 G4double& pMin, 508 G4doub 223 G4double& pMax) const 509 { 224 { 510 G4int noLeft,i; 225 G4int noLeft,i; 511 G4double component; 226 G4double component; 512 << 227 /* >> 228 G4cout<<G4endl; >> 229 for(i = 0 ; i < pPolygon.size() ; i++ ) >> 230 { >> 231 G4cout << i << "\t" >> 232 << "p.x = " << pPolygon[i].operator()(pAxis) << "\t" >> 233 // << "p.y = " << pPolygon[i].y() << "\t" >> 234 // << "p.z = " << pPolygon[i].z() << "\t" >> 235 << G4endl; >> 236 } >> 237 G4cout<<G4endl; >> 238 */ 513 ClipPolygon(pPolygon,pVoxelLimit,pAxis); 239 ClipPolygon(pPolygon,pVoxelLimit,pAxis); 514 noLeft = (G4int)pPolygon.size(); << 240 noLeft = pPolygon.size(); 515 241 516 if ( noLeft != 0 ) << 242 if ( noLeft ) 517 { 243 { 518 for (i=0; i<noLeft; ++i) << 244 // G4cout<<G4endl; >> 245 for (i=0;i<noLeft;i++) 519 { 246 { 520 component = pPolygon[i].operator()(pAxis 247 component = pPolygon[i].operator()(pAxis); 521 << 248 // G4cout <<i<<"\t"<<component<<G4endl; 522 if (component < pMin) << 249 523 { << 250 if (component < pMin) 524 pMin = component; << 251 { >> 252 // G4cout <<i<<"\t"<<"Pmin = "<<component<<G4endl; >> 253 pMin = component; 525 } 254 } 526 if (component > pMax) 255 if (component > pMax) 527 { << 256 { 528 pMax = component; << 257 // G4cout <<i<<"\t"<<"PMax = "<<component<<G4endl; 529 } << 258 pMax = component; >> 259 } 530 } 260 } >> 261 // G4cout<<G4endl; 531 } 262 } >> 263 // G4cout<<"pMin = "<<pMin<<"\t"<<"pMax = "<<pMax<<G4endl; 532 } 264 } 533 265 534 ////////////////////////////////////////////// 266 ///////////////////////////////////////////////////////////////////////////// 535 // 267 // 536 // Clip the convex polygon described by the ve 268 // Clip the convex polygon described by the vertices at 537 // pSectionIndex ->pSectionIndex+3 within pVer 269 // pSectionIndex ->pSectionIndex+3 within pVertices to the limits pVoxelLimit 538 // 270 // 539 // Set pMin to the smallest 271 // Set pMin to the smallest 540 // 272 // 541 // Calculate the extent of the polygon along p 273 // Calculate the extent of the polygon along pAxis, when clipped to the 542 // limits pVoxelLimit. If the polygon exists a 274 // limits pVoxelLimit. If the polygon exists after clippin, set pMin to 543 // the polygon's minimum extent along the axis 275 // the polygon's minimum extent along the axis if <pMin, and set pMax to 544 // the polygon's maximum extent along the axis 276 // the polygon's maximum extent along the axis if >pMax. 545 // 277 // 546 // The polygon is described by a set of vector 278 // The polygon is described by a set of vectors, where each vector represents 547 // a vertex, so that the polygon is described 279 // a vertex, so that the polygon is described by the vertex sequence: 548 // 0th->1st 1st->2nd 2nd->... nth->0th 280 // 0th->1st 1st->2nd 2nd->... nth->0th 549 // 281 // 550 // Modifications to the polygon are made 282 // Modifications to the polygon are made 551 // 283 // 552 // NOTE: Execessive copying during clipping 284 // NOTE: Execessive copying during clipping 553 285 554 void G4VSolid::ClipPolygon( G4ThreeVector 286 void G4VSolid::ClipPolygon( G4ThreeVectorList& pPolygon, 555 const G4VoxelLimits 287 const G4VoxelLimits& pVoxelLimit, 556 const EAxis 288 const EAxis ) const 557 { 289 { 558 G4ThreeVectorList outputPolygon; 290 G4ThreeVectorList outputPolygon; 559 291 560 if ( pVoxelLimit.IsLimited() ) 292 if ( pVoxelLimit.IsLimited() ) 561 { 293 { 562 if (pVoxelLimit.IsXLimited() ) // && pAxis 294 if (pVoxelLimit.IsXLimited() ) // && pAxis != kXAxis) 563 { 295 { 564 G4VoxelLimits simpleLimit1; 296 G4VoxelLimits simpleLimit1; 565 simpleLimit1.AddLimit(kXAxis,pVoxelLimit 297 simpleLimit1.AddLimit(kXAxis,pVoxelLimit.GetMinXExtent(),kInfinity); >> 298 // G4cout<<"MinXExtent()"<<G4endl; 566 ClipPolygonToSimpleLimits(pPolygon,outpu 299 ClipPolygonToSimpleLimits(pPolygon,outputPolygon,simpleLimit1); 567 << 300 568 pPolygon.clear(); 301 pPolygon.clear(); 569 302 570 if ( outputPolygon.empty() ) return; << 303 if ( !outputPolygon.size() ) return; 571 304 572 G4VoxelLimits simpleLimit2; 305 G4VoxelLimits simpleLimit2; >> 306 // G4cout<<"MaxXExtent()"<<G4endl; 573 simpleLimit2.AddLimit(kXAxis,-kInfinity, 307 simpleLimit2.AddLimit(kXAxis,-kInfinity,pVoxelLimit.GetMaxXExtent()); 574 ClipPolygonToSimpleLimits(outputPolygon, 308 ClipPolygonToSimpleLimits(outputPolygon,pPolygon,simpleLimit2); 575 309 576 if ( pPolygon.empty() ) return; << 310 if ( !pPolygon.size() ) return; 577 else outputPoly 311 else outputPolygon.clear(); 578 } 312 } 579 if ( pVoxelLimit.IsYLimited() ) // && pAxi 313 if ( pVoxelLimit.IsYLimited() ) // && pAxis != kYAxis) 580 { 314 { 581 G4VoxelLimits simpleLimit1; 315 G4VoxelLimits simpleLimit1; 582 simpleLimit1.AddLimit(kYAxis,pVoxelLimit 316 simpleLimit1.AddLimit(kYAxis,pVoxelLimit.GetMinYExtent(),kInfinity); 583 ClipPolygonToSimpleLimits(pPolygon,outpu 317 ClipPolygonToSimpleLimits(pPolygon,outputPolygon,simpleLimit1); 584 318 585 // Must always clear pPolygon - for clip 319 // Must always clear pPolygon - for clip to simpleLimit2 and in case of 586 // early exit 320 // early exit 587 321 588 pPolygon.clear(); 322 pPolygon.clear(); 589 323 590 if ( outputPolygon.empty() ) return; << 324 if ( !outputPolygon.size() ) return; 591 325 592 G4VoxelLimits simpleLimit2; 326 G4VoxelLimits simpleLimit2; 593 simpleLimit2.AddLimit(kYAxis,-kInfinity, 327 simpleLimit2.AddLimit(kYAxis,-kInfinity,pVoxelLimit.GetMaxYExtent()); 594 ClipPolygonToSimpleLimits(outputPolygon, 328 ClipPolygonToSimpleLimits(outputPolygon,pPolygon,simpleLimit2); 595 329 596 if ( pPolygon.empty() ) return; << 330 if ( !pPolygon.size() ) return; 597 else outputPoly 331 else outputPolygon.clear(); 598 } 332 } 599 if ( pVoxelLimit.IsZLimited() ) // && pAxi 333 if ( pVoxelLimit.IsZLimited() ) // && pAxis != kZAxis) 600 { 334 { 601 G4VoxelLimits simpleLimit1; 335 G4VoxelLimits simpleLimit1; 602 simpleLimit1.AddLimit(kZAxis,pVoxelLimit 336 simpleLimit1.AddLimit(kZAxis,pVoxelLimit.GetMinZExtent(),kInfinity); 603 ClipPolygonToSimpleLimits(pPolygon,outpu 337 ClipPolygonToSimpleLimits(pPolygon,outputPolygon,simpleLimit1); 604 338 605 // Must always clear pPolygon - for clip 339 // Must always clear pPolygon - for clip to simpleLimit2 and in case of 606 // early exit 340 // early exit 607 341 608 pPolygon.clear(); 342 pPolygon.clear(); 609 343 610 if ( outputPolygon.empty() ) return; << 344 if ( !outputPolygon.size() ) return; 611 345 612 G4VoxelLimits simpleLimit2; 346 G4VoxelLimits simpleLimit2; 613 simpleLimit2.AddLimit(kZAxis,-kInfinity, 347 simpleLimit2.AddLimit(kZAxis,-kInfinity,pVoxelLimit.GetMaxZExtent()); 614 ClipPolygonToSimpleLimits(outputPolygon, 348 ClipPolygonToSimpleLimits(outputPolygon,pPolygon,simpleLimit2); 615 349 616 // Return after final clip - no cleanup 350 // Return after final clip - no cleanup 617 } 351 } 618 } 352 } 619 } 353 } 620 354 621 ////////////////////////////////////////////// 355 //////////////////////////////////////////////////////////////////////////// 622 // 356 // 623 // pVoxelLimits must be only limited along one 357 // pVoxelLimits must be only limited along one axis, and either the maximum 624 // along the axis must be +kInfinity, or the m 358 // along the axis must be +kInfinity, or the minimum -kInfinity 625 359 626 void 360 void 627 G4VSolid::ClipPolygonToSimpleLimits( G4ThreeVe 361 G4VSolid::ClipPolygonToSimpleLimits( G4ThreeVectorList& pPolygon, 628 G4ThreeVe 362 G4ThreeVectorList& outputPolygon, 629 const G4VoxelLi 363 const G4VoxelLimits& pVoxelLimit ) const 630 { 364 { 631 G4int i; 365 G4int i; 632 auto noVertices = (G4int)pPolygon.size(); << 366 G4int noVertices=pPolygon.size(); 633 G4ThreeVector vEnd,vStart; 367 G4ThreeVector vEnd,vStart; 634 368 635 for (i = 0 ; i < noVertices ; ++i ) << 369 for (i = 0 ; i < noVertices ; i++ ) 636 { 370 { 637 vStart = pPolygon[i]; 371 vStart = pPolygon[i]; >> 372 // G4cout << "i = " << i << G4endl; 638 if ( i == noVertices-1 ) vEnd = pPolygo 373 if ( i == noVertices-1 ) vEnd = pPolygon[0]; 639 else vEnd = pPolygo 374 else vEnd = pPolygon[i+1]; 640 375 641 if ( pVoxelLimit.Inside(vStart) ) 376 if ( pVoxelLimit.Inside(vStart) ) 642 { 377 { 643 if (pVoxelLimit.Inside(vEnd)) 378 if (pVoxelLimit.Inside(vEnd)) 644 { 379 { 645 // vStart and vEnd inside -> output en 380 // vStart and vEnd inside -> output end point 646 // 381 // 647 outputPolygon.push_back(vEnd); 382 outputPolygon.push_back(vEnd); 648 } 383 } 649 else 384 else 650 { 385 { 651 // vStart inside, vEnd outside -> outp 386 // vStart inside, vEnd outside -> output crossing point 652 // 387 // >> 388 // G4cout << "vStart inside, vEnd outside" << G4endl; 653 pVoxelLimit.ClipToLimits(vStart,vEnd); 389 pVoxelLimit.ClipToLimits(vStart,vEnd); 654 outputPolygon.push_back(vEnd); 390 outputPolygon.push_back(vEnd); 655 } << 391 } 656 } 392 } 657 else 393 else 658 { 394 { 659 if (pVoxelLimit.Inside(vEnd)) 395 if (pVoxelLimit.Inside(vEnd)) 660 { 396 { 661 // vStart outside, vEnd inside -> outp 397 // vStart outside, vEnd inside -> output inside section 662 // 398 // >> 399 // G4cout << "vStart outside, vEnd inside" << G4endl; 663 pVoxelLimit.ClipToLimits(vStart,vEnd); 400 pVoxelLimit.ClipToLimits(vStart,vEnd); 664 outputPolygon.push_back(vStart); 401 outputPolygon.push_back(vStart); 665 outputPolygon.push_back(vEnd); << 402 outputPolygon.push_back(vEnd); 666 } 403 } 667 else // Both point outside -> no output 404 else // Both point outside -> no output 668 { 405 { 669 // outputPolygon.push_back(vStart); 406 // outputPolygon.push_back(vStart); 670 // outputPolygon.push_back(vEnd); << 407 // outputPolygon.push_back(vEnd); 671 } 408 } 672 } 409 } 673 } 410 } 674 } 411 } 675 412 676 ////////////////////////////////////////////// << 413 const G4VSolid* G4VSolid::GetConstituentSolid(G4int) const 677 // << 414 { return 0; } 678 // Throw exception (warning) for solids not im << 679 415 680 void G4VSolid::BoundingLimits(G4ThreeVector& p << 416 G4VSolid* G4VSolid::GetConstituentSolid(G4int) 681 { << 417 { return 0; } 682 std::ostringstream message; << 683 message << "Not implemented for solid: " << 684 << GetEntityType() << " !" << 685 << "\nReturning infinite boundinx bo << 686 G4Exception("G4VSolid::BoundingLimits()", "G << 687 JustWarning, message); << 688 418 689 pMin.set(-kInfinity,-kInfinity,-kInfinity); << 419 const G4DisplacedSolid* G4VSolid::GetDisplacedSolidPtr() const 690 pMax.set( kInfinity, kInfinity, kInfinity); << 420 { return 0; } 691 } << 692 421 693 ////////////////////////////////////////////// << 422 G4DisplacedSolid* G4VSolid::GetDisplacedSolidPtr() 694 // << 423 { return 0; } 695 // Get G4VisExtent - bounding box for graphics << 696 424 697 G4VisExtent G4VSolid::GetExtent () const << 425 G4VisExtent G4VSolid::GetExtent () const 698 { 426 { 699 G4VisExtent extent; 427 G4VisExtent extent; 700 G4VoxelLimits voxelLimits; // Defaults to " 428 G4VoxelLimits voxelLimits; // Defaults to "infinite" limits. 701 G4AffineTransform affineTransform; 429 G4AffineTransform affineTransform; 702 G4double vmin, vmax; 430 G4double vmin, vmax; 703 CalculateExtent(kXAxis,voxelLimits,affineTra 431 CalculateExtent(kXAxis,voxelLimits,affineTransform,vmin,vmax); 704 extent.SetXmin (vmin); 432 extent.SetXmin (vmin); 705 extent.SetXmax (vmax); 433 extent.SetXmax (vmax); 706 CalculateExtent(kYAxis,voxelLimits,affineTra 434 CalculateExtent(kYAxis,voxelLimits,affineTransform,vmin,vmax); 707 extent.SetYmin (vmin); 435 extent.SetYmin (vmin); 708 extent.SetYmax (vmax); 436 extent.SetYmax (vmax); 709 CalculateExtent(kZAxis,voxelLimits,affineTra 437 CalculateExtent(kZAxis,voxelLimits,affineTransform,vmin,vmax); 710 extent.SetZmin (vmin); 438 extent.SetZmin (vmin); 711 extent.SetZmax (vmax); 439 extent.SetZmax (vmax); 712 return extent; 440 return extent; 713 } 441 } 714 442 715 G4Polyhedron* G4VSolid::CreatePolyhedron () co 443 G4Polyhedron* G4VSolid::CreatePolyhedron () const 716 { 444 { 717 return nullptr; << 445 return 0; >> 446 } >> 447 >> 448 G4NURBS* G4VSolid::CreateNURBS () const >> 449 { >> 450 return 0; 718 } 451 } 719 452 720 G4Polyhedron* G4VSolid::GetPolyhedron () const 453 G4Polyhedron* G4VSolid::GetPolyhedron () const 721 { 454 { 722 return nullptr; << 455 return 0; >> 456 } >> 457 >> 458 //////////////////////////////////////////////////////////////// >> 459 // >> 460 // Returns an estimation of the solid volume in internal units. >> 461 // The number of statistics and error accuracy is fixed. >> 462 // This method may be overloaded by derived classes to compute the >> 463 // exact geometrical quantity for solids where this is possible. >> 464 // or anyway to cache the computed value. >> 465 // This implementation does NOT cache the computed value. >> 466 >> 467 G4double G4VSolid::GetCubicVolume() >> 468 { >> 469 G4int cubVolStatistics = 1000000; >> 470 G4double cubVolEpsilon = 0.001; >> 471 return EstimateCubicVolume(cubVolStatistics, cubVolEpsilon); >> 472 } >> 473 >> 474 //////////////////////////////////////////////////////////////// >> 475 // >> 476 // Calculate cubic volume based on Inside() method. >> 477 // Accuracy is limited by the second argument or the statistics >> 478 // expressed by the first argument. >> 479 // Implementation is courtesy of Vasiliki Despoina Mitsou, >> 480 // University of Athens. >> 481 >> 482 G4double G4VSolid::EstimateCubicVolume(G4int nStat, G4double epsilon) const >> 483 { >> 484 G4int iInside=0; >> 485 G4double px,py,pz,minX,maxX,minY,maxY,minZ,maxZ,volume; >> 486 G4bool yesno; >> 487 G4ThreeVector p; >> 488 EInside in; >> 489 >> 490 // values needed for CalculateExtent signature >> 491 >> 492 G4VoxelLimits limit; // Unlimited >> 493 G4AffineTransform origin; >> 494 >> 495 // min max extents of pSolid along X,Y,Z >> 496 >> 497 yesno = this->CalculateExtent(kXAxis,limit,origin,minX,maxX); >> 498 yesno = this->CalculateExtent(kYAxis,limit,origin,minY,maxY); >> 499 yesno = this->CalculateExtent(kZAxis,limit,origin,minZ,maxZ); >> 500 >> 501 // limits >> 502 >> 503 if(nStat < 100) nStat = 100; >> 504 if(epsilon > 0.01) epsilon = 0.01; >> 505 >> 506 for(G4int i = 0; i < nStat; i++ ) >> 507 { >> 508 px = minX+(maxX-minX)*G4UniformRand(); >> 509 py = minY+(maxY-minY)*G4UniformRand(); >> 510 pz = minZ+(maxZ-minZ)*G4UniformRand(); >> 511 p = G4ThreeVector(px,py,pz); >> 512 in = this->Inside(p); >> 513 if(in != kOutside) iInside++; >> 514 } >> 515 volume = (maxX-minX)*(maxY-minY)*(maxZ-minZ)*iInside/nStat; >> 516 return volume; >> 517 } >> 518 >> 519 //////////////////////////////////////////////////////////////// >> 520 // >> 521 // Returns an estimation of the solid surface area in internal units. >> 522 // The number of statistics and error accuracy is fixed. >> 523 // This method may be overloaded by derived classes to compute the >> 524 // exact geometrical quantity for solids where this is possible. >> 525 // or anyway to cache the computed value. >> 526 // This implementation does NOT cache the computed value. >> 527 >> 528 G4double G4VSolid::GetSurfaceArea() >> 529 { >> 530 G4int stat = 1000000; >> 531 G4double ell = -1.; >> 532 return EstimateSurfaceArea(stat,ell); >> 533 } >> 534 >> 535 //////////////////////////////////////////////////////////////// >> 536 // >> 537 // Estimate surface area based on Inside(), DistanceToIn(), and >> 538 // DistanceToOut() methods. Accuracy is limited by the statistics >> 539 // defined by the first argument. Implemented by Mikhail Kosov. >> 540 >> 541 G4double G4VSolid::EstimateSurfaceArea(G4int nStat, G4double ell) const >> 542 { >> 543 G4int inside=0; >> 544 G4double px,py,pz,minX,maxX,minY,maxY,minZ,maxZ,surf; >> 545 G4bool yesno; >> 546 G4ThreeVector p; >> 547 EInside in; >> 548 >> 549 // values needed for CalculateExtent signature >> 550 >> 551 G4VoxelLimits limit; // Unlimited >> 552 G4AffineTransform origin; >> 553 >> 554 // min max extents of pSolid along X,Y,Z >> 555 >> 556 yesno = this->CalculateExtent(kXAxis,limit,origin,minX,maxX); >> 557 yesno = this->CalculateExtent(kYAxis,limit,origin,minY,maxY); >> 558 yesno = this->CalculateExtent(kZAxis,limit,origin,minZ,maxZ); >> 559 >> 560 // limits >> 561 >> 562 if(nStat < 1000) { nStat = 100; } >> 563 >> 564 G4double dX=maxX-minX; >> 565 G4double dY=maxY-minY; >> 566 G4double dZ=maxZ-minZ; >> 567 if(ell<=0.) // Automatic definition of skin thickness >> 568 { >> 569 G4double minval=dX; >> 570 if(dY<dX) { minval=dY; } >> 571 if(dZ<minval) { minval=dZ; } >> 572 ell=.01*minval; >> 573 } >> 574 >> 575 G4double dd=2*ell; >> 576 minX-=ell; minY-=ell; minZ-=ell; dX+=dd; dY+=dd; dZ+=dd; >> 577 >> 578 for(G4int i = 0; i < nStat; i++ ) >> 579 { >> 580 px = minX+dX*G4UniformRand(); >> 581 py = minY+dY*G4UniformRand(); >> 582 pz = minZ+dZ*G4UniformRand(); >> 583 p = G4ThreeVector(px,py,pz); >> 584 in = this->Inside(p); >> 585 if(in != kOutside) >> 586 { >> 587 if (DistanceToOut(p)<ell) { inside++; } >> 588 } >> 589 else if(DistanceToIn(p)<ell) { inside++; } >> 590 } >> 591 // @@ The conformal correction can be upgraded >> 592 surf = dX*dY*dZ*inside/dd/nStat; >> 593 return surf; 723 } 594 } 724 595