Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // G4VSolid implementation for solid base clas << 27 // 23 // 28 // 10.10.18 E.Tcherniaev, more robust Estimate << 24 // $Id: G4VSolid.cc,v 1.20 2003/11/02 14:01:24 gcosmo Exp $ 29 // 30.06.95 P.Kent, Created. << 25 // GEANT4 tag $Name: geant4-06-00-patch-01 $ >> 26 // >> 27 // class G4VSolid >> 28 // >> 29 // Implementation for solid base class >> 30 // >> 31 // History: >> 32 // >> 33 // 06.12.02 V.Grichine, restored original conditions in ClipPolygon() >> 34 // 10.05.02 V.Grichine, ClipPolygon(): clip only other axis and limited voxels >> 35 // 15.04.02 V.Grichine, bug fixed in ClipPolygon(): clip only one axis >> 36 // 13.03.02 V.Grichine, cosmetics of voxel limit functions >> 37 // 15.11.00 D.Williams, V.Grichine, fix in CalculateClippedPolygonExtent() >> 38 // 10.07.95 P.Kent, Added == operator, solid Store entry >> 39 // 30.06.95 P.Kent, Created. 30 // ------------------------------------------- 40 // -------------------------------------------------------------------- 31 41 32 #include "G4VSolid.hh" 42 #include "G4VSolid.hh" 33 #include "G4SolidStore.hh" 43 #include "G4SolidStore.hh" 34 #include "globals.hh" << 35 #include "G4QuickRand.hh" << 36 #include "G4GeometryTolerance.hh" << 37 44 38 #include "G4VoxelLimits.hh" 45 #include "G4VoxelLimits.hh" 39 #include "G4AffineTransform.hh" 46 #include "G4AffineTransform.hh" 40 #include "G4VisExtent.hh" 47 #include "G4VisExtent.hh" 41 48 42 ////////////////////////////////////////////// 49 ////////////////////////////////////////////////////////////////////////// 43 // 50 // 44 // Streaming operator dumping solid contents << 45 << 46 std::ostream& operator<< ( std::ostream& os, c << 47 { << 48 return e.StreamInfo(os); << 49 } << 50 << 51 ////////////////////////////////////////////// << 52 // << 53 // Constructor 51 // Constructor 54 // - Copies name 52 // - Copies name 55 // - Add ourselves to solid Store 53 // - Add ourselves to solid Store 56 54 57 G4VSolid::G4VSolid(const G4String& name) 55 G4VSolid::G4VSolid(const G4String& name) 58 : fshapeName(name) << 56 : fshapeName(name) 59 { << 60 kCarTolerance = G4GeometryTolerance::GetIn << 61 << 62 // Register to store << 63 // << 64 G4SolidStore::GetInstance()->Register(this << 65 } << 66 << 67 ////////////////////////////////////////////// << 68 // << 69 // Copy constructor << 70 // << 71 << 72 G4VSolid::G4VSolid(const G4VSolid& rhs) << 73 : kCarTolerance(rhs.kCarTolerance), fshapeNa << 74 { << 75 // Register to store << 76 // << 77 G4SolidStore::GetInstance()->Register(this << 78 } << 79 << 80 ////////////////////////////////////////////// << 81 // << 82 // Fake default constructor - sets only member << 83 // for usage restri << 84 // << 85 G4VSolid::G4VSolid( __void__& ) << 86 : fshapeName("") << 87 { 57 { 88 // Register to store << 89 // << 90 G4SolidStore::GetInstance()->Register(this 58 G4SolidStore::GetInstance()->Register(this); 91 } 59 } 92 60 93 ////////////////////////////////////////////// 61 ////////////////////////////////////////////////////////////////////////// 94 // 62 // 95 // Destructor (virtual) 63 // Destructor (virtual) 96 // - Remove ourselves from solid Store 64 // - Remove ourselves from solid Store 97 65 98 G4VSolid::~G4VSolid() 66 G4VSolid::~G4VSolid() 99 { 67 { 100 G4SolidStore::GetInstance()->DeRegister(th 68 G4SolidStore::GetInstance()->DeRegister(this); 101 } 69 } 102 70 103 ////////////////////////////////////////////// 71 ////////////////////////////////////////////////////////////////////////// 104 // 72 // 105 // Assignment operator << 73 // Streaming operator dumping solid contents 106 << 107 G4VSolid& G4VSolid::operator = (const G4VSolid << 108 { << 109 // Check assignment to self << 110 // << 111 if (this == &rhs) { return *this; } << 112 << 113 // Copy data << 114 // << 115 kCarTolerance = rhs.kCarTolerance; << 116 fshapeName = rhs.fshapeName; << 117 << 118 return *this; << 119 } << 120 << 121 << 122 << 123 ////////////////////////////////////////////// << 124 // << 125 // Set solid name and notify store of the chan << 126 74 127 void G4VSolid::SetName(const G4String& name) << 75 std::ostream& operator<< ( std::ostream& os, const G4VSolid& e ) 128 { 76 { 129 fshapeName = name; << 77 return e.StreamInfo(os); 130 G4SolidStore::GetInstance()->SetMapValid(fal << 131 } 78 } 132 79 133 ////////////////////////////////////////////// 80 ////////////////////////////////////////////////////////////////////////// 134 // 81 // 135 // Throw exception if ComputeDimensions called 82 // Throw exception if ComputeDimensions called for illegal derived class 136 83 137 void G4VSolid::ComputeDimensions(G4VPVParamete 84 void G4VSolid::ComputeDimensions(G4VPVParameterisation*, 138 const G4int, 85 const G4int, 139 const G4VPhys 86 const G4VPhysicalVolume*) 140 { 87 { 141 std::ostringstream message; << 88 G4cerr << "ERROR - Illegal call to G4VSolid::ComputeDimensions()" << G4endl 142 message << "Illegal call to G4VSolid::Comp << 89 << " Method not overloaded by derived class !" << G4endl; 143 << "Method not overloaded by deriv << 90 G4Exception("G4VSolid::ComputeDimensions()", "NotApplicable", 144 G4Exception("G4VSolid::ComputeDimensions() << 91 FatalException, "Illegal call to case class."); 145 FatalException, message); << 146 } << 147 << 148 ////////////////////////////////////////////// << 149 // << 150 // Throw exception (warning) for solids not im << 151 << 152 G4ThreeVector G4VSolid::GetPointOnSurface() co << 153 { << 154 std::ostringstream message; << 155 message << "Not implemented for solid: " << 156 << GetEntityType() << " !" << G4en << 157 << "Returning origin."; << 158 G4Exception("G4VSolid::GetPointOnSurface() << 159 JustWarning, message); << 160 return {0,0,0}; << 161 } << 162 << 163 ////////////////////////////////////////////// << 164 // << 165 // Returns total number of constituents that w << 166 // of the solid. For non-Boolean solids the re << 167 << 168 G4int G4VSolid::GetNumOfConstituents() const << 169 { return 1; } << 170 << 171 ////////////////////////////////////////////// << 172 // << 173 // Returns true if the solid has only planar f << 174 << 175 G4bool G4VSolid::IsFaceted() const << 176 { return false; } << 177 << 178 ////////////////////////////////////////////// << 179 // << 180 // Dummy implementations ... << 181 << 182 const G4VSolid* G4VSolid::GetConstituentSolid( << 183 { return nullptr; } << 184 << 185 G4VSolid* G4VSolid::GetConstituentSolid(G4int) << 186 { return nullptr; } << 187 << 188 const G4DisplacedSolid* G4VSolid::GetDisplaced << 189 { return nullptr; } << 190 << 191 G4DisplacedSolid* G4VSolid::GetDisplacedSolidP << 192 { return nullptr; } << 193 << 194 ////////////////////////////////////////////// << 195 // << 196 // Returns an estimation of the solid volume i << 197 // The number of statistics and error accuracy << 198 // This method may be overloaded by derived cl << 199 // exact geometrical quantity for solids where << 200 // or anyway to cache the computed value. << 201 // This implementation does NOT cache the comp << 202 << 203 G4double G4VSolid::GetCubicVolume() << 204 { << 205 G4int cubVolStatistics = 1000000; << 206 G4double cubVolEpsilon = 0.001; << 207 return EstimateCubicVolume(cubVolStatistics, << 208 } << 209 << 210 ////////////////////////////////////////////// << 211 // << 212 // Calculate cubic volume based on Inside() me << 213 // Accuracy is limited by the second argument << 214 // expressed by the first argument. << 215 // Implementation is courtesy of Vasiliki Desp << 216 // University of Athens. << 217 << 218 G4double G4VSolid::EstimateCubicVolume(G4int n << 219 { << 220 G4int iInside=0; << 221 G4double px,py,pz,minX,maxX,minY,maxY,minZ,m << 222 G4ThreeVector p; << 223 EInside in; << 224 << 225 // values needed for CalculateExtent signatu << 226 << 227 G4VoxelLimits limit; // Unlim << 228 G4AffineTransform origin; << 229 << 230 // min max extents of pSolid along X,Y,Z << 231 << 232 CalculateExtent(kXAxis,limit,origin,minX,max << 233 CalculateExtent(kYAxis,limit,origin,minY,max << 234 CalculateExtent(kZAxis,limit,origin,minZ,max << 235 << 236 // limits << 237 << 238 if(nStat < 100) nStat = 100; << 239 if(epsilon > 0.01) epsilon = 0.01; << 240 halfepsilon = 0.5*epsilon; << 241 << 242 for(auto i = 0; i < nStat; ++i ) << 243 { << 244 px = minX-halfepsilon+(maxX-minX+epsilon)* << 245 py = minY-halfepsilon+(maxY-minY+epsilon)* << 246 pz = minZ-halfepsilon+(maxZ-minZ+epsilon)* << 247 p = G4ThreeVector(px,py,pz); << 248 in = Inside(p); << 249 if(in != kOutside) ++iInside; << 250 } << 251 volume = (maxX-minX+epsilon)*(maxY-minY+epsi << 252 * (maxZ-minZ+epsilon)*iInside/nStat; << 253 return volume; << 254 } << 255 << 256 ////////////////////////////////////////////// << 257 // << 258 // Returns an estimation of the solid surface << 259 // The number of statistics and error accuracy << 260 // This method may be overloaded by derived cl << 261 // exact geometrical quantity for solids where << 262 // or anyway to cache the computed value. << 263 // This implementation does NOT cache the comp << 264 << 265 G4double G4VSolid::GetSurfaceArea() << 266 { << 267 G4int stat = 1000000; << 268 G4double ell = -1.; << 269 return EstimateSurfaceArea(stat,ell); << 270 } << 271 << 272 ////////////////////////////////////////////// << 273 // << 274 // Calculate surface area by estimating volume << 275 // surrounding the surface using Monte-Carlo m << 276 // Input parameters: << 277 // nstat - statistics (number of random poi << 278 // eps - shell thinkness << 279 << 280 G4double G4VSolid::EstimateSurfaceArea(G4int n << 281 { << 282 static const G4double s2 = 1./std::sqrt(2.); << 283 static const G4double s3 = 1./std::sqrt(3.); << 284 static const G4ThreeVector directions[64] = << 285 { << 286 G4ThreeVector( 0, 0, 0), G4ThreeVector( << 287 G4ThreeVector( 1, 0, 0), G4ThreeVector( << 288 G4ThreeVector( 0, -1, 0), G4ThreeVector( << 289 G4ThreeVector( s2, -s2, 0), G4ThreeVector( << 290 << 291 G4ThreeVector( 0, 1, 0), G4ThreeVector( << 292 G4ThreeVector( s2, s2, 0), G4ThreeVector( << 293 G4ThreeVector( 0, -1, 0), G4ThreeVector( << 294 G4ThreeVector( 1, 0, 0), G4ThreeVector( << 295 << 296 G4ThreeVector( 0, 0, -1), G4ThreeVector( << 297 G4ThreeVector( s2, 0,-s2), G4ThreeVector( << 298 G4ThreeVector( 0,-s2,-s2), G4ThreeVector( << 299 G4ThreeVector( s3,-s3,-s3), G4ThreeVector( << 300 << 301 G4ThreeVector( 0, s2,-s2), G4ThreeVector( << 302 G4ThreeVector( s3, s3,-s3), G4ThreeVector( << 303 G4ThreeVector( 0, 0, -1), G4ThreeVector( << 304 G4ThreeVector( s2, 0,-s2), G4ThreeVector( << 305 << 306 G4ThreeVector( 0, 0, 1), G4ThreeVector( << 307 G4ThreeVector( s2, 0, s2), G4ThreeVector( << 308 G4ThreeVector( 0,-s2, s2), G4ThreeVector( << 309 G4ThreeVector( s3,-s3, s3), G4ThreeVector( << 310 << 311 G4ThreeVector( 0, s2, s2), G4ThreeVector( << 312 G4ThreeVector( s3, s3, s3), G4ThreeVector( << 313 G4ThreeVector( 0, 0, 1), G4ThreeVector( << 314 G4ThreeVector( s2, 0, s2), G4ThreeVector( << 315 << 316 G4ThreeVector( 0, 0, -1), G4ThreeVector( << 317 G4ThreeVector( 1, 0, 0), G4ThreeVector( << 318 G4ThreeVector( 0, -1, 0), G4ThreeVector( << 319 G4ThreeVector( s2, -s2, 0), G4ThreeVector( << 320 << 321 G4ThreeVector( 0, 1, 0), G4ThreeVector( << 322 G4ThreeVector( s2, s2, 0), G4ThreeVector( << 323 G4ThreeVector( 0, -1, 0), G4ThreeVector( << 324 G4ThreeVector( 1, 0, 0), G4ThreeVector( << 325 }; << 326 << 327 G4ThreeVector bmin, bmax; << 328 BoundingLimits(bmin, bmax); << 329 << 330 G4double dX = bmax.x() - bmin.x(); << 331 G4double dY = bmax.y() - bmin.y(); << 332 G4double dZ = bmax.z() - bmin.z(); << 333 << 334 // Define statistics and shell thickness << 335 // << 336 G4int npoints = (nstat < 1000) ? 1000 : nsta << 337 G4double coeff = 0.5 / std::cbrt(G4double(np << 338 G4double eps = (ell > 0) ? ell : coeff * std << 339 G4double del = 1.8 * eps; // shold be more t << 340 << 341 G4double minX = bmin.x() - eps; << 342 G4double minY = bmin.y() - eps; << 343 G4double minZ = bmin.z() - eps; << 344 << 345 G4double dd = 2. * eps; << 346 dX += dd; << 347 dY += dd; << 348 dZ += dd; << 349 << 350 // Calculate surface area << 351 // << 352 G4int icount = 0; << 353 for(auto i = 0; i < npoints; ++i) << 354 { << 355 G4double px = minX + dX*G4QuickRand(); << 356 G4double py = minY + dY*G4QuickRand(); << 357 G4double pz = minZ + dZ*G4QuickRand(); << 358 G4ThreeVector p = G4ThreeVector(px, py, p << 359 EInside in = Inside(p); << 360 G4double dist = 0; << 361 if (in == kInside) << 362 { << 363 if (DistanceToOut(p) >= eps) continue; << 364 G4int icase = 0; << 365 if (Inside(G4ThreeVector(px-del, py, pz) << 366 if (Inside(G4ThreeVector(px+del, py, pz) << 367 if (Inside(G4ThreeVector(px, py-del, pz) << 368 if (Inside(G4ThreeVector(px, py+del, pz) << 369 if (Inside(G4ThreeVector(px, py, pz-del) << 370 if (Inside(G4ThreeVector(px, py, pz+del) << 371 if (icase == 0) continue; << 372 G4ThreeVector v = directions[icase]; << 373 dist = DistanceToOut(p, v); << 374 G4ThreeVector n = SurfaceNormal(p + v*di << 375 dist *= v.dot(n); << 376 } << 377 else if (in == kOutside) << 378 { << 379 if (DistanceToIn(p) >= eps) continue; << 380 G4int icase = 0; << 381 if (Inside(G4ThreeVector(px-del, py, pz) << 382 if (Inside(G4ThreeVector(px+del, py, pz) << 383 if (Inside(G4ThreeVector(px, py-del, pz) << 384 if (Inside(G4ThreeVector(px, py+del, pz) << 385 if (Inside(G4ThreeVector(px, py, pz-del) << 386 if (Inside(G4ThreeVector(px, py, pz+del) << 387 if (icase == 0) continue; << 388 G4ThreeVector v = directions[icase]; << 389 dist = DistanceToIn(p, v); << 390 if (dist == kInfinity) continue; << 391 G4ThreeVector n = SurfaceNormal(p + v*di << 392 dist *= -(v.dot(n)); << 393 } << 394 if (dist < eps) ++icount; << 395 } << 396 return dX*dY*dZ*icount/npoints/dd; << 397 } << 398 << 399 ////////////////////////////////////////////// << 400 // << 401 // Returns a pointer of a dynamically allocate << 402 // Returns NULL pointer with warning in case t << 403 // implement this method. The caller has respo << 404 // << 405 << 406 G4VSolid* G4VSolid::Clone() const << 407 { << 408 std::ostringstream message; << 409 message << "Clone() method not implemented f << 410 << GetEntityType() << "!" << G4endl << 411 << "Returning NULL pointer!"; << 412 G4Exception("G4VSolid::Clone()", "GeomMgt100 << 413 return nullptr; << 414 } 92 } 415 93 416 ////////////////////////////////////////////// 94 /////////////////////////////////////////////////////////////////////////// 417 // << 95 // 418 // Calculate the maximum and minimum extents o 96 // Calculate the maximum and minimum extents of the polygon described 419 // by the vertices: pSectionIndex->pSectionInd 97 // by the vertices: pSectionIndex->pSectionIndex+1-> 420 // pSectionIndex+2->pSection 98 // pSectionIndex+2->pSectionIndex+3->pSectionIndex 421 // in the List pVertices 99 // in the List pVertices 422 // 100 // 423 // If the minimum is <pMin pMin is set to the 101 // If the minimum is <pMin pMin is set to the new minimum 424 // If the maximum is >pMax pMax is set to the 102 // If the maximum is >pMax pMax is set to the new maximum 425 // 103 // 426 // No modifications are made to pVertices 104 // No modifications are made to pVertices 427 // 105 // 428 106 429 void G4VSolid::ClipCrossSection( G4Three 107 void G4VSolid::ClipCrossSection( G4ThreeVectorList* pVertices, 430 const G4int p 108 const G4int pSectionIndex, 431 const G4Voxel 109 const G4VoxelLimits& pVoxelLimit, 432 const EAxis p << 110 const EAxis pAxis, 433 G4doubl 111 G4double& pMin, G4double& pMax) const 434 { 112 { 435 113 436 G4ThreeVectorList polygon; 114 G4ThreeVectorList polygon; 437 polygon.reserve(4); << 438 polygon.push_back((*pVertices)[pSectionIndex 115 polygon.push_back((*pVertices)[pSectionIndex]); 439 polygon.push_back((*pVertices)[pSectionIndex 116 polygon.push_back((*pVertices)[pSectionIndex+1]); 440 polygon.push_back((*pVertices)[pSectionIndex 117 polygon.push_back((*pVertices)[pSectionIndex+2]); 441 polygon.push_back((*pVertices)[pSectionIndex 118 polygon.push_back((*pVertices)[pSectionIndex+3]); >> 119 // G4cout<<"ClipCrossSection: 0-1-2-3"<<G4endl; 442 CalculateClippedPolygonExtent(polygon,pVoxel 120 CalculateClippedPolygonExtent(polygon,pVoxelLimit,pAxis,pMin,pMax); 443 return; 121 return; 444 } 122 } 445 123 446 ////////////////////////////////////////////// 124 ////////////////////////////////////////////////////////////////////////////////// 447 // 125 // 448 // Calculate the maximum and minimum extents o 126 // Calculate the maximum and minimum extents of the polygons 449 // joining the CrossSections at pSectionIndex- 127 // joining the CrossSections at pSectionIndex->pSectionIndex+3 and 450 // pSectionIndex+ 128 // pSectionIndex+4->pSectionIndex7 451 // 129 // 452 // in the List pVertices, within the boundarie 130 // in the List pVertices, within the boundaries of the voxel limits pVoxelLimit 453 // 131 // 454 // If the minimum is <pMin pMin is set to the 132 // If the minimum is <pMin pMin is set to the new minimum 455 // If the maximum is >pMax pMax is set to the 133 // If the maximum is >pMax pMax is set to the new maximum 456 // 134 // 457 // No modifications are made to pVertices 135 // No modifications are made to pVertices 458 136 459 void G4VSolid::ClipBetweenSections( G4Thr 137 void G4VSolid::ClipBetweenSections( G4ThreeVectorList* pVertices, 460 const G4int 138 const G4int pSectionIndex, 461 const G4Vox 139 const G4VoxelLimits& pVoxelLimit, 462 const EAxis << 140 const EAxis pAxis, 463 G4dou 141 G4double& pMin, G4double& pMax) const 464 { 142 { 465 G4ThreeVectorList polygon; 143 G4ThreeVectorList polygon; 466 polygon.reserve(4); << 467 polygon.push_back((*pVertices)[pSectionIndex 144 polygon.push_back((*pVertices)[pSectionIndex]); 468 polygon.push_back((*pVertices)[pSectionIndex 145 polygon.push_back((*pVertices)[pSectionIndex+4]); 469 polygon.push_back((*pVertices)[pSectionIndex 146 polygon.push_back((*pVertices)[pSectionIndex+5]); 470 polygon.push_back((*pVertices)[pSectionIndex 147 polygon.push_back((*pVertices)[pSectionIndex+1]); >> 148 // G4cout<<"ClipBetweenSections: 0-4-5-1"<<G4endl; 471 CalculateClippedPolygonExtent(polygon,pVoxel 149 CalculateClippedPolygonExtent(polygon,pVoxelLimit,pAxis,pMin,pMax); 472 polygon.clear(); 150 polygon.clear(); 473 151 474 polygon.push_back((*pVertices)[pSectionIndex 152 polygon.push_back((*pVertices)[pSectionIndex+1]); 475 polygon.push_back((*pVertices)[pSectionIndex 153 polygon.push_back((*pVertices)[pSectionIndex+5]); 476 polygon.push_back((*pVertices)[pSectionIndex 154 polygon.push_back((*pVertices)[pSectionIndex+6]); 477 polygon.push_back((*pVertices)[pSectionIndex 155 polygon.push_back((*pVertices)[pSectionIndex+2]); >> 156 // G4cout<<"ClipBetweenSections: 1-5-6-2"<<G4endl; 478 CalculateClippedPolygonExtent(polygon,pVoxel 157 CalculateClippedPolygonExtent(polygon,pVoxelLimit,pAxis,pMin,pMax); 479 polygon.clear(); 158 polygon.clear(); 480 159 481 polygon.push_back((*pVertices)[pSectionIndex 160 polygon.push_back((*pVertices)[pSectionIndex+2]); 482 polygon.push_back((*pVertices)[pSectionIndex 161 polygon.push_back((*pVertices)[pSectionIndex+6]); 483 polygon.push_back((*pVertices)[pSectionIndex 162 polygon.push_back((*pVertices)[pSectionIndex+7]); 484 polygon.push_back((*pVertices)[pSectionIndex 163 polygon.push_back((*pVertices)[pSectionIndex+3]); >> 164 // G4cout<<"ClipBetweenSections: 2-6-7-3"<<G4endl; 485 CalculateClippedPolygonExtent(polygon,pVoxel 165 CalculateClippedPolygonExtent(polygon,pVoxelLimit,pAxis,pMin,pMax); 486 polygon.clear(); 166 polygon.clear(); 487 167 488 polygon.push_back((*pVertices)[pSectionIndex 168 polygon.push_back((*pVertices)[pSectionIndex+3]); 489 polygon.push_back((*pVertices)[pSectionIndex 169 polygon.push_back((*pVertices)[pSectionIndex+7]); 490 polygon.push_back((*pVertices)[pSectionIndex 170 polygon.push_back((*pVertices)[pSectionIndex+4]); 491 polygon.push_back((*pVertices)[pSectionIndex 171 polygon.push_back((*pVertices)[pSectionIndex]); >> 172 // G4cout<<"ClipBetweenSections: 3-7-4-0"<<G4endl; 492 CalculateClippedPolygonExtent(polygon,pVoxel 173 CalculateClippedPolygonExtent(polygon,pVoxelLimit,pAxis,pMin,pMax); 493 return; 174 return; 494 } 175 } 495 176 496 177 497 ////////////////////////////////////////////// 178 /////////////////////////////////////////////////////////////////////////////// 498 // 179 // 499 // Calculate the maximum and minimum extents o 180 // Calculate the maximum and minimum extents of the convex polygon pPolygon 500 // along the axis pAxis, within the limits pVo 181 // along the axis pAxis, within the limits pVoxelLimit 501 // 182 // 502 183 503 void 184 void 504 G4VSolid::CalculateClippedPolygonExtent(G4Thre 185 G4VSolid::CalculateClippedPolygonExtent(G4ThreeVectorList& pPolygon, 505 const G4Voxe 186 const G4VoxelLimits& pVoxelLimit, 506 const EAxis << 187 const EAxis pAxis, 507 G4doub 188 G4double& pMin, 508 G4doub 189 G4double& pMax) const 509 { 190 { 510 G4int noLeft,i; 191 G4int noLeft,i; 511 G4double component; 192 G4double component; 512 << 193 /* >> 194 G4cout<<G4endl; >> 195 for(i = 0 ; i < pPolygon.size() ; i++ ) >> 196 { >> 197 G4cout << i << "\t" >> 198 << "p.x = " << pPolygon[i].operator()(pAxis) << "\t" >> 199 // << "p.y = " << pPolygon[i].y() << "\t" >> 200 // << "p.z = " << pPolygon[i].z() << "\t" >> 201 << G4endl; >> 202 } >> 203 G4cout<<G4endl; >> 204 */ 513 ClipPolygon(pPolygon,pVoxelLimit,pAxis); 205 ClipPolygon(pPolygon,pVoxelLimit,pAxis); 514 noLeft = (G4int)pPolygon.size(); << 206 noLeft = pPolygon.size(); 515 207 516 if ( noLeft != 0 ) << 208 if ( noLeft ) 517 { 209 { 518 for (i=0; i<noLeft; ++i) << 210 // G4cout<<G4endl; >> 211 for (i=0;i<noLeft;i++) 519 { 212 { 520 component = pPolygon[i].operator()(pAxis 213 component = pPolygon[i].operator()(pAxis); 521 << 214 // G4cout <<i<<"\t"<<component<<G4endl; 522 if (component < pMin) << 215 523 { << 216 if (component < pMin) 524 pMin = component; << 217 { >> 218 // G4cout <<i<<"\t"<<"Pmin = "<<component<<G4endl; >> 219 pMin = component; 525 } 220 } 526 if (component > pMax) 221 if (component > pMax) 527 { << 222 { 528 pMax = component; << 223 // G4cout <<i<<"\t"<<"PMax = "<<component<<G4endl; 529 } << 224 pMax = component; >> 225 } 530 } 226 } >> 227 // G4cout<<G4endl; 531 } 228 } >> 229 // G4cout<<"pMin = "<<pMin<<"\t"<<"pMax = "<<pMax<<G4endl; 532 } 230 } 533 231 534 ////////////////////////////////////////////// 232 ///////////////////////////////////////////////////////////////////////////// 535 // 233 // 536 // Clip the convex polygon described by the ve 234 // Clip the convex polygon described by the vertices at 537 // pSectionIndex ->pSectionIndex+3 within pVer 235 // pSectionIndex ->pSectionIndex+3 within pVertices to the limits pVoxelLimit 538 // 236 // 539 // Set pMin to the smallest 237 // Set pMin to the smallest 540 // 238 // 541 // Calculate the extent of the polygon along p 239 // Calculate the extent of the polygon along pAxis, when clipped to the 542 // limits pVoxelLimit. If the polygon exists a 240 // limits pVoxelLimit. If the polygon exists after clippin, set pMin to 543 // the polygon's minimum extent along the axis 241 // the polygon's minimum extent along the axis if <pMin, and set pMax to 544 // the polygon's maximum extent along the axis 242 // the polygon's maximum extent along the axis if >pMax. 545 // 243 // 546 // The polygon is described by a set of vector 244 // The polygon is described by a set of vectors, where each vector represents 547 // a vertex, so that the polygon is described 245 // a vertex, so that the polygon is described by the vertex sequence: 548 // 0th->1st 1st->2nd 2nd->... nth->0th 246 // 0th->1st 1st->2nd 2nd->... nth->0th 549 // 247 // 550 // Modifications to the polygon are made 248 // Modifications to the polygon are made 551 // 249 // 552 // NOTE: Execessive copying during clipping 250 // NOTE: Execessive copying during clipping 553 251 554 void G4VSolid::ClipPolygon( G4ThreeVector 252 void G4VSolid::ClipPolygon( G4ThreeVectorList& pPolygon, 555 const G4VoxelLimits 253 const G4VoxelLimits& pVoxelLimit, 556 const EAxis 254 const EAxis ) const 557 { 255 { 558 G4ThreeVectorList outputPolygon; 256 G4ThreeVectorList outputPolygon; 559 257 560 if ( pVoxelLimit.IsLimited() ) 258 if ( pVoxelLimit.IsLimited() ) 561 { 259 { 562 if (pVoxelLimit.IsXLimited() ) // && pAxis 260 if (pVoxelLimit.IsXLimited() ) // && pAxis != kXAxis) 563 { 261 { 564 G4VoxelLimits simpleLimit1; 262 G4VoxelLimits simpleLimit1; 565 simpleLimit1.AddLimit(kXAxis,pVoxelLimit 263 simpleLimit1.AddLimit(kXAxis,pVoxelLimit.GetMinXExtent(),kInfinity); >> 264 // G4cout<<"MinXExtent()"<<G4endl; 566 ClipPolygonToSimpleLimits(pPolygon,outpu 265 ClipPolygonToSimpleLimits(pPolygon,outputPolygon,simpleLimit1); 567 << 266 568 pPolygon.clear(); 267 pPolygon.clear(); 569 268 570 if ( outputPolygon.empty() ) return; << 269 if ( !outputPolygon.size() ) return; 571 270 572 G4VoxelLimits simpleLimit2; 271 G4VoxelLimits simpleLimit2; >> 272 // G4cout<<"MaxXExtent()"<<G4endl; 573 simpleLimit2.AddLimit(kXAxis,-kInfinity, 273 simpleLimit2.AddLimit(kXAxis,-kInfinity,pVoxelLimit.GetMaxXExtent()); 574 ClipPolygonToSimpleLimits(outputPolygon, 274 ClipPolygonToSimpleLimits(outputPolygon,pPolygon,simpleLimit2); 575 275 576 if ( pPolygon.empty() ) return; << 276 if ( !pPolygon.size() ) return; 577 else outputPoly 277 else outputPolygon.clear(); 578 } 278 } 579 if ( pVoxelLimit.IsYLimited() ) // && pAxi 279 if ( pVoxelLimit.IsYLimited() ) // && pAxis != kYAxis) 580 { 280 { 581 G4VoxelLimits simpleLimit1; 281 G4VoxelLimits simpleLimit1; 582 simpleLimit1.AddLimit(kYAxis,pVoxelLimit 282 simpleLimit1.AddLimit(kYAxis,pVoxelLimit.GetMinYExtent(),kInfinity); 583 ClipPolygonToSimpleLimits(pPolygon,outpu 283 ClipPolygonToSimpleLimits(pPolygon,outputPolygon,simpleLimit1); 584 284 585 // Must always clear pPolygon - for clip 285 // Must always clear pPolygon - for clip to simpleLimit2 and in case of 586 // early exit 286 // early exit 587 287 588 pPolygon.clear(); 288 pPolygon.clear(); 589 289 590 if ( outputPolygon.empty() ) return; << 290 if ( !outputPolygon.size() ) return; 591 291 592 G4VoxelLimits simpleLimit2; 292 G4VoxelLimits simpleLimit2; 593 simpleLimit2.AddLimit(kYAxis,-kInfinity, 293 simpleLimit2.AddLimit(kYAxis,-kInfinity,pVoxelLimit.GetMaxYExtent()); 594 ClipPolygonToSimpleLimits(outputPolygon, 294 ClipPolygonToSimpleLimits(outputPolygon,pPolygon,simpleLimit2); 595 295 596 if ( pPolygon.empty() ) return; << 296 if ( !pPolygon.size() ) return; 597 else outputPoly 297 else outputPolygon.clear(); 598 } 298 } 599 if ( pVoxelLimit.IsZLimited() ) // && pAxi 299 if ( pVoxelLimit.IsZLimited() ) // && pAxis != kZAxis) 600 { 300 { 601 G4VoxelLimits simpleLimit1; 301 G4VoxelLimits simpleLimit1; 602 simpleLimit1.AddLimit(kZAxis,pVoxelLimit 302 simpleLimit1.AddLimit(kZAxis,pVoxelLimit.GetMinZExtent(),kInfinity); 603 ClipPolygonToSimpleLimits(pPolygon,outpu 303 ClipPolygonToSimpleLimits(pPolygon,outputPolygon,simpleLimit1); 604 304 605 // Must always clear pPolygon - for clip 305 // Must always clear pPolygon - for clip to simpleLimit2 and in case of 606 // early exit 306 // early exit 607 307 608 pPolygon.clear(); 308 pPolygon.clear(); 609 309 610 if ( outputPolygon.empty() ) return; << 310 if ( !outputPolygon.size() ) return; 611 311 612 G4VoxelLimits simpleLimit2; 312 G4VoxelLimits simpleLimit2; 613 simpleLimit2.AddLimit(kZAxis,-kInfinity, 313 simpleLimit2.AddLimit(kZAxis,-kInfinity,pVoxelLimit.GetMaxZExtent()); 614 ClipPolygonToSimpleLimits(outputPolygon, 314 ClipPolygonToSimpleLimits(outputPolygon,pPolygon,simpleLimit2); 615 315 616 // Return after final clip - no cleanup 316 // Return after final clip - no cleanup 617 } 317 } 618 } 318 } 619 } 319 } 620 320 621 ////////////////////////////////////////////// 321 //////////////////////////////////////////////////////////////////////////// 622 // 322 // 623 // pVoxelLimits must be only limited along one 323 // pVoxelLimits must be only limited along one axis, and either the maximum 624 // along the axis must be +kInfinity, or the m 324 // along the axis must be +kInfinity, or the minimum -kInfinity 625 325 626 void 326 void 627 G4VSolid::ClipPolygonToSimpleLimits( G4ThreeVe 327 G4VSolid::ClipPolygonToSimpleLimits( G4ThreeVectorList& pPolygon, 628 G4ThreeVe 328 G4ThreeVectorList& outputPolygon, 629 const G4VoxelLi 329 const G4VoxelLimits& pVoxelLimit ) const 630 { 330 { 631 G4int i; 331 G4int i; 632 auto noVertices = (G4int)pPolygon.size(); << 332 G4int noVertices=pPolygon.size(); 633 G4ThreeVector vEnd,vStart; 333 G4ThreeVector vEnd,vStart; 634 334 635 for (i = 0 ; i < noVertices ; ++i ) << 335 for (i = 0 ; i < noVertices ; i++ ) 636 { 336 { 637 vStart = pPolygon[i]; 337 vStart = pPolygon[i]; >> 338 // G4cout << "i = " << i << G4endl; 638 if ( i == noVertices-1 ) vEnd = pPolygo 339 if ( i == noVertices-1 ) vEnd = pPolygon[0]; 639 else vEnd = pPolygo 340 else vEnd = pPolygon[i+1]; 640 341 641 if ( pVoxelLimit.Inside(vStart) ) 342 if ( pVoxelLimit.Inside(vStart) ) 642 { 343 { 643 if (pVoxelLimit.Inside(vEnd)) 344 if (pVoxelLimit.Inside(vEnd)) 644 { 345 { 645 // vStart and vEnd inside -> output en 346 // vStart and vEnd inside -> output end point 646 // 347 // 647 outputPolygon.push_back(vEnd); 348 outputPolygon.push_back(vEnd); 648 } 349 } 649 else 350 else 650 { 351 { 651 // vStart inside, vEnd outside -> outp 352 // vStart inside, vEnd outside -> output crossing point 652 // 353 // >> 354 // G4cout << "vStart inside, vEnd outside" << G4endl; 653 pVoxelLimit.ClipToLimits(vStart,vEnd); 355 pVoxelLimit.ClipToLimits(vStart,vEnd); 654 outputPolygon.push_back(vEnd); 356 outputPolygon.push_back(vEnd); 655 } << 357 } 656 } 358 } 657 else 359 else 658 { 360 { 659 if (pVoxelLimit.Inside(vEnd)) 361 if (pVoxelLimit.Inside(vEnd)) 660 { 362 { 661 // vStart outside, vEnd inside -> outp 363 // vStart outside, vEnd inside -> output inside section 662 // 364 // >> 365 // G4cout << "vStart outside, vEnd inside" << G4endl; 663 pVoxelLimit.ClipToLimits(vStart,vEnd); 366 pVoxelLimit.ClipToLimits(vStart,vEnd); 664 outputPolygon.push_back(vStart); 367 outputPolygon.push_back(vStart); 665 outputPolygon.push_back(vEnd); << 368 outputPolygon.push_back(vEnd); 666 } 369 } 667 else // Both point outside -> no output 370 else // Both point outside -> no output 668 { 371 { 669 // outputPolygon.push_back(vStart); 372 // outputPolygon.push_back(vStart); 670 // outputPolygon.push_back(vEnd); << 373 // outputPolygon.push_back(vEnd); 671 } 374 } 672 } 375 } 673 } 376 } 674 } 377 } 675 378 676 ////////////////////////////////////////////// << 379 const G4VSolid* G4VSolid::GetConstituentSolid(G4int) const 677 // << 380 { return 0; } 678 // Throw exception (warning) for solids not im << 679 381 680 void G4VSolid::BoundingLimits(G4ThreeVector& p << 382 G4VSolid* G4VSolid::GetConstituentSolid(G4int) 681 { << 383 { return 0; } 682 std::ostringstream message; << 683 message << "Not implemented for solid: " << 684 << GetEntityType() << " !" << 685 << "\nReturning infinite boundinx bo << 686 G4Exception("G4VSolid::BoundingLimits()", "G << 687 JustWarning, message); << 688 384 689 pMin.set(-kInfinity,-kInfinity,-kInfinity); << 385 const G4DisplacedSolid* G4VSolid::GetDisplacedSolidPtr() const 690 pMax.set( kInfinity, kInfinity, kInfinity); << 386 { return 0; } 691 } << 692 387 693 ////////////////////////////////////////////// << 388 G4DisplacedSolid* G4VSolid::GetDisplacedSolidPtr() 694 // << 389 { return 0; } 695 // Get G4VisExtent - bounding box for graphics << 696 390 697 G4VisExtent G4VSolid::GetExtent () const << 391 G4VisExtent G4VSolid::GetExtent () const 698 { 392 { 699 G4VisExtent extent; 393 G4VisExtent extent; 700 G4VoxelLimits voxelLimits; // Defaults to " 394 G4VoxelLimits voxelLimits; // Defaults to "infinite" limits. 701 G4AffineTransform affineTransform; 395 G4AffineTransform affineTransform; 702 G4double vmin, vmax; 396 G4double vmin, vmax; 703 CalculateExtent(kXAxis,voxelLimits,affineTra 397 CalculateExtent(kXAxis,voxelLimits,affineTransform,vmin,vmax); 704 extent.SetXmin (vmin); 398 extent.SetXmin (vmin); 705 extent.SetXmax (vmax); 399 extent.SetXmax (vmax); 706 CalculateExtent(kYAxis,voxelLimits,affineTra 400 CalculateExtent(kYAxis,voxelLimits,affineTransform,vmin,vmax); 707 extent.SetYmin (vmin); 401 extent.SetYmin (vmin); 708 extent.SetYmax (vmax); 402 extent.SetYmax (vmax); 709 CalculateExtent(kZAxis,voxelLimits,affineTra 403 CalculateExtent(kZAxis,voxelLimits,affineTransform,vmin,vmax); 710 extent.SetZmin (vmin); 404 extent.SetZmin (vmin); 711 extent.SetZmax (vmax); 405 extent.SetZmax (vmax); 712 return extent; 406 return extent; 713 } 407 } 714 408 715 G4Polyhedron* G4VSolid::CreatePolyhedron () co 409 G4Polyhedron* G4VSolid::CreatePolyhedron () const 716 { 410 { 717 return nullptr; << 411 return 0; 718 } 412 } 719 413 720 G4Polyhedron* G4VSolid::GetPolyhedron () const << 414 G4NURBS* G4VSolid::CreateNURBS () const 721 { 415 { 722 return nullptr; << 416 return 0; 723 } 417 } 724 418