Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4VSolid implementation for solid base clas << 27 // 26 // 28 // 10.10.18 E.Tcherniaev, more robust Estimate << 27 // $Id: G4VSolid.cc 72936 2013-08-14 13:17:11Z gcosmo $ 29 // 30.06.95 P.Kent, Created. << 28 // >> 29 // class G4VSolid >> 30 // >> 31 // Implementation for solid base class >> 32 // >> 33 // History: >> 34 // >> 35 // 06.12.02 V.Grichine, restored original conditions in ClipPolygon() >> 36 // 10.05.02 V.Grichine, ClipPolygon(): clip only other axis and limited voxels >> 37 // 15.04.02 V.Grichine, bug fixed in ClipPolygon(): clip only one axis >> 38 // 13.03.02 V.Grichine, cosmetics of voxel limit functions >> 39 // 15.11.00 D.Williams, V.Grichine, fix in CalculateClippedPolygonExtent() >> 40 // 10.07.95 P.Kent, Added == operator, solid Store entry >> 41 // 30.06.95 P.Kent, Created. 30 // ------------------------------------------- 42 // -------------------------------------------------------------------- 31 43 32 #include "G4VSolid.hh" 44 #include "G4VSolid.hh" 33 #include "G4SolidStore.hh" 45 #include "G4SolidStore.hh" 34 #include "globals.hh" 46 #include "globals.hh" 35 #include "G4QuickRand.hh" << 47 #include "Randomize.hh" 36 #include "G4GeometryTolerance.hh" 48 #include "G4GeometryTolerance.hh" 37 49 38 #include "G4VoxelLimits.hh" 50 #include "G4VoxelLimits.hh" 39 #include "G4AffineTransform.hh" 51 #include "G4AffineTransform.hh" 40 #include "G4VisExtent.hh" 52 #include "G4VisExtent.hh" 41 53 42 ////////////////////////////////////////////// 54 ////////////////////////////////////////////////////////////////////////// 43 // 55 // 44 // Streaming operator dumping solid contents << 45 << 46 std::ostream& operator<< ( std::ostream& os, c << 47 { << 48 return e.StreamInfo(os); << 49 } << 50 << 51 ////////////////////////////////////////////// << 52 // << 53 // Constructor 56 // Constructor 54 // - Copies name 57 // - Copies name 55 // - Add ourselves to solid Store 58 // - Add ourselves to solid Store 56 59 57 G4VSolid::G4VSolid(const G4String& name) 60 G4VSolid::G4VSolid(const G4String& name) 58 : fshapeName(name) 61 : fshapeName(name) 59 { 62 { 60 kCarTolerance = G4GeometryTolerance::GetIn 63 kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance(); 61 64 62 // Register to store 65 // Register to store 63 // 66 // 64 G4SolidStore::GetInstance()->Register(this 67 G4SolidStore::GetInstance()->Register(this); 65 } 68 } 66 69 67 ////////////////////////////////////////////// 70 ////////////////////////////////////////////////////////////////////////// 68 // 71 // 69 // Copy constructor 72 // Copy constructor 70 // 73 // 71 74 72 G4VSolid::G4VSolid(const G4VSolid& rhs) 75 G4VSolid::G4VSolid(const G4VSolid& rhs) 73 : kCarTolerance(rhs.kCarTolerance), fshapeNa 76 : kCarTolerance(rhs.kCarTolerance), fshapeName(rhs.fshapeName) 74 { 77 { 75 // Register to store 78 // Register to store 76 // 79 // 77 G4SolidStore::GetInstance()->Register(this 80 G4SolidStore::GetInstance()->Register(this); 78 } 81 } 79 82 80 ////////////////////////////////////////////// 83 ////////////////////////////////////////////////////////////////////////// 81 // 84 // 82 // Fake default constructor - sets only member 85 // Fake default constructor - sets only member data and allocates memory 83 // for usage restri 86 // for usage restricted to object persistency. 84 // 87 // 85 G4VSolid::G4VSolid( __void__& ) 88 G4VSolid::G4VSolid( __void__& ) 86 : fshapeName("") 89 : fshapeName("") 87 { 90 { 88 // Register to store 91 // Register to store 89 // 92 // 90 G4SolidStore::GetInstance()->Register(this 93 G4SolidStore::GetInstance()->Register(this); 91 } 94 } 92 95 93 ////////////////////////////////////////////// 96 ////////////////////////////////////////////////////////////////////////// 94 // 97 // 95 // Destructor (virtual) 98 // Destructor (virtual) 96 // - Remove ourselves from solid Store 99 // - Remove ourselves from solid Store 97 100 98 G4VSolid::~G4VSolid() 101 G4VSolid::~G4VSolid() 99 { 102 { 100 G4SolidStore::GetInstance()->DeRegister(th 103 G4SolidStore::GetInstance()->DeRegister(this); 101 } 104 } 102 105 103 ////////////////////////////////////////////// 106 ////////////////////////////////////////////////////////////////////////// 104 // 107 // 105 // Assignment operator 108 // Assignment operator 106 109 107 G4VSolid& G4VSolid::operator = (const G4VSolid << 110 G4VSolid& G4VSolid::operator = (const G4VSolid& rhs) 108 { 111 { 109 // Check assignment to self 112 // Check assignment to self 110 // 113 // 111 if (this == &rhs) { return *this; } 114 if (this == &rhs) { return *this; } 112 115 113 // Copy data 116 // Copy data 114 // 117 // 115 kCarTolerance = rhs.kCarTolerance; 118 kCarTolerance = rhs.kCarTolerance; 116 fshapeName = rhs.fshapeName; 119 fshapeName = rhs.fshapeName; 117 120 118 return *this; 121 return *this; 119 } << 122 } 120 << 121 << 122 123 123 ////////////////////////////////////////////// 124 ////////////////////////////////////////////////////////////////////////// 124 // 125 // 125 // Set solid name and notify store of the chan << 126 // Streaming operator dumping solid contents 126 127 127 void G4VSolid::SetName(const G4String& name) << 128 std::ostream& operator<< ( std::ostream& os, const G4VSolid& e ) 128 { 129 { 129 fshapeName = name; << 130 return e.StreamInfo(os); 130 G4SolidStore::GetInstance()->SetMapValid(fal << 131 } 131 } 132 132 133 ////////////////////////////////////////////// 133 ////////////////////////////////////////////////////////////////////////// 134 // 134 // 135 // Throw exception if ComputeDimensions called 135 // Throw exception if ComputeDimensions called for illegal derived class 136 136 137 void G4VSolid::ComputeDimensions(G4VPVParamete 137 void G4VSolid::ComputeDimensions(G4VPVParameterisation*, 138 const G4int, 138 const G4int, 139 const G4VPhys 139 const G4VPhysicalVolume*) 140 { 140 { 141 std::ostringstream message; 141 std::ostringstream message; 142 message << "Illegal call to G4VSolid::Comp 142 message << "Illegal call to G4VSolid::ComputeDimensions()" << G4endl 143 << "Method not overloaded by deriv 143 << "Method not overloaded by derived class !"; 144 G4Exception("G4VSolid::ComputeDimensions() 144 G4Exception("G4VSolid::ComputeDimensions()", "GeomMgt0003", 145 FatalException, message); 145 FatalException, message); 146 } 146 } 147 147 148 ////////////////////////////////////////////// 148 ////////////////////////////////////////////////////////////////////////// 149 // 149 // 150 // Throw exception (warning) for solids not im 150 // Throw exception (warning) for solids not implementing the method 151 151 152 G4ThreeVector G4VSolid::GetPointOnSurface() co 152 G4ThreeVector G4VSolid::GetPointOnSurface() const 153 { 153 { 154 std::ostringstream message; 154 std::ostringstream message; 155 message << "Not implemented for solid: " 155 message << "Not implemented for solid: " 156 << GetEntityType() << " !" << G4en << 156 << this->GetEntityType() << " !" << G4endl 157 << "Returning origin."; 157 << "Returning origin."; 158 G4Exception("G4VSolid::GetPointOnSurface() 158 G4Exception("G4VSolid::GetPointOnSurface()", "GeomMgt1001", 159 JustWarning, message); 159 JustWarning, message); 160 return {0,0,0}; << 160 return G4ThreeVector(0,0,0); 161 } 161 } 162 162 163 ////////////////////////////////////////////// 163 ////////////////////////////////////////////////////////////////////////// 164 // 164 // 165 // Returns total number of constituents that w << 166 // of the solid. For non-Boolean solids the re << 167 << 168 G4int G4VSolid::GetNumOfConstituents() const << 169 { return 1; } << 170 << 171 ////////////////////////////////////////////// << 172 // << 173 // Returns true if the solid has only planar f << 174 << 175 G4bool G4VSolid::IsFaceted() const << 176 { return false; } << 177 << 178 ////////////////////////////////////////////// << 179 // << 180 // Dummy implementations ... 165 // Dummy implementations ... 181 166 182 const G4VSolid* G4VSolid::GetConstituentSolid( 167 const G4VSolid* G4VSolid::GetConstituentSolid(G4int) const 183 { return nullptr; } << 168 { return 0; } 184 169 185 G4VSolid* G4VSolid::GetConstituentSolid(G4int) 170 G4VSolid* G4VSolid::GetConstituentSolid(G4int) 186 { return nullptr; } << 171 { return 0; } 187 172 188 const G4DisplacedSolid* G4VSolid::GetDisplaced 173 const G4DisplacedSolid* G4VSolid::GetDisplacedSolidPtr() const 189 { return nullptr; } << 174 { return 0; } 190 175 191 G4DisplacedSolid* G4VSolid::GetDisplacedSolidP << 176 G4DisplacedSolid* G4VSolid::GetDisplacedSolidPtr() 192 { return nullptr; } << 177 { return 0; } 193 178 194 ////////////////////////////////////////////// 179 //////////////////////////////////////////////////////////////// 195 // 180 // 196 // Returns an estimation of the solid volume i 181 // Returns an estimation of the solid volume in internal units. 197 // The number of statistics and error accuracy 182 // The number of statistics and error accuracy is fixed. 198 // This method may be overloaded by derived cl 183 // This method may be overloaded by derived classes to compute the 199 // exact geometrical quantity for solids where 184 // exact geometrical quantity for solids where this is possible. 200 // or anyway to cache the computed value. 185 // or anyway to cache the computed value. 201 // This implementation does NOT cache the comp 186 // This implementation does NOT cache the computed value. 202 187 203 G4double G4VSolid::GetCubicVolume() 188 G4double G4VSolid::GetCubicVolume() 204 { 189 { 205 G4int cubVolStatistics = 1000000; 190 G4int cubVolStatistics = 1000000; 206 G4double cubVolEpsilon = 0.001; 191 G4double cubVolEpsilon = 0.001; 207 return EstimateCubicVolume(cubVolStatistics, 192 return EstimateCubicVolume(cubVolStatistics, cubVolEpsilon); 208 } 193 } 209 194 210 ////////////////////////////////////////////// 195 //////////////////////////////////////////////////////////////// 211 // 196 // 212 // Calculate cubic volume based on Inside() me 197 // Calculate cubic volume based on Inside() method. 213 // Accuracy is limited by the second argument 198 // Accuracy is limited by the second argument or the statistics 214 // expressed by the first argument. 199 // expressed by the first argument. 215 // Implementation is courtesy of Vasiliki Desp 200 // Implementation is courtesy of Vasiliki Despoina Mitsou, 216 // University of Athens. 201 // University of Athens. 217 202 218 G4double G4VSolid::EstimateCubicVolume(G4int n 203 G4double G4VSolid::EstimateCubicVolume(G4int nStat, G4double epsilon) const 219 { 204 { 220 G4int iInside=0; 205 G4int iInside=0; 221 G4double px,py,pz,minX,maxX,minY,maxY,minZ,m 206 G4double px,py,pz,minX,maxX,minY,maxY,minZ,maxZ,volume,halfepsilon; 222 G4ThreeVector p; 207 G4ThreeVector p; 223 EInside in; 208 EInside in; 224 209 225 // values needed for CalculateExtent signatu 210 // values needed for CalculateExtent signature 226 211 227 G4VoxelLimits limit; // Unlim 212 G4VoxelLimits limit; // Unlimited 228 G4AffineTransform origin; 213 G4AffineTransform origin; 229 214 230 // min max extents of pSolid along X,Y,Z 215 // min max extents of pSolid along X,Y,Z 231 216 232 CalculateExtent(kXAxis,limit,origin,minX,max << 217 this->CalculateExtent(kXAxis,limit,origin,minX,maxX); 233 CalculateExtent(kYAxis,limit,origin,minY,max << 218 this->CalculateExtent(kYAxis,limit,origin,minY,maxY); 234 CalculateExtent(kZAxis,limit,origin,minZ,max << 219 this->CalculateExtent(kZAxis,limit,origin,minZ,maxZ); 235 220 236 // limits 221 // limits 237 222 238 if(nStat < 100) nStat = 100; 223 if(nStat < 100) nStat = 100; 239 if(epsilon > 0.01) epsilon = 0.01; 224 if(epsilon > 0.01) epsilon = 0.01; 240 halfepsilon = 0.5*epsilon; 225 halfepsilon = 0.5*epsilon; 241 226 242 for(auto i = 0; i < nStat; ++i ) << 227 for(G4int i = 0; i < nStat; i++ ) 243 { 228 { 244 px = minX-halfepsilon+(maxX-minX+epsilon)* << 229 px = minX-halfepsilon+(maxX-minX+epsilon)*G4UniformRand(); 245 py = minY-halfepsilon+(maxY-minY+epsilon)* << 230 py = minY-halfepsilon+(maxY-minY+epsilon)*G4UniformRand(); 246 pz = minZ-halfepsilon+(maxZ-minZ+epsilon)* << 231 pz = minZ-halfepsilon+(maxZ-minZ+epsilon)*G4UniformRand(); 247 p = G4ThreeVector(px,py,pz); 232 p = G4ThreeVector(px,py,pz); 248 in = Inside(p); << 233 in = this->Inside(p); 249 if(in != kOutside) ++iInside; << 234 if(in != kOutside) iInside++; 250 } 235 } 251 volume = (maxX-minX+epsilon)*(maxY-minY+epsi 236 volume = (maxX-minX+epsilon)*(maxY-minY+epsilon) 252 * (maxZ-minZ+epsilon)*iInside/nStat; 237 * (maxZ-minZ+epsilon)*iInside/nStat; 253 return volume; 238 return volume; 254 } 239 } 255 240 256 ////////////////////////////////////////////// 241 //////////////////////////////////////////////////////////////// 257 // 242 // 258 // Returns an estimation of the solid surface 243 // Returns an estimation of the solid surface area in internal units. 259 // The number of statistics and error accuracy 244 // The number of statistics and error accuracy is fixed. 260 // This method may be overloaded by derived cl 245 // This method may be overloaded by derived classes to compute the 261 // exact geometrical quantity for solids where 246 // exact geometrical quantity for solids where this is possible. 262 // or anyway to cache the computed value. 247 // or anyway to cache the computed value. 263 // This implementation does NOT cache the comp 248 // This implementation does NOT cache the computed value. 264 249 265 G4double G4VSolid::GetSurfaceArea() 250 G4double G4VSolid::GetSurfaceArea() 266 { 251 { 267 G4int stat = 1000000; 252 G4int stat = 1000000; 268 G4double ell = -1.; 253 G4double ell = -1.; 269 return EstimateSurfaceArea(stat,ell); 254 return EstimateSurfaceArea(stat,ell); 270 } 255 } 271 256 272 ////////////////////////////////////////////// << 257 //////////////////////////////////////////////////////////////// 273 // 258 // 274 // Calculate surface area by estimating volume << 259 // Estimate surface area based on Inside(), DistanceToIn(), and 275 // surrounding the surface using Monte-Carlo m << 260 // DistanceToOut() methods. Accuracy is limited by the statistics 276 // Input parameters: << 261 // defined by the first argument. Implemented by Mikhail Kosov. 277 // nstat - statistics (number of random poi << 262 278 // eps - shell thinkness << 263 G4double G4VSolid::EstimateSurfaceArea(G4int nStat, G4double ell) const 279 << 264 { 280 G4double G4VSolid::EstimateSurfaceArea(G4int n << 265 G4int inside=0; 281 { << 266 G4double px,py,pz,minX,maxX,minY,maxY,minZ,maxZ,surf; 282 static const G4double s2 = 1./std::sqrt(2.); << 267 G4ThreeVector p; 283 static const G4double s3 = 1./std::sqrt(3.); << 268 EInside in; 284 static const G4ThreeVector directions[64] = << 269 >> 270 // values needed for CalculateExtent signature >> 271 >> 272 G4VoxelLimits limit; // Unlimited >> 273 G4AffineTransform origin; >> 274 >> 275 // min max extents of pSolid along X,Y,Z >> 276 >> 277 this->CalculateExtent(kXAxis,limit,origin,minX,maxX); >> 278 this->CalculateExtent(kYAxis,limit,origin,minY,maxY); >> 279 this->CalculateExtent(kZAxis,limit,origin,minZ,maxZ); >> 280 >> 281 // limits >> 282 >> 283 if(nStat < 100) { nStat = 100; } >> 284 >> 285 G4double dX=maxX-minX; >> 286 G4double dY=maxY-minY; >> 287 G4double dZ=maxZ-minZ; >> 288 if(ell<=0.) // Automatic definition of skin thickness 285 { 289 { 286 G4ThreeVector( 0, 0, 0), G4ThreeVector( << 290 G4double minval=dX; 287 G4ThreeVector( 1, 0, 0), G4ThreeVector( << 291 if(dY<dX) { minval=dY; } 288 G4ThreeVector( 0, -1, 0), G4ThreeVector( << 292 if(dZ<minval) { minval=dZ; } 289 G4ThreeVector( s2, -s2, 0), G4ThreeVector( << 293 ell=.01*minval; 290 << 294 } 291 G4ThreeVector( 0, 1, 0), G4ThreeVector( << 295 292 G4ThreeVector( s2, s2, 0), G4ThreeVector( << 296 G4double dd=2*ell; 293 G4ThreeVector( 0, -1, 0), G4ThreeVector( << 297 minX-=ell; minY-=ell; minZ-=ell; dX+=dd; dY+=dd; dZ+=dd; 294 G4ThreeVector( 1, 0, 0), G4ThreeVector( << 298 295 << 299 for(G4int i = 0; i < nStat; i++ ) 296 G4ThreeVector( 0, 0, -1), G4ThreeVector( << 297 G4ThreeVector( s2, 0,-s2), G4ThreeVector( << 298 G4ThreeVector( 0,-s2,-s2), G4ThreeVector( << 299 G4ThreeVector( s3,-s3,-s3), G4ThreeVector( << 300 << 301 G4ThreeVector( 0, s2,-s2), G4ThreeVector( << 302 G4ThreeVector( s3, s3,-s3), G4ThreeVector( << 303 G4ThreeVector( 0, 0, -1), G4ThreeVector( << 304 G4ThreeVector( s2, 0,-s2), G4ThreeVector( << 305 << 306 G4ThreeVector( 0, 0, 1), G4ThreeVector( << 307 G4ThreeVector( s2, 0, s2), G4ThreeVector( << 308 G4ThreeVector( 0,-s2, s2), G4ThreeVector( << 309 G4ThreeVector( s3,-s3, s3), G4ThreeVector( << 310 << 311 G4ThreeVector( 0, s2, s2), G4ThreeVector( << 312 G4ThreeVector( s3, s3, s3), G4ThreeVector( << 313 G4ThreeVector( 0, 0, 1), G4ThreeVector( << 314 G4ThreeVector( s2, 0, s2), G4ThreeVector( << 315 << 316 G4ThreeVector( 0, 0, -1), G4ThreeVector( << 317 G4ThreeVector( 1, 0, 0), G4ThreeVector( << 318 G4ThreeVector( 0, -1, 0), G4ThreeVector( << 319 G4ThreeVector( s2, -s2, 0), G4ThreeVector( << 320 << 321 G4ThreeVector( 0, 1, 0), G4ThreeVector( << 322 G4ThreeVector( s2, s2, 0), G4ThreeVector( << 323 G4ThreeVector( 0, -1, 0), G4ThreeVector( << 324 G4ThreeVector( 1, 0, 0), G4ThreeVector( << 325 }; << 326 << 327 G4ThreeVector bmin, bmax; << 328 BoundingLimits(bmin, bmax); << 329 << 330 G4double dX = bmax.x() - bmin.x(); << 331 G4double dY = bmax.y() - bmin.y(); << 332 G4double dZ = bmax.z() - bmin.z(); << 333 << 334 // Define statistics and shell thickness << 335 // << 336 G4int npoints = (nstat < 1000) ? 1000 : nsta << 337 G4double coeff = 0.5 / std::cbrt(G4double(np << 338 G4double eps = (ell > 0) ? ell : coeff * std << 339 G4double del = 1.8 * eps; // shold be more t << 340 << 341 G4double minX = bmin.x() - eps; << 342 G4double minY = bmin.y() - eps; << 343 G4double minZ = bmin.z() - eps; << 344 << 345 G4double dd = 2. * eps; << 346 dX += dd; << 347 dY += dd; << 348 dZ += dd; << 349 << 350 // Calculate surface area << 351 // << 352 G4int icount = 0; << 353 for(auto i = 0; i < npoints; ++i) << 354 { 300 { 355 G4double px = minX + dX*G4QuickRand(); << 301 px = minX+dX*G4UniformRand(); 356 G4double py = minY + dY*G4QuickRand(); << 302 py = minY+dY*G4UniformRand(); 357 G4double pz = minZ + dZ*G4QuickRand(); << 303 pz = minZ+dZ*G4UniformRand(); 358 G4ThreeVector p = G4ThreeVector(px, py, p << 304 p = G4ThreeVector(px,py,pz); 359 EInside in = Inside(p); << 305 in = this->Inside(p); 360 G4double dist = 0; << 306 if(in != kOutside) 361 if (in == kInside) << 362 { << 363 if (DistanceToOut(p) >= eps) continue; << 364 G4int icase = 0; << 365 if (Inside(G4ThreeVector(px-del, py, pz) << 366 if (Inside(G4ThreeVector(px+del, py, pz) << 367 if (Inside(G4ThreeVector(px, py-del, pz) << 368 if (Inside(G4ThreeVector(px, py+del, pz) << 369 if (Inside(G4ThreeVector(px, py, pz-del) << 370 if (Inside(G4ThreeVector(px, py, pz+del) << 371 if (icase == 0) continue; << 372 G4ThreeVector v = directions[icase]; << 373 dist = DistanceToOut(p, v); << 374 G4ThreeVector n = SurfaceNormal(p + v*di << 375 dist *= v.dot(n); << 376 } << 377 else if (in == kOutside) << 378 { 307 { 379 if (DistanceToIn(p) >= eps) continue; << 308 if (DistanceToOut(p)<ell) { inside++; } 380 G4int icase = 0; << 381 if (Inside(G4ThreeVector(px-del, py, pz) << 382 if (Inside(G4ThreeVector(px+del, py, pz) << 383 if (Inside(G4ThreeVector(px, py-del, pz) << 384 if (Inside(G4ThreeVector(px, py+del, pz) << 385 if (Inside(G4ThreeVector(px, py, pz-del) << 386 if (Inside(G4ThreeVector(px, py, pz+del) << 387 if (icase == 0) continue; << 388 G4ThreeVector v = directions[icase]; << 389 dist = DistanceToIn(p, v); << 390 if (dist == kInfinity) continue; << 391 G4ThreeVector n = SurfaceNormal(p + v*di << 392 dist *= -(v.dot(n)); << 393 } 309 } 394 if (dist < eps) ++icount; << 310 else if(DistanceToIn(p)<ell) { inside++; } 395 } 311 } 396 return dX*dY*dZ*icount/npoints/dd; << 312 // @@ The conformal correction can be upgraded >> 313 surf = dX*dY*dZ*inside/dd/nStat; >> 314 return surf; 397 } 315 } 398 316 399 ////////////////////////////////////////////// 317 /////////////////////////////////////////////////////////////////////////// 400 // << 318 // 401 // Returns a pointer of a dynamically allocate 319 // Returns a pointer of a dynamically allocated copy of the solid. 402 // Returns NULL pointer with warning in case t 320 // Returns NULL pointer with warning in case the concrete solid does not 403 // implement this method. The caller has respo 321 // implement this method. The caller has responsibility for ownership. 404 // 322 // 405 323 406 G4VSolid* G4VSolid::Clone() const 324 G4VSolid* G4VSolid::Clone() const 407 { 325 { 408 std::ostringstream message; 326 std::ostringstream message; 409 message << "Clone() method not implemented f 327 message << "Clone() method not implemented for type: " 410 << GetEntityType() << "!" << G4endl 328 << GetEntityType() << "!" << G4endl 411 << "Returning NULL pointer!"; 329 << "Returning NULL pointer!"; 412 G4Exception("G4VSolid::Clone()", "GeomMgt100 330 G4Exception("G4VSolid::Clone()", "GeomMgt1001", JustWarning, message); 413 return nullptr; << 331 return 0; 414 } 332 } 415 333 416 ////////////////////////////////////////////// 334 /////////////////////////////////////////////////////////////////////////// 417 // << 335 // 418 // Calculate the maximum and minimum extents o 336 // Calculate the maximum and minimum extents of the polygon described 419 // by the vertices: pSectionIndex->pSectionInd 337 // by the vertices: pSectionIndex->pSectionIndex+1-> 420 // pSectionIndex+2->pSection 338 // pSectionIndex+2->pSectionIndex+3->pSectionIndex 421 // in the List pVertices 339 // in the List pVertices 422 // 340 // 423 // If the minimum is <pMin pMin is set to the 341 // If the minimum is <pMin pMin is set to the new minimum 424 // If the maximum is >pMax pMax is set to the 342 // If the maximum is >pMax pMax is set to the new maximum 425 // 343 // 426 // No modifications are made to pVertices 344 // No modifications are made to pVertices 427 // 345 // 428 346 429 void G4VSolid::ClipCrossSection( G4Three 347 void G4VSolid::ClipCrossSection( G4ThreeVectorList* pVertices, 430 const G4int p 348 const G4int pSectionIndex, 431 const G4Voxel 349 const G4VoxelLimits& pVoxelLimit, 432 const EAxis p << 350 const EAxis pAxis, 433 G4doubl 351 G4double& pMin, G4double& pMax) const 434 { 352 { 435 353 436 G4ThreeVectorList polygon; 354 G4ThreeVectorList polygon; 437 polygon.reserve(4); 355 polygon.reserve(4); 438 polygon.push_back((*pVertices)[pSectionIndex 356 polygon.push_back((*pVertices)[pSectionIndex]); 439 polygon.push_back((*pVertices)[pSectionIndex 357 polygon.push_back((*pVertices)[pSectionIndex+1]); 440 polygon.push_back((*pVertices)[pSectionIndex 358 polygon.push_back((*pVertices)[pSectionIndex+2]); 441 polygon.push_back((*pVertices)[pSectionIndex 359 polygon.push_back((*pVertices)[pSectionIndex+3]); >> 360 // G4cout<<"ClipCrossSection: 0-1-2-3"<<G4endl; 442 CalculateClippedPolygonExtent(polygon,pVoxel 361 CalculateClippedPolygonExtent(polygon,pVoxelLimit,pAxis,pMin,pMax); 443 return; 362 return; 444 } 363 } 445 364 446 ////////////////////////////////////////////// 365 ////////////////////////////////////////////////////////////////////////////////// 447 // 366 // 448 // Calculate the maximum and minimum extents o 367 // Calculate the maximum and minimum extents of the polygons 449 // joining the CrossSections at pSectionIndex- 368 // joining the CrossSections at pSectionIndex->pSectionIndex+3 and 450 // pSectionIndex+ 369 // pSectionIndex+4->pSectionIndex7 451 // 370 // 452 // in the List pVertices, within the boundarie 371 // in the List pVertices, within the boundaries of the voxel limits pVoxelLimit 453 // 372 // 454 // If the minimum is <pMin pMin is set to the 373 // If the minimum is <pMin pMin is set to the new minimum 455 // If the maximum is >pMax pMax is set to the 374 // If the maximum is >pMax pMax is set to the new maximum 456 // 375 // 457 // No modifications are made to pVertices 376 // No modifications are made to pVertices 458 377 459 void G4VSolid::ClipBetweenSections( G4Thr 378 void G4VSolid::ClipBetweenSections( G4ThreeVectorList* pVertices, 460 const G4int 379 const G4int pSectionIndex, 461 const G4Vox 380 const G4VoxelLimits& pVoxelLimit, 462 const EAxis << 381 const EAxis pAxis, 463 G4dou 382 G4double& pMin, G4double& pMax) const 464 { 383 { 465 G4ThreeVectorList polygon; 384 G4ThreeVectorList polygon; 466 polygon.reserve(4); 385 polygon.reserve(4); 467 polygon.push_back((*pVertices)[pSectionIndex 386 polygon.push_back((*pVertices)[pSectionIndex]); 468 polygon.push_back((*pVertices)[pSectionIndex 387 polygon.push_back((*pVertices)[pSectionIndex+4]); 469 polygon.push_back((*pVertices)[pSectionIndex 388 polygon.push_back((*pVertices)[pSectionIndex+5]); 470 polygon.push_back((*pVertices)[pSectionIndex 389 polygon.push_back((*pVertices)[pSectionIndex+1]); >> 390 // G4cout<<"ClipBetweenSections: 0-4-5-1"<<G4endl; 471 CalculateClippedPolygonExtent(polygon,pVoxel 391 CalculateClippedPolygonExtent(polygon,pVoxelLimit,pAxis,pMin,pMax); 472 polygon.clear(); 392 polygon.clear(); 473 393 474 polygon.push_back((*pVertices)[pSectionIndex 394 polygon.push_back((*pVertices)[pSectionIndex+1]); 475 polygon.push_back((*pVertices)[pSectionIndex 395 polygon.push_back((*pVertices)[pSectionIndex+5]); 476 polygon.push_back((*pVertices)[pSectionIndex 396 polygon.push_back((*pVertices)[pSectionIndex+6]); 477 polygon.push_back((*pVertices)[pSectionIndex 397 polygon.push_back((*pVertices)[pSectionIndex+2]); >> 398 // G4cout<<"ClipBetweenSections: 1-5-6-2"<<G4endl; 478 CalculateClippedPolygonExtent(polygon,pVoxel 399 CalculateClippedPolygonExtent(polygon,pVoxelLimit,pAxis,pMin,pMax); 479 polygon.clear(); 400 polygon.clear(); 480 401 481 polygon.push_back((*pVertices)[pSectionIndex 402 polygon.push_back((*pVertices)[pSectionIndex+2]); 482 polygon.push_back((*pVertices)[pSectionIndex 403 polygon.push_back((*pVertices)[pSectionIndex+6]); 483 polygon.push_back((*pVertices)[pSectionIndex 404 polygon.push_back((*pVertices)[pSectionIndex+7]); 484 polygon.push_back((*pVertices)[pSectionIndex 405 polygon.push_back((*pVertices)[pSectionIndex+3]); >> 406 // G4cout<<"ClipBetweenSections: 2-6-7-3"<<G4endl; 485 CalculateClippedPolygonExtent(polygon,pVoxel 407 CalculateClippedPolygonExtent(polygon,pVoxelLimit,pAxis,pMin,pMax); 486 polygon.clear(); 408 polygon.clear(); 487 409 488 polygon.push_back((*pVertices)[pSectionIndex 410 polygon.push_back((*pVertices)[pSectionIndex+3]); 489 polygon.push_back((*pVertices)[pSectionIndex 411 polygon.push_back((*pVertices)[pSectionIndex+7]); 490 polygon.push_back((*pVertices)[pSectionIndex 412 polygon.push_back((*pVertices)[pSectionIndex+4]); 491 polygon.push_back((*pVertices)[pSectionIndex 413 polygon.push_back((*pVertices)[pSectionIndex]); >> 414 // G4cout<<"ClipBetweenSections: 3-7-4-0"<<G4endl; 492 CalculateClippedPolygonExtent(polygon,pVoxel 415 CalculateClippedPolygonExtent(polygon,pVoxelLimit,pAxis,pMin,pMax); 493 return; 416 return; 494 } 417 } 495 418 496 419 497 ////////////////////////////////////////////// 420 /////////////////////////////////////////////////////////////////////////////// 498 // 421 // 499 // Calculate the maximum and minimum extents o 422 // Calculate the maximum and minimum extents of the convex polygon pPolygon 500 // along the axis pAxis, within the limits pVo 423 // along the axis pAxis, within the limits pVoxelLimit 501 // 424 // 502 425 503 void 426 void 504 G4VSolid::CalculateClippedPolygonExtent(G4Thre 427 G4VSolid::CalculateClippedPolygonExtent(G4ThreeVectorList& pPolygon, 505 const G4Voxe 428 const G4VoxelLimits& pVoxelLimit, 506 const EAxis << 429 const EAxis pAxis, 507 G4doub 430 G4double& pMin, 508 G4doub 431 G4double& pMax) const 509 { 432 { 510 G4int noLeft,i; 433 G4int noLeft,i; 511 G4double component; 434 G4double component; 512 << 435 /* >> 436 G4cout<<G4endl; >> 437 for(i = 0 ; i < pPolygon.size() ; i++ ) >> 438 { >> 439 G4cout << i << "\t" >> 440 << "p.x = " << pPolygon[i].operator()(pAxis) << "\t" >> 441 // << "p.y = " << pPolygon[i].y() << "\t" >> 442 // << "p.z = " << pPolygon[i].z() << "\t" >> 443 << G4endl; >> 444 } >> 445 G4cout<<G4endl; >> 446 */ 513 ClipPolygon(pPolygon,pVoxelLimit,pAxis); 447 ClipPolygon(pPolygon,pVoxelLimit,pAxis); 514 noLeft = (G4int)pPolygon.size(); << 448 noLeft = pPolygon.size(); 515 449 516 if ( noLeft != 0 ) << 450 if ( noLeft ) 517 { 451 { 518 for (i=0; i<noLeft; ++i) << 452 // G4cout<<G4endl; >> 453 for (i=0;i<noLeft;i++) 519 { 454 { 520 component = pPolygon[i].operator()(pAxis 455 component = pPolygon[i].operator()(pAxis); 521 << 456 // G4cout <<i<<"\t"<<component<<G4endl; 522 if (component < pMin) << 457 523 { << 458 if (component < pMin) 524 pMin = component; << 459 { >> 460 // G4cout <<i<<"\t"<<"Pmin = "<<component<<G4endl; >> 461 pMin = component; 525 } 462 } 526 if (component > pMax) 463 if (component > pMax) 527 { << 464 { 528 pMax = component; << 465 // G4cout <<i<<"\t"<<"PMax = "<<component<<G4endl; 529 } << 466 pMax = component; >> 467 } 530 } 468 } >> 469 // G4cout<<G4endl; 531 } 470 } >> 471 // G4cout<<"pMin = "<<pMin<<"\t"<<"pMax = "<<pMax<<G4endl; 532 } 472 } 533 473 534 ////////////////////////////////////////////// 474 ///////////////////////////////////////////////////////////////////////////// 535 // 475 // 536 // Clip the convex polygon described by the ve 476 // Clip the convex polygon described by the vertices at 537 // pSectionIndex ->pSectionIndex+3 within pVer 477 // pSectionIndex ->pSectionIndex+3 within pVertices to the limits pVoxelLimit 538 // 478 // 539 // Set pMin to the smallest 479 // Set pMin to the smallest 540 // 480 // 541 // Calculate the extent of the polygon along p 481 // Calculate the extent of the polygon along pAxis, when clipped to the 542 // limits pVoxelLimit. If the polygon exists a 482 // limits pVoxelLimit. If the polygon exists after clippin, set pMin to 543 // the polygon's minimum extent along the axis 483 // the polygon's minimum extent along the axis if <pMin, and set pMax to 544 // the polygon's maximum extent along the axis 484 // the polygon's maximum extent along the axis if >pMax. 545 // 485 // 546 // The polygon is described by a set of vector 486 // The polygon is described by a set of vectors, where each vector represents 547 // a vertex, so that the polygon is described 487 // a vertex, so that the polygon is described by the vertex sequence: 548 // 0th->1st 1st->2nd 2nd->... nth->0th 488 // 0th->1st 1st->2nd 2nd->... nth->0th 549 // 489 // 550 // Modifications to the polygon are made 490 // Modifications to the polygon are made 551 // 491 // 552 // NOTE: Execessive copying during clipping 492 // NOTE: Execessive copying during clipping 553 493 554 void G4VSolid::ClipPolygon( G4ThreeVector 494 void G4VSolid::ClipPolygon( G4ThreeVectorList& pPolygon, 555 const G4VoxelLimits 495 const G4VoxelLimits& pVoxelLimit, 556 const EAxis 496 const EAxis ) const 557 { 497 { 558 G4ThreeVectorList outputPolygon; 498 G4ThreeVectorList outputPolygon; 559 499 560 if ( pVoxelLimit.IsLimited() ) 500 if ( pVoxelLimit.IsLimited() ) 561 { 501 { 562 if (pVoxelLimit.IsXLimited() ) // && pAxis 502 if (pVoxelLimit.IsXLimited() ) // && pAxis != kXAxis) 563 { 503 { 564 G4VoxelLimits simpleLimit1; 504 G4VoxelLimits simpleLimit1; 565 simpleLimit1.AddLimit(kXAxis,pVoxelLimit 505 simpleLimit1.AddLimit(kXAxis,pVoxelLimit.GetMinXExtent(),kInfinity); >> 506 // G4cout<<"MinXExtent()"<<G4endl; 566 ClipPolygonToSimpleLimits(pPolygon,outpu 507 ClipPolygonToSimpleLimits(pPolygon,outputPolygon,simpleLimit1); 567 << 508 568 pPolygon.clear(); 509 pPolygon.clear(); 569 510 570 if ( outputPolygon.empty() ) return; << 511 if ( !outputPolygon.size() ) return; 571 512 572 G4VoxelLimits simpleLimit2; 513 G4VoxelLimits simpleLimit2; >> 514 // G4cout<<"MaxXExtent()"<<G4endl; 573 simpleLimit2.AddLimit(kXAxis,-kInfinity, 515 simpleLimit2.AddLimit(kXAxis,-kInfinity,pVoxelLimit.GetMaxXExtent()); 574 ClipPolygonToSimpleLimits(outputPolygon, 516 ClipPolygonToSimpleLimits(outputPolygon,pPolygon,simpleLimit2); 575 517 576 if ( pPolygon.empty() ) return; << 518 if ( !pPolygon.size() ) return; 577 else outputPoly 519 else outputPolygon.clear(); 578 } 520 } 579 if ( pVoxelLimit.IsYLimited() ) // && pAxi 521 if ( pVoxelLimit.IsYLimited() ) // && pAxis != kYAxis) 580 { 522 { 581 G4VoxelLimits simpleLimit1; 523 G4VoxelLimits simpleLimit1; 582 simpleLimit1.AddLimit(kYAxis,pVoxelLimit 524 simpleLimit1.AddLimit(kYAxis,pVoxelLimit.GetMinYExtent(),kInfinity); 583 ClipPolygonToSimpleLimits(pPolygon,outpu 525 ClipPolygonToSimpleLimits(pPolygon,outputPolygon,simpleLimit1); 584 526 585 // Must always clear pPolygon - for clip 527 // Must always clear pPolygon - for clip to simpleLimit2 and in case of 586 // early exit 528 // early exit 587 529 588 pPolygon.clear(); 530 pPolygon.clear(); 589 531 590 if ( outputPolygon.empty() ) return; << 532 if ( !outputPolygon.size() ) return; 591 533 592 G4VoxelLimits simpleLimit2; 534 G4VoxelLimits simpleLimit2; 593 simpleLimit2.AddLimit(kYAxis,-kInfinity, 535 simpleLimit2.AddLimit(kYAxis,-kInfinity,pVoxelLimit.GetMaxYExtent()); 594 ClipPolygonToSimpleLimits(outputPolygon, 536 ClipPolygonToSimpleLimits(outputPolygon,pPolygon,simpleLimit2); 595 537 596 if ( pPolygon.empty() ) return; << 538 if ( !pPolygon.size() ) return; 597 else outputPoly 539 else outputPolygon.clear(); 598 } 540 } 599 if ( pVoxelLimit.IsZLimited() ) // && pAxi 541 if ( pVoxelLimit.IsZLimited() ) // && pAxis != kZAxis) 600 { 542 { 601 G4VoxelLimits simpleLimit1; 543 G4VoxelLimits simpleLimit1; 602 simpleLimit1.AddLimit(kZAxis,pVoxelLimit 544 simpleLimit1.AddLimit(kZAxis,pVoxelLimit.GetMinZExtent(),kInfinity); 603 ClipPolygonToSimpleLimits(pPolygon,outpu 545 ClipPolygonToSimpleLimits(pPolygon,outputPolygon,simpleLimit1); 604 546 605 // Must always clear pPolygon - for clip 547 // Must always clear pPolygon - for clip to simpleLimit2 and in case of 606 // early exit 548 // early exit 607 549 608 pPolygon.clear(); 550 pPolygon.clear(); 609 551 610 if ( outputPolygon.empty() ) return; << 552 if ( !outputPolygon.size() ) return; 611 553 612 G4VoxelLimits simpleLimit2; 554 G4VoxelLimits simpleLimit2; 613 simpleLimit2.AddLimit(kZAxis,-kInfinity, 555 simpleLimit2.AddLimit(kZAxis,-kInfinity,pVoxelLimit.GetMaxZExtent()); 614 ClipPolygonToSimpleLimits(outputPolygon, 556 ClipPolygonToSimpleLimits(outputPolygon,pPolygon,simpleLimit2); 615 557 616 // Return after final clip - no cleanup 558 // Return after final clip - no cleanup 617 } 559 } 618 } 560 } 619 } 561 } 620 562 621 ////////////////////////////////////////////// 563 //////////////////////////////////////////////////////////////////////////// 622 // 564 // 623 // pVoxelLimits must be only limited along one 565 // pVoxelLimits must be only limited along one axis, and either the maximum 624 // along the axis must be +kInfinity, or the m 566 // along the axis must be +kInfinity, or the minimum -kInfinity 625 567 626 void 568 void 627 G4VSolid::ClipPolygonToSimpleLimits( G4ThreeVe 569 G4VSolid::ClipPolygonToSimpleLimits( G4ThreeVectorList& pPolygon, 628 G4ThreeVe 570 G4ThreeVectorList& outputPolygon, 629 const G4VoxelLi 571 const G4VoxelLimits& pVoxelLimit ) const 630 { 572 { 631 G4int i; 573 G4int i; 632 auto noVertices = (G4int)pPolygon.size(); << 574 G4int noVertices=pPolygon.size(); 633 G4ThreeVector vEnd,vStart; 575 G4ThreeVector vEnd,vStart; 634 576 635 for (i = 0 ; i < noVertices ; ++i ) << 577 for (i = 0 ; i < noVertices ; i++ ) 636 { 578 { 637 vStart = pPolygon[i]; 579 vStart = pPolygon[i]; >> 580 // G4cout << "i = " << i << G4endl; 638 if ( i == noVertices-1 ) vEnd = pPolygo 581 if ( i == noVertices-1 ) vEnd = pPolygon[0]; 639 else vEnd = pPolygo 582 else vEnd = pPolygon[i+1]; 640 583 641 if ( pVoxelLimit.Inside(vStart) ) 584 if ( pVoxelLimit.Inside(vStart) ) 642 { 585 { 643 if (pVoxelLimit.Inside(vEnd)) 586 if (pVoxelLimit.Inside(vEnd)) 644 { 587 { 645 // vStart and vEnd inside -> output en 588 // vStart and vEnd inside -> output end point 646 // 589 // 647 outputPolygon.push_back(vEnd); 590 outputPolygon.push_back(vEnd); 648 } 591 } 649 else 592 else 650 { 593 { 651 // vStart inside, vEnd outside -> outp 594 // vStart inside, vEnd outside -> output crossing point 652 // 595 // >> 596 // G4cout << "vStart inside, vEnd outside" << G4endl; 653 pVoxelLimit.ClipToLimits(vStart,vEnd); 597 pVoxelLimit.ClipToLimits(vStart,vEnd); 654 outputPolygon.push_back(vEnd); 598 outputPolygon.push_back(vEnd); 655 } << 599 } 656 } 600 } 657 else 601 else 658 { 602 { 659 if (pVoxelLimit.Inside(vEnd)) 603 if (pVoxelLimit.Inside(vEnd)) 660 { 604 { 661 // vStart outside, vEnd inside -> outp 605 // vStart outside, vEnd inside -> output inside section 662 // 606 // >> 607 // G4cout << "vStart outside, vEnd inside" << G4endl; 663 pVoxelLimit.ClipToLimits(vStart,vEnd); 608 pVoxelLimit.ClipToLimits(vStart,vEnd); 664 outputPolygon.push_back(vStart); 609 outputPolygon.push_back(vStart); 665 outputPolygon.push_back(vEnd); << 610 outputPolygon.push_back(vEnd); 666 } 611 } 667 else // Both point outside -> no output 612 else // Both point outside -> no output 668 { 613 { 669 // outputPolygon.push_back(vStart); 614 // outputPolygon.push_back(vStart); 670 // outputPolygon.push_back(vEnd); << 615 // outputPolygon.push_back(vEnd); 671 } 616 } 672 } 617 } 673 } 618 } 674 } 619 } 675 620 676 ////////////////////////////////////////////// << 621 G4VisExtent G4VSolid::GetExtent () const 677 // << 678 // Throw exception (warning) for solids not im << 679 << 680 void G4VSolid::BoundingLimits(G4ThreeVector& p << 681 { << 682 std::ostringstream message; << 683 message << "Not implemented for solid: " << 684 << GetEntityType() << " !" << 685 << "\nReturning infinite boundinx bo << 686 G4Exception("G4VSolid::BoundingLimits()", "G << 687 JustWarning, message); << 688 << 689 pMin.set(-kInfinity,-kInfinity,-kInfinity); << 690 pMax.set( kInfinity, kInfinity, kInfinity); << 691 } << 692 << 693 ////////////////////////////////////////////// << 694 // << 695 // Get G4VisExtent - bounding box for graphics << 696 << 697 G4VisExtent G4VSolid::GetExtent () const << 698 { 622 { 699 G4VisExtent extent; 623 G4VisExtent extent; 700 G4VoxelLimits voxelLimits; // Defaults to " 624 G4VoxelLimits voxelLimits; // Defaults to "infinite" limits. 701 G4AffineTransform affineTransform; 625 G4AffineTransform affineTransform; 702 G4double vmin, vmax; 626 G4double vmin, vmax; 703 CalculateExtent(kXAxis,voxelLimits,affineTra 627 CalculateExtent(kXAxis,voxelLimits,affineTransform,vmin,vmax); 704 extent.SetXmin (vmin); 628 extent.SetXmin (vmin); 705 extent.SetXmax (vmax); 629 extent.SetXmax (vmax); 706 CalculateExtent(kYAxis,voxelLimits,affineTra 630 CalculateExtent(kYAxis,voxelLimits,affineTransform,vmin,vmax); 707 extent.SetYmin (vmin); 631 extent.SetYmin (vmin); 708 extent.SetYmax (vmax); 632 extent.SetYmax (vmax); 709 CalculateExtent(kZAxis,voxelLimits,affineTra 633 CalculateExtent(kZAxis,voxelLimits,affineTransform,vmin,vmax); 710 extent.SetZmin (vmin); 634 extent.SetZmin (vmin); 711 extent.SetZmax (vmax); 635 extent.SetZmax (vmax); 712 return extent; 636 return extent; 713 } 637 } 714 638 715 G4Polyhedron* G4VSolid::CreatePolyhedron () co 639 G4Polyhedron* G4VSolid::CreatePolyhedron () const 716 { 640 { 717 return nullptr; << 641 return 0; 718 } 642 } 719 643 720 G4Polyhedron* G4VSolid::GetPolyhedron () const 644 G4Polyhedron* G4VSolid::GetPolyhedron () const 721 { 645 { 722 return nullptr; << 646 return 0; 723 } 647 } 724 648