Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/management/src/G4ReflectedSolid.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/management/src/G4ReflectedSolid.cc (Version 11.3.0) and /geometry/management/src/G4ReflectedSolid.cc (Version 9.2.p3)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // Implementation for G4ReflectedSolid class   <<  26 //
                                                   >>  27 // $Id: G4ReflectedSolid.cc,v 1.11 2006/11/08 09:56:33 gcosmo Exp $
                                                   >>  28 //
                                                   >>  29 // GEANT4 tag $Name: geant4-09-02-patch-03 $
                                                   >>  30 //
                                                   >>  31 // Implementation for G4ReflectedSolid class for boolean 
                                                   >>  32 // operations between other solids
 27 //                                                 33 //
 28 // Author: Vladimir Grichine, 23.07.01  (Vladi     34 // Author: Vladimir Grichine, 23.07.01  (Vladimir.Grichine@cern.ch)
                                                   >>  35 //
 29 // -------------------------------------------     36 // --------------------------------------------------------------------
 30                                                    37 
 31 #include "G4ReflectedSolid.hh"                     38 #include "G4ReflectedSolid.hh"
 32                                                    39 
 33 #include <sstream>                                 40 #include <sstream>
 34                                                    41 
 35 #include "G4Point3D.hh"                            42 #include "G4Point3D.hh"
 36 #include "G4Vector3D.hh"                       <<  43 #include "G4Normal3D.hh"
 37                                                    44 
 38 #include "G4AffineTransform.hh"                << 
 39 #include "G4Transform3D.hh"                    << 
 40 #include "G4VoxelLimits.hh"                        45 #include "G4VoxelLimits.hh"
 41                                                    46 
 42 #include "G4VPVParameterisation.hh"                47 #include "G4VPVParameterisation.hh"
 43                                                    48 
 44 #include "G4VGraphicsScene.hh"                     49 #include "G4VGraphicsScene.hh"
 45 #include "G4Polyhedron.hh"                         50 #include "G4Polyhedron.hh"
                                                   >>  51 #include "G4NURBS.hh"
                                                   >>  52 // #include "G4NURBSbox.hh"
                                                   >>  53 
 46                                                    54 
 47 //////////////////////////////////////////////     55 /////////////////////////////////////////////////////////////////
 48 //                                                 56 //
 49 // Constructor using HepTransform3D, in fact H     57 // Constructor using HepTransform3D, in fact HepReflect3D
 50                                                    58 
 51 G4ReflectedSolid::G4ReflectedSolid( const G4St     59 G4ReflectedSolid::G4ReflectedSolid( const G4String& pName,
 52                                           G4VS     60                                           G4VSolid* pSolid ,
 53                                     const G4Tr <<  61                                     const G4Transform3D& transform  )
 54   : G4VSolid(pName)                            <<  62   : G4VSolid(pName), fpPolyhedron(0)
 55 {                                                  63 {
 56   fPtrSolid = pSolid;                          <<  64   fPtrSolid = pSolid ;
 57   fDirectTransform3D = new G4Transform3D(trans <<  65   G4RotationMatrix rotMatrix ;
 58 }                                              <<  66   
 59                                                <<  67   fDirectTransform =
 60 ////////////////////////////////////////////// <<  68      new G4AffineTransform(rotMatrix, transform.getTranslation()) ;  
 61 //                                             <<  69   fPtrTransform    =
 62                                                <<  70      new G4AffineTransform(rotMatrix, transform.getTranslation()) ; 
 63 G4ReflectedSolid::~G4ReflectedSolid()          <<  71   fPtrTransform->Invert() ;
 64 {                                              << 
 65   delete fDirectTransform3D; fDirectTransform3 << 
 66   delete fpPolyhedron; fpPolyhedron = nullptr; << 
 67 }                                              << 
 68                                                << 
 69 ////////////////////////////////////////////// << 
 70 //                                             << 
 71                                                    72 
 72 G4ReflectedSolid::G4ReflectedSolid(const G4Ref <<  73   fDirectTransform3D = new G4Transform3D(transform) ;
 73   : G4VSolid(rhs), fPtrSolid(rhs.fPtrSolid)    <<  74   fPtrTransform3D    = new G4Transform3D(transform.inverse()) ;   
 74 {                                              << 
 75   fDirectTransform3D = new G4Transform3D(*rhs. << 
 76 }                                                  75 }
 77                                                    76 
 78 //////////////////////////////////////////////     77 ///////////////////////////////////////////////////////////////////
 79 //                                                 78 //
 80                                                    79 
 81 G4ReflectedSolid& G4ReflectedSolid::operator=( <<  80 G4ReflectedSolid::~G4ReflectedSolid() 
 82 {                                                  81 {
 83   // Check assignment to self                  <<  82   if(fPtrTransform)
 84   //                                           <<  83   {
 85   if (this == &rhs)  { return *this; }         <<  84     delete fPtrTransform; fPtrTransform=0;
 86                                                <<  85     delete fDirectTransform; fDirectTransform=0;
 87   // Copy base class data                      <<  86   }
 88   //                                           <<  87   if(fPtrTransform3D)
 89   G4VSolid::operator=(rhs);                    <<  88   {
 90                                                <<  89     delete fPtrTransform3D; fPtrTransform3D=0;
 91   // Copy data                                 <<  90     delete fDirectTransform3D; fDirectTransform3D=0;
 92   //                                           <<  91   }
 93   fPtrSolid = rhs.fPtrSolid;                   <<  92   delete fpPolyhedron;
 94   delete fDirectTransform3D;                   << 
 95   fDirectTransform3D = new G4Transform3D(*rhs. << 
 96   fRebuildPolyhedron = false;                  << 
 97   delete fpPolyhedron; fpPolyhedron = nullptr; << 
 98                                                << 
 99   return *this;                                << 
100 }                                                  93 }
101                                                    94 
102 ////////////////////////////////////////////// << 
103 //                                             << 
104                                                << 
105 G4GeometryType G4ReflectedSolid::GetEntityType     95 G4GeometryType G4ReflectedSolid::GetEntityType() const 
106 {                                                  96 {
107   return {"G4ReflectedSolid"};                 <<  97   return G4String("G4ReflectedSolid");
108 }                                                  98 }
109                                                    99 
110 const G4ReflectedSolid* G4ReflectedSolid::GetR    100 const G4ReflectedSolid* G4ReflectedSolid::GetReflectedSolidPtr() const   
111 {                                                 101 {
112   return this;                                    102   return this;
113 }                                                 103 }
114                                                   104 
115 G4ReflectedSolid* G4ReflectedSolid::GetReflect    105 G4ReflectedSolid* G4ReflectedSolid::GetReflectedSolidPtr() 
116 {                                                 106 {
117   return this;                                    107   return this;
118 }                                                 108 }
119                                                   109 
120 G4VSolid* G4ReflectedSolid::GetConstituentMove    110 G4VSolid* G4ReflectedSolid::GetConstituentMovedSolid() const
121 {                                                 111 { 
122   return fPtrSolid;                               112   return fPtrSolid; 
123 }                                                 113 } 
124                                                   114 
125 //////////////////////////////////////////////    115 /////////////////////////////////////////////////////////////////////////////
126 //                                             << 116 
                                                   >> 117 G4AffineTransform  G4ReflectedSolid::GetTransform() const
                                                   >> 118 {
                                                   >> 119    G4AffineTransform aTransform = *fPtrTransform;
                                                   >> 120    return aTransform;
                                                   >> 121 }
                                                   >> 122 
                                                   >> 123 void G4ReflectedSolid::SetTransform(G4AffineTransform& transform) 
                                                   >> 124 {
                                                   >> 125    fPtrTransform = &transform ;
                                                   >> 126    fpPolyhedron = 0;
                                                   >> 127 }
                                                   >> 128 
                                                   >> 129 //////////////////////////////////////////////////////////////////////////////
                                                   >> 130 
                                                   >> 131 G4AffineTransform  G4ReflectedSolid::GetDirectTransform() const
                                                   >> 132 {
                                                   >> 133   G4AffineTransform aTransform= *fDirectTransform;
                                                   >> 134   return aTransform;
                                                   >> 135 }
                                                   >> 136 
                                                   >> 137 void G4ReflectedSolid::SetDirectTransform(G4AffineTransform& transform) 
                                                   >> 138 {
                                                   >> 139   fDirectTransform = &transform ;
                                                   >> 140   fpPolyhedron = 0;
                                                   >> 141 }
                                                   >> 142 
                                                   >> 143 /////////////////////////////////////////////////////////////////////////////
127                                                   144 
128 G4Transform3D  G4ReflectedSolid::GetTransform3    145 G4Transform3D  G4ReflectedSolid::GetTransform3D() const
129 {                                                 146 {
130   return fDirectTransform3D->inverse();        << 147   G4Transform3D aTransform = *fPtrTransform3D;
                                                   >> 148   return aTransform;
                                                   >> 149 }
                                                   >> 150 
                                                   >> 151 void G4ReflectedSolid::SetTransform3D(G4Transform3D& transform) 
                                                   >> 152 {
                                                   >> 153   fPtrTransform3D = &transform ;
                                                   >> 154   fpPolyhedron = 0;
131 }                                                 155 }
132                                                   156 
                                                   >> 157 //////////////////////////////////////////////////////////////////////////////
                                                   >> 158 
133 G4Transform3D  G4ReflectedSolid::GetDirectTran    159 G4Transform3D  G4ReflectedSolid::GetDirectTransform3D() const
134 {                                                 160 {
135   G4Transform3D aTransform = *fDirectTransform << 161   G4Transform3D aTransform= *fDirectTransform3D;
136   return aTransform;                              162   return aTransform;
137 }                                                 163 }
138                                                   164 
139 void G4ReflectedSolid::SetDirectTransform3D(G4    165 void G4ReflectedSolid::SetDirectTransform3D(G4Transform3D& transform) 
140 {                                                 166 {
141   fDirectTransform3D = &transform;             << 167   fDirectTransform3D = &transform ;
142   fRebuildPolyhedron = true;                   << 168   fpPolyhedron = 0;
143 }                                                 169 }
144                                                   170 
145 ////////////////////////////////////////////// << 171 /////////////////////////////////////////////////////////////////////////////
146 //                                             << 
147 // Get bounding box                            << 
148                                                   172 
149 void G4ReflectedSolid::BoundingLimits(G4ThreeV << 173 G4RotationMatrix G4ReflectedSolid::GetFrameRotation() const
150                                       G4ThreeV << 
151 {                                                 174 {
152   fPtrSolid->BoundingLimits(pMin,pMax);        << 175   G4RotationMatrix InvRotation= fDirectTransform->NetRotation();
153   G4double xmin = pMin.x(), ymin = pMin.y(), z << 176   return InvRotation;
154   G4double xmax = pMax.x(), ymax = pMax.y(), z << 177 }
155   G4double xx = fDirectTransform3D->xx();      << 
156   G4double yy = fDirectTransform3D->yy();      << 
157   G4double zz = fDirectTransform3D->zz();      << 
158                                                   178 
159   if (std::abs(xx) == 1 && std::abs(yy) == 1 & << 179 void G4ReflectedSolid::SetFrameRotation(const G4RotationMatrix& matrix)
160   {                                            << 180 {
161     // Special case of reflection in axis and  << 181   fDirectTransform->SetNetRotation(matrix);
162     //                                         << 182 }
163     if (xx == -1) { G4double tmp = -xmin; xmin << 
164     if (yy == -1) { G4double tmp = -ymin; ymin << 
165     if (zz == -1) { G4double tmp = -zmin; zmin << 
166     xmin += fDirectTransform3D->dx();          << 
167     xmax += fDirectTransform3D->dx();          << 
168     ymin += fDirectTransform3D->dy();          << 
169     ymax += fDirectTransform3D->dy();          << 
170     zmin += fDirectTransform3D->dz();          << 
171     zmax += fDirectTransform3D->dz();          << 
172   }                                            << 
173   else                                         << 
174   {                                            << 
175     // Use additional reflection in Z to set u << 
176     //                                         << 
177     G4Transform3D transform3D = G4ReflectZ3D() << 
178     G4AffineTransform transform(transform3D.ge << 
179                                 transform3D.ge << 
180                                                << 
181     // Find bounding box                       << 
182     //                                         << 
183     G4VoxelLimits unLimit;                     << 
184     fPtrSolid->CalculateExtent(kXAxis,unLimit, << 
185     fPtrSolid->CalculateExtent(kYAxis,unLimit, << 
186     fPtrSolid->CalculateExtent(kZAxis,unLimit, << 
187   }                                            << 
188                                                   183 
189   pMin.set(xmin,ymin,-zmax);                   << 184 /////////////////////////////////////////////////////////////////////////////
190   pMax.set(xmax,ymax,-zmin);                   << 
191                                                   185 
192   // Check correctness of the bounding box     << 186 G4ThreeVector  G4ReflectedSolid::GetFrameTranslation() const
193   //                                           << 187 {
194   if (pMin.x() >= pMax.x() || pMin.y() >= pMax << 188   return fPtrTransform->NetTranslation();
195   {                                            << 
196     std::ostringstream message;                << 
197     message << "Bad bounding box (min >= max)  << 
198             << GetName() << " !"               << 
199             << "\npMin = " << pMin             << 
200             << "\npMax = " << pMax;            << 
201     G4Exception("G4ReflectedSolid::BoundingLim << 
202                 JustWarning, message);         << 
203     DumpInfo();                                << 
204   }                                            << 
205 }                                                 189 }
206                                                   190 
207 ////////////////////////////////////////////// << 191 void G4ReflectedSolid::SetFrameTranslation(const G4ThreeVector& vector)
208 //                                             << 192 {
209 // Calculate extent under transform and specif << 193   fPtrTransform->SetNetTranslation(vector);
                                                   >> 194 }
                                                   >> 195 
                                                   >> 196 ///////////////////////////////////////////////////////////////
210                                                   197 
                                                   >> 198 G4RotationMatrix G4ReflectedSolid::GetObjectRotation() const
                                                   >> 199 {
                                                   >> 200   G4RotationMatrix Rotation= fPtrTransform->NetRotation();
                                                   >> 201   return Rotation;
                                                   >> 202 }
                                                   >> 203 
                                                   >> 204 void G4ReflectedSolid::SetObjectRotation(const G4RotationMatrix& matrix)
                                                   >> 205 {
                                                   >> 206   fPtrTransform->SetNetRotation(matrix);
                                                   >> 207 }
                                                   >> 208 
                                                   >> 209 ///////////////////////////////////////////////////////////////////////
                                                   >> 210 
                                                   >> 211 G4ThreeVector  G4ReflectedSolid::GetObjectTranslation() const
                                                   >> 212 {
                                                   >> 213   return fDirectTransform->NetTranslation();
                                                   >> 214 }
                                                   >> 215 
                                                   >> 216 void G4ReflectedSolid::SetObjectTranslation(const G4ThreeVector& vector)
                                                   >> 217 {
                                                   >> 218   fDirectTransform->SetNetTranslation(vector);
                                                   >> 219 }
                                                   >> 220 
                                                   >> 221 ///////////////////////////////////////////////////////////////
                                                   >> 222 //
                                                   >> 223 //
                                                   >> 224      
211 G4bool                                            225 G4bool 
212 G4ReflectedSolid::CalculateExtent( const EAxis    226 G4ReflectedSolid::CalculateExtent( const EAxis pAxis,
213                                    const G4Vox << 227                                    const G4VoxelLimits& pVoxelLimit,
214                                    const G4Aff    228                                    const G4AffineTransform& pTransform,
215                                          G4dou    229                                          G4double& pMin, 
216                                          G4dou << 230                                          G4double& pMax           ) const 
217 {                                                 231 {
218   // Separation of transformations. Calculatio << 232 
219   // in a reflection of the global space. In s << 233   G4VoxelLimits unLimit;
220   // reflected, but the solid is transformed j << 234   G4AffineTransform unTransform;
221   // It allows one to use CalculateExtent() of << 235 
222                                                << 236   G4double x1 = -kInfinity, x2 = kInfinity,
223   // Reflect voxel limits in Z                 << 237            y1 = -kInfinity, y2 = kInfinity,
224   //                                           << 238            z1 = -kInfinity, z2 = kInfinity;
225   G4VoxelLimits limits;                        << 239 
226   limits.AddLimit(kXAxis, pVoxelLimits.GetMinX << 240   G4bool existsAfterClip = false ;
227                           pVoxelLimits.GetMaxX << 241   existsAfterClip =
228   limits.AddLimit(kYAxis, pVoxelLimits.GetMinY << 242       fPtrSolid->CalculateExtent(kXAxis,unLimit,unTransform,x1,x2);
229                           pVoxelLimits.GetMaxY << 243   existsAfterClip =
230   limits.AddLimit(kZAxis,-pVoxelLimits.GetMaxZ << 244       fPtrSolid->CalculateExtent(kYAxis,unLimit,unTransform,y1,y2);
231                          -pVoxelLimits.GetMinZ << 245   existsAfterClip =
232                                                << 246       fPtrSolid->CalculateExtent(kZAxis,unLimit,unTransform,z1,z2);
233   // Set affine transformation                 << 247 
234   //                                           << 248   existsAfterClip = false;
235   G4Transform3D transform3D = G4ReflectZ3D()*p << 249   pMin = +kInfinity ;
236   G4AffineTransform transform(transform3D.getR << 250   pMax = -kInfinity ;
237                               transform3D.getT << 251 
238                                                << 252   G4Transform3D pTransform3D = G4Transform3D(pTransform.NetRotation().inverse(),
239   // Find extent                               << 253                                              pTransform.NetTranslation());
240   //                                           << 254  
241   if (!fPtrSolid->CalculateExtent(pAxis, limit << 255   G4Transform3D transform3D  = pTransform3D*(*fDirectTransform3D);
                                                   >> 256 
                                                   >> 257   G4Point3D tmpPoint;
                                                   >> 258 
                                                   >> 259 // Calculate rotated vertex coordinates
                                                   >> 260 
                                                   >> 261   G4ThreeVectorList* vertices = new G4ThreeVectorList();
                                                   >> 262   vertices->reserve(8);
                                                   >> 263 
                                                   >> 264   if (vertices)
242   {                                               265   {
243     return false;                              << 266     G4ThreeVector vertex0(x1,y1,z1) ;
                                                   >> 267     tmpPoint    = transform3D*G4Point3D(vertex0);
                                                   >> 268     vertex0     = G4ThreeVector(tmpPoint.x(),tmpPoint.y(),tmpPoint.z());
                                                   >> 269     vertices->push_back(vertex0);
                                                   >> 270 
                                                   >> 271     G4ThreeVector vertex1(x2,y1,z1) ;
                                                   >> 272     tmpPoint    = transform3D*G4Point3D(vertex1);
                                                   >> 273     vertex1     = G4ThreeVector(tmpPoint.x(),tmpPoint.y(),tmpPoint.z());
                                                   >> 274     vertices->push_back(vertex1);
                                                   >> 275 
                                                   >> 276     G4ThreeVector vertex2(x2,y2,z1) ;
                                                   >> 277     tmpPoint    = transform3D*G4Point3D(vertex2);
                                                   >> 278     vertex2     = G4ThreeVector(tmpPoint.x(),tmpPoint.y(),tmpPoint.z());
                                                   >> 279     vertices->push_back(vertex2);
                                                   >> 280 
                                                   >> 281     G4ThreeVector vertex3(x1,y2,z1) ;
                                                   >> 282     tmpPoint    = transform3D*G4Point3D(vertex3);
                                                   >> 283     vertex3     = G4ThreeVector(tmpPoint.x(),tmpPoint.y(),tmpPoint.z());
                                                   >> 284     vertices->push_back(vertex3);
                                                   >> 285 
                                                   >> 286     G4ThreeVector vertex4(x1,y1,z2) ;
                                                   >> 287     tmpPoint    = transform3D*G4Point3D(vertex4);
                                                   >> 288     vertex4     = G4ThreeVector(tmpPoint.x(),tmpPoint.y(),tmpPoint.z());
                                                   >> 289     vertices->push_back(vertex4);
                                                   >> 290 
                                                   >> 291     G4ThreeVector vertex5(x2,y1,z2) ;
                                                   >> 292     tmpPoint    = transform3D*G4Point3D(vertex5);
                                                   >> 293     vertex5     = G4ThreeVector(tmpPoint.x(),tmpPoint.y(),tmpPoint.z());
                                                   >> 294     vertices->push_back(vertex5);
                                                   >> 295 
                                                   >> 296     G4ThreeVector vertex6(x2,y2,z2) ;
                                                   >> 297     tmpPoint    = transform3D*G4Point3D(vertex6);
                                                   >> 298     vertex6     = G4ThreeVector(tmpPoint.x(),tmpPoint.y(),tmpPoint.z());
                                                   >> 299     vertices->push_back(vertex6);
                                                   >> 300 
                                                   >> 301     G4ThreeVector vertex7(x1,y2,z2) ;
                                                   >> 302     tmpPoint    = transform3D*G4Point3D(vertex7);
                                                   >> 303     vertex7     = G4ThreeVector(tmpPoint.x(),tmpPoint.y(),tmpPoint.z());
                                                   >> 304     vertices->push_back(vertex7);
244   }                                               305   }
245   if (pAxis == kZAxis)                         << 306   else
246   {                                               307   {
247     G4double tmp= -pMin; pMin= -pMax; pMax= tm << 308     DumpInfo();
                                                   >> 309     G4Exception("G4ReflectedSolid::CalculateExtent()",
                                                   >> 310                 "FatalError", FatalException,
                                                   >> 311                 "Error in allocation of vertices. Out of memory !");
248   }                                               312   }
                                                   >> 313   
                                                   >> 314   ClipCrossSection(vertices,0,pVoxelLimit,pAxis,pMin,pMax) ;
                                                   >> 315   ClipCrossSection(vertices,4,pVoxelLimit,pAxis,pMin,pMax) ;
                                                   >> 316   ClipBetweenSections(vertices,0,pVoxelLimit,pAxis,pMin,pMax) ;
                                                   >> 317 
                                                   >> 318     if (pVoxelLimit.IsLimited(pAxis) == false) 
                                                   >> 319     {  
                                                   >> 320       if ( pMin != kInfinity || pMax != -kInfinity ) 
                                                   >> 321       {
                                                   >> 322         existsAfterClip = true ;
                                                   >> 323 
                                                   >> 324         // Add 2*tolerance to avoid precision troubles
                                                   >> 325 
                                                   >> 326         pMin           -= kCarTolerance;
                                                   >> 327         pMax           += kCarTolerance;
                                                   >> 328       }
                                                   >> 329     }      
                                                   >> 330     else
                                                   >> 331     {
                                                   >> 332       G4ThreeVector clipCentre(
                                                   >> 333          ( pVoxelLimit.GetMinXExtent()+pVoxelLimit.GetMaxXExtent())*0.5,
                                                   >> 334          ( pVoxelLimit.GetMinYExtent()+pVoxelLimit.GetMaxYExtent())*0.5,
                                                   >> 335          ( pVoxelLimit.GetMinZExtent()+pVoxelLimit.GetMaxZExtent())*0.5);
                                                   >> 336 
                                                   >> 337       if ( pMin != kInfinity || pMax != -kInfinity )
                                                   >> 338       {
                                                   >> 339         existsAfterClip = true ;
                                                   >> 340   
249                                                   341 
250   return true;                                 << 342         // Check to see if endpoints are in the solid
251 }                                              << 
252                                                   343 
253 ////////////////////////////////////////////// << 344         clipCentre(pAxis) = pVoxelLimit.GetMinExtent(pAxis);
                                                   >> 345 
                                                   >> 346         if (Inside(transform3D.inverse()*G4Point3D(clipCentre)) != kOutside)
                                                   >> 347         {
                                                   >> 348           pMin = pVoxelLimit.GetMinExtent(pAxis);
                                                   >> 349         }
                                                   >> 350         else
                                                   >> 351         {
                                                   >> 352           pMin -= kCarTolerance;
                                                   >> 353         }
                                                   >> 354         clipCentre(pAxis) = pVoxelLimit.GetMaxExtent(pAxis);
                                                   >> 355 
                                                   >> 356         if (Inside(transform3D.inverse()*G4Point3D(clipCentre)) != kOutside)
                                                   >> 357         {
                                                   >> 358           pMax = pVoxelLimit.GetMaxExtent(pAxis);
                                                   >> 359         }
                                                   >> 360         else
                                                   >> 361         {
                                                   >> 362           pMax += kCarTolerance;
                                                   >> 363         }
                                                   >> 364       }
                                                   >> 365       // Check for case where completely enveloping clipping volume
                                                   >> 366       // If point inside then we are confident that the solid completely
                                                   >> 367       // envelopes the clipping volume. Hence set min/max extents according
                                                   >> 368       // to clipping volume extents along the specified axis.
                                                   >> 369         
                                                   >> 370     else if (Inside(transform3D.inverse()*G4Point3D(clipCentre)) != kOutside)
                                                   >> 371     {
                                                   >> 372       existsAfterClip = true ;
                                                   >> 373       pMin            = pVoxelLimit.GetMinExtent(pAxis) ;
                                                   >> 374       pMax            = pVoxelLimit.GetMaxExtent(pAxis) ;
                                                   >> 375     }
                                                   >> 376   } 
                                                   >> 377   delete vertices;
                                                   >> 378   return existsAfterClip;
                                                   >> 379 }
                                                   >> 380  
                                                   >> 381 /////////////////////////////////////////////////////
254 //                                                382 //
255 //                                                383 // 
256                                                   384 
257 EInside G4ReflectedSolid::Inside(const G4Three << 385 EInside G4ReflectedSolid::Inside(const G4ThreeVector& p) const
258 {                                                 386 {
259   G4ThreeVector newPoint = (*fDirectTransform3 << 387 
260   return fPtrSolid->Inside(newPoint);          << 388   G4Point3D newPoint = (*fDirectTransform3D)*G4Point3D(p) ;
                                                   >> 389   // G4Point3D newPoint = (*fPtrTransform3D)*G4Point3D(p) ;
                                                   >> 390 
                                                   >> 391   return fPtrSolid->Inside(G4ThreeVector(newPoint.x(),
                                                   >> 392                                          newPoint.y(),
                                                   >> 393                                          newPoint.z())) ; 
261 }                                                 394 }
262                                                   395 
263 //////////////////////////////////////////////    396 //////////////////////////////////////////////////////////////
264 //                                                397 //
265 //                                                398 //
266                                                   399 
267 G4ThreeVector                                     400 G4ThreeVector 
268 G4ReflectedSolid::SurfaceNormal( const G4Three    401 G4ReflectedSolid::SurfaceNormal( const G4ThreeVector& p ) const 
269 {                                                 402 {
270   G4ThreeVector newPoint = (*fDirectTransform3 << 403   G4Point3D newPoint = (*fDirectTransform3D)*G4Point3D(p) ;
271   G4Vector3D normal = fPtrSolid->SurfaceNormal << 404   G4ThreeVector normal =
272   return (*fDirectTransform3D)*normal;         << 405       fPtrSolid->SurfaceNormal(G4ThreeVector(newPoint.x(),
                                                   >> 406                                              newPoint.y(),
                                                   >> 407                                              newPoint.z() ) ) ;
                                                   >> 408   G4Point3D newN = (*fDirectTransform3D)*G4Point3D(normal) ;
                                                   >> 409   newN.unit() ;
                                                   >> 410 
                                                   >> 411   return G4ThreeVector(newN.x(),newN.y(),newN.z()) ;    
273 }                                                 412 }
274                                                   413 
275 //////////////////////////////////////////////    414 /////////////////////////////////////////////////////////////
276 //                                                415 //
277 // The same algorithm as in DistanceToIn(p)       416 // The same algorithm as in DistanceToIn(p)
278                                                   417 
279 G4double                                          418 G4double 
280 G4ReflectedSolid::DistanceToIn( const G4ThreeV    419 G4ReflectedSolid::DistanceToIn( const G4ThreeVector& p,
281                                 const G4ThreeV << 420                                    const G4ThreeVector& v  ) const 
282 {                                                 421 {    
283   G4ThreeVector newPoint     = (*fDirectTransf << 422   G4Point3D newPoint     = (*fDirectTransform3D)*G4Point3D(p) ;
284   G4ThreeVector newDirection = (*fDirectTransf << 423   G4Point3D newDirection = (*fDirectTransform3D)*G4Point3D(v) ;
285   return fPtrSolid->DistanceToIn(newPoint,newD << 424   newDirection.unit() ;
                                                   >> 425   return fPtrSolid->DistanceToIn(
                                                   >> 426        G4ThreeVector(newPoint.x(),newPoint.y(),newPoint.z()),
                                                   >> 427        G4ThreeVector(newDirection.x(),newDirection.y(),newDirection.z())) ;   
286 }                                                 428 }
287                                                   429 
288 //////////////////////////////////////////////    430 ////////////////////////////////////////////////////////
289 //                                                431 //
290 // Approximate nearest distance from the point    432 // Approximate nearest distance from the point p to the intersection of
291 // two solids                                     433 // two solids
292                                                   434 
293 G4double                                          435 G4double 
294 G4ReflectedSolid::DistanceToIn( const G4ThreeV << 436 G4ReflectedSolid::DistanceToIn( const G4ThreeVector& p) const 
295 {                                                 437 {
296   G4ThreeVector newPoint = (*fDirectTransform3 << 438   G4Point3D newPoint = (*fDirectTransform3D)*G4Point3D(p) ;
297   return fPtrSolid->DistanceToIn(newPoint);    << 439   return fPtrSolid->DistanceToIn(
                                                   >> 440                     G4ThreeVector(newPoint.x(),newPoint.y(),newPoint.z())) ;   
298 }                                                 441 }
299                                                   442 
300 //////////////////////////////////////////////    443 //////////////////////////////////////////////////////////
301 //                                                444 //
302 // The same algorithm as DistanceToOut(p)         445 // The same algorithm as DistanceToOut(p)
303                                                   446 
304 G4double                                          447 G4double 
305 G4ReflectedSolid::DistanceToOut( const G4Three    448 G4ReflectedSolid::DistanceToOut( const G4ThreeVector& p,
306                                  const G4Three    449                                  const G4ThreeVector& v,
307                                  const G4bool     450                                  const G4bool calcNorm,
308                                        G4bool* << 451                                        G4bool *validNorm,
309                                        G4Three << 452                                        G4ThreeVector *n      ) const 
310 {                                                 453 {
311   G4ThreeVector solNorm;                       << 454   G4ThreeVector solNorm ; 
312                                                << 
313   G4ThreeVector newPoint     = (*fDirectTransf << 
314   G4ThreeVector newDirection = (*fDirectTransf << 
315                                                   455 
316   G4double dist = fPtrSolid->DistanceToOut(new << 456   G4Point3D newPoint     = (*fDirectTransform3D)*G4Point3D(p) ;
317                                            cal << 457   G4Point3D newDirection = (*fDirectTransform3D)*G4Point3D(v);
                                                   >> 458   newDirection.unit() ;
                                                   >> 459 
                                                   >> 460   G4double dist =
                                                   >> 461     fPtrSolid->DistanceToOut(
                                                   >> 462               G4ThreeVector(newPoint.x(),newPoint.y(),newPoint.z()),
                                                   >> 463               G4ThreeVector(newDirection.x(),newDirection.y(),newDirection.z()),
                                                   >> 464               calcNorm, validNorm, &solNorm) ;
318   if(calcNorm)                                    465   if(calcNorm)
319   {                                               466   { 
320     *n = (*fDirectTransform3D)*G4Vector3D(solN << 467     G4Point3D newN = (*fDirectTransform3D)*G4Point3D(solNorm);
                                                   >> 468     newN.unit() ;
                                                   >> 469     *n = G4ThreeVector(newN.x(),newN.y(),newN.z());
321   }                                               470   }
322   return dist;                                 << 471   return dist ;  
323 }                                                 472 }
324                                                   473 
325 //////////////////////////////////////////////    474 //////////////////////////////////////////////////////////////
326 //                                                475 //
327 // Inverted algorithm of DistanceToIn(p)          476 // Inverted algorithm of DistanceToIn(p)
328                                                   477 
329 G4double                                          478 G4double 
330 G4ReflectedSolid::DistanceToOut( const G4Three    479 G4ReflectedSolid::DistanceToOut( const G4ThreeVector& p ) const 
331 {                                                 480 {
332   G4ThreeVector newPoint = (*fDirectTransform3 << 481   G4Point3D newPoint = (*fDirectTransform3D)*G4Point3D(p);
333   return fPtrSolid->DistanceToOut(newPoint);   << 482   return fPtrSolid->DistanceToOut(
                                                   >> 483                     G4ThreeVector(newPoint.x(),newPoint.y(),newPoint.z()));   
334 }                                                 484 }
335                                                   485 
336 //////////////////////////////////////////////    486 //////////////////////////////////////////////////////////////
337 //                                                487 //
338 //                                                488 //
339                                                   489 
340 void                                              490 void 
341 G4ReflectedSolid::ComputeDimensions(       G4V    491 G4ReflectedSolid::ComputeDimensions(       G4VPVParameterisation*,
342                                      const G4i    492                                      const G4int,
343                                      const G4V    493                                      const G4VPhysicalVolume* ) 
344 {                                                 494 {
345   DumpInfo();                                     495   DumpInfo();
346   G4Exception("G4ReflectedSolid::ComputeDimens << 496   G4Exception("G4BooleanSolid::ComputeDimensions()",
347                "GeomMgt0001", FatalException,  << 497                "NotApplicable", FatalException,
348                "Method not applicable in this     498                "Method not applicable in this context!");
349 }                                                 499 }
350                                                   500 
351 //////////////////////////////////////////////    501 //////////////////////////////////////////////////////////////
352 //                                                502 //
353 // Return volume                               << 
354                                                << 
355 G4double G4ReflectedSolid::GetCubicVolume()    << 
356 {                                              << 
357   return fPtrSolid->GetCubicVolume();          << 
358 }                                              << 
359                                                << 
360 ////////////////////////////////////////////// << 
361 //                                             << 
362 // Return surface area                         << 
363                                                << 
364 G4double G4ReflectedSolid::GetSurfaceArea()    << 
365 {                                              << 
366   return fPtrSolid->GetSurfaceArea();          << 
367 }                                              << 
368                                                << 
369 ////////////////////////////////////////////// << 
370 //                                             << 
371 // Return a point (G4ThreeVector) randomly and    503 // Return a point (G4ThreeVector) randomly and uniformly selected
372 // on the solid surface                           504 // on the solid surface
373                                                   505 
374 G4ThreeVector G4ReflectedSolid::GetPointOnSurf    506 G4ThreeVector G4ReflectedSolid::GetPointOnSurface() const
375 {                                                 507 {
376   G4ThreeVector p  =  fPtrSolid->GetPointOnSur << 508   G4ThreeVector p    =  fPtrSolid->GetPointOnSurface();
377   return (*fDirectTransform3D)*G4Point3D(p);   << 509   G4Point3D newPoint = (*fDirectTransform3D)*G4Point3D(p);
378 }                                              << 
379                                                << 
380 ////////////////////////////////////////////// << 
381 //                                             << 
382 // Return the number of constituents used for  << 
383 // of the solid                                << 
384                                                << 
385 G4int G4ReflectedSolid::GetNumOfConstituents() << 
386 {                                              << 
387   return fPtrSolid->GetNumOfConstituents();    << 
388 }                                              << 
389                                                << 
390 ////////////////////////////////////////////// << 
391 //                                             << 
392 // Return true if the reflected solid has only << 
393                                                << 
394 G4bool G4ReflectedSolid::IsFaceted() const     << 
395 {                                              << 
396   return fPtrSolid->IsFaceted();               << 
397 }                                              << 
398                                                << 
399 ////////////////////////////////////////////// << 
400 //                                             << 
401 // Make a clone of this object                 << 
402                                                   510 
403 G4VSolid* G4ReflectedSolid::Clone() const      << 511   return G4ThreeVector(newPoint.x(),newPoint.y(),newPoint.z());
404 {                                              << 
405   return new G4ReflectedSolid(*this);          << 
406 }                                                 512 }
407                                                   513 
408 //////////////////////////////////////////////    514 //////////////////////////////////////////////////////////////////////////
409 //                                                515 //
410 // Stream object contents to an output stream     516 // Stream object contents to an output stream
411                                                   517 
412 std::ostream& G4ReflectedSolid::StreamInfo(std    518 std::ostream& G4ReflectedSolid::StreamInfo(std::ostream& os) const
413 {                                                 519 {
414   os << "-------------------------------------    520   os << "-----------------------------------------------------------\n"
415      << "    *** Dump for Reflected solid - "     521      << "    *** Dump for Reflected solid - " << GetName() << " ***\n"
416      << "    =================================    522      << "    ===================================================\n"
417      << " Solid type: " << GetEntityType() <<     523      << " Solid type: " << GetEntityType() << "\n"
418      << " Parameters of constituent solid: \n"    524      << " Parameters of constituent solid: \n"
419      << "=====================================    525      << "===========================================================\n";
420   fPtrSolid->StreamInfo(os);                      526   fPtrSolid->StreamInfo(os);
421   os << "=====================================    527   os << "===========================================================\n"
422      << " Transformations: \n"                    528      << " Transformations: \n"
423      << "    Direct transformation - translati    529      << "    Direct transformation - translation : \n"
424      << "           " << fDirectTransform3D->g << 530      << "           " << fDirectTransform->NetTranslation() << "\n"
425      << "                          - rotation     531      << "                          - rotation    : \n"
426      << "           ";                            532      << "           ";
427   fDirectTransform3D->getRotation().print(os); << 533   fDirectTransform->NetRotation().print(os);
428   os << "\n"                                      534   os << "\n"
429      << "=====================================    535      << "===========================================================\n";
430                                                   536 
431   return os;                                      537   return os;
432 }                                                 538 }
433                                                   539 
434 //////////////////////////////////////////////    540 /////////////////////////////////////////////////
435 //                                                541 //
436 //                                                542 //                    
437                                                   543 
438 void                                              544 void 
439 G4ReflectedSolid::DescribeYourselfTo ( G4VGrap    545 G4ReflectedSolid::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 
440 {                                                 546 {
441   scene.AddSolid (*this);                         547   scene.AddSolid (*this);
442 }                                                 548 }
443                                                   549 
444 //////////////////////////////////////////////    550 ////////////////////////////////////////////////////
445 //                                                551 //
446 //                                                552 //
447                                                   553 
448 G4Polyhedron*                                     554 G4Polyhedron* 
449 G4ReflectedSolid::CreatePolyhedron () const       555 G4ReflectedSolid::CreatePolyhedron () const 
450 {                                                 556 {
451   G4Polyhedron* polyhedron = fPtrSolid->Create    557   G4Polyhedron* polyhedron = fPtrSolid->CreatePolyhedron();
452   if (polyhedron != nullptr)                   << 558   if (polyhedron)
453   {                                               559   {
454     polyhedron->Transform(*fDirectTransform3D)    560     polyhedron->Transform(*fDirectTransform3D);
455     return polyhedron;                            561     return polyhedron;
456   }                                               562   }
457   else                                            563   else
458   {                                               564   {
459     std::ostringstream message;                << 565     std::ostringstream oss;
460     message << "Solid - " << GetName()         << 566     oss << "Solid - " << GetName()
461             << " - original solid has no" << G << 567         << " - original solid has no" << G4endl
462             << "corresponding polyhedron. Retu << 568         << " corresponding polyhedron. Returning NULL!";
463     G4Exception("G4ReflectedSolid::CreatePolyh << 569     G4Exception("G4ReflectedSolid::CreatePolyhedron()", "InvalidSetup",
464                 "GeomMgt1001", JustWarning, me << 570                 JustWarning, oss.str().c_str());
465     return nullptr;                            << 571     return 0;
466   }                                               572   }
467 }                                                 573 }
468                                                   574 
469 //////////////////////////////////////////////    575 /////////////////////////////////////////////////////////
470 //                                                576 //
471 //                                                577 //
472                                                   578 
                                                   >> 579 G4NURBS*      
                                                   >> 580 G4ReflectedSolid::CreateNURBS      () const 
                                                   >> 581 {
                                                   >> 582   // Take into account local transformation - see CreatePolyhedron.
                                                   >> 583   // return fPtrSolid->CreateNURBS() ;
                                                   >> 584   return 0;
                                                   >> 585 }
                                                   >> 586 
                                                   >> 587 /////////////////////////////////////////////////////////
                                                   >> 588 //
                                                   >> 589 //
                                                   >> 590 
473 G4Polyhedron*                                     591 G4Polyhedron*
474 G4ReflectedSolid::GetPolyhedron () const          592 G4ReflectedSolid::GetPolyhedron () const
475 {                                                 593 {
476   if ((fpPolyhedron == nullptr) || fRebuildPol << 594   if (!fpPolyhedron ||
477       (fpPolyhedron->GetNumberOfRotationStepsA << 595       fpPolyhedron->GetNumberOfRotationStepsAtTimeOfCreation() !=
478        fpPolyhedron->GetNumberOfRotationSteps( << 596       fpPolyhedron->GetNumberOfRotationSteps())
479     {                                             597     {
480       fpPolyhedron = CreatePolyhedron();       << 598       delete fpPolyhedron;
481       fRebuildPolyhedron = false;              << 599       fpPolyhedron = CreatePolyhedron ();
482     }                                             600     }
483   return fpPolyhedron;                            601   return fpPolyhedron;
484 }                                                 602 }
485                                                   603