Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4ExactHelixStepper implementation << 27 // 26 // 28 // Author: J.Apostolakis, 28.01.2005. << 27 // $Id: G4ExactHelixStepper.cc 66356 2012-12-18 09:02:32Z gcosmo $ 29 // Implementation adapted from Explici << 28 // >> 29 // Helix a-la-Explicity Euler: x_1 = x_0 + helix(h) >> 30 // with helix(h) being a helix piece of length h >> 31 // simplest approach for solving linear differential equations. >> 32 // Take the current derivative and add it to the current position. >> 33 // >> 34 // As the field is assumed constant, an error is not calculated. >> 35 // >> 36 // Author: J. Apostolakis, 28 Jan 2005 >> 37 // Implementation adapted from ExplicitEuler of W.Wander 30 // ------------------------------------------- 38 // ------------------------------------------------------------------- 31 39 32 #include "G4ExactHelixStepper.hh" 40 #include "G4ExactHelixStepper.hh" 33 #include "G4PhysicalConstants.hh" 41 #include "G4PhysicalConstants.hh" 34 #include "G4ThreeVector.hh" 42 #include "G4ThreeVector.hh" 35 #include "G4LineSection.hh" 43 #include "G4LineSection.hh" 36 44 37 G4ExactHelixStepper::G4ExactHelixStepper(G4Mag << 45 G4ExactHelixStepper::G4ExactHelixStepper(G4Mag_EqRhs *EqRhs) 38 : G4MagHelicalStepper(EqRhs), 46 : G4MagHelicalStepper(EqRhs), 39 fBfieldValue(DBL_MAX, DBL_MAX, DBL_MAX) << 47 fBfieldValue(DBL_MAX, DBL_MAX, DBL_MAX), >> 48 fPtrMagEqOfMot(EqRhs) 40 { 49 { >> 50 ; 41 } 51 } 42 52 43 G4ExactHelixStepper::~G4ExactHelixStepper() = << 53 G4ExactHelixStepper::~G4ExactHelixStepper() {} 44 << 45 // ------------------------------------------- << 46 54 47 void 55 void 48 G4ExactHelixStepper::Stepper( const G4double y 56 G4ExactHelixStepper::Stepper( const G4double yInput[], 49 const G4double*, 57 const G4double*, 50 G4double h 58 G4double hstep, 51 G4double y 59 G4double yOut[], 52 G4double y << 60 G4double yErr[] ) 53 { 61 { 54 const G4int nvar = 6; << 62 const G4int nvar = 6; 55 63 56 G4int i; << 64 G4int i; 57 G4ThreeVector Bfld_value; << 65 G4ThreeVector Bfld_value; 58 66 59 MagFieldEvaluate(yInput, Bfld_value); << 67 MagFieldEvaluate(yInput, Bfld_value); 60 AdvanceHelix(yInput, Bfld_value, hstep, yOut << 68 AdvanceHelix(yInput, Bfld_value, hstep, yOut); 61 69 62 // We are assuming a constant field: helix i 70 // We are assuming a constant field: helix is exact 63 // 71 // 64 for(i=0; i<nvar; ++i) << 72 for(i=0;i<nvar;i++) 65 { 73 { 66 yErr[i] = 0.0 ; 74 yErr[i] = 0.0 ; 67 } 75 } 68 76 69 fBfieldValue = Bfld_value; << 77 fBfieldValue=Bfld_value; 70 } 78 } 71 79 72 // ------------------------------------------- << 73 << 74 void 80 void 75 G4ExactHelixStepper::DumbStepper( const G4doub << 81 G4ExactHelixStepper::DumbStepper( const G4double yIn[], 76 G4Thre << 82 G4ThreeVector Bfld, 77 G4doub << 83 G4double h, 78 G4doub << 84 G4double yOut[]) 79 { 85 { 80 // Assuming a constant field: solution is a 86 // Assuming a constant field: solution is a helix 81 87 82 AdvanceHelix(yIn, Bfld, h, yOut); 88 AdvanceHelix(yIn, Bfld, h, yOut); 83 89 84 G4Exception("G4ExactHelixStepper::DumbSteppe 90 G4Exception("G4ExactHelixStepper::DumbStepper", 85 "GeomField0002", FatalException, 91 "GeomField0002", FatalException, 86 "Should not be called. Stepper m 92 "Should not be called. Stepper must do all the work." ); 87 } 93 } 88 94 89 95 90 // ------------------------------------------- 96 // --------------------------------------------------------------------------- 91 97 92 G4double 98 G4double 93 G4ExactHelixStepper::DistChord() const 99 G4ExactHelixStepper::DistChord() const 94 { 100 { 95 // Implementation : must check whether h/R > 101 // Implementation : must check whether h/R > pi !! 96 // If( h/R < pi) DistChord=h/2*std::tan 102 // If( h/R < pi) DistChord=h/2*std::tan(Ang_curve/4) 97 // Else DistChord=R_helix 103 // Else DistChord=R_helix 98 104 99 G4double distChord; 105 G4double distChord; 100 G4double Ang_curve=GetAngCurve(); 106 G4double Ang_curve=GetAngCurve(); 101 107 102 if (Ang_curve<=pi) 108 if (Ang_curve<=pi) 103 { 109 { 104 distChord=GetRadHelix()*(1-std::cos(0.5*An 110 distChord=GetRadHelix()*(1-std::cos(0.5*Ang_curve)); 105 } 111 } 106 else if(Ang_curve<twopi) 112 else if(Ang_curve<twopi) 107 { 113 { 108 distChord=GetRadHelix()*(1+std::cos(0.5*(t 114 distChord=GetRadHelix()*(1+std::cos(0.5*(twopi-Ang_curve))); 109 } 115 } 110 else 116 else 111 { 117 { 112 distChord=2.*GetRadHelix(); 118 distChord=2.*GetRadHelix(); 113 } 119 } 114 120 115 return distChord; 121 return distChord; 116 } 122 } 117 << 118 // ------------------------------------------- << 119 123 120 G4int 124 G4int 121 G4ExactHelixStepper::IntegratorOrder() const 125 G4ExactHelixStepper::IntegratorOrder() const 122 { 126 { 123 return 1; 127 return 1; 124 } 128 } 125 129