Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 /// \file runAndEvent/RE02/src/RE02DetectorCon << 27 /// \brief Implementation of the RE02DetectorC << 28 // 26 // >> 27 // $Id: RE02DetectorConstruction.cc,v 1.5 2010-12-07 15:17:13 stesting Exp $ >> 28 // GEANT4 tag $Name: not supported by cvs2svn $ 29 // 29 // 30 // << 30 31 << 32 #include "RE02DetectorConstruction.hh" 31 #include "RE02DetectorConstruction.hh" 33 32 34 #include "RE02NestedPhantomParameterisation.hh << 33 #include "G4MultiFunctionalDetector.hh" 35 34 >> 35 #include "RE02PSEnergyDeposit.hh" >> 36 #include "RE02PSNofStep.hh" >> 37 #include "RE02PSCellFlux.hh" >> 38 #include "RE02PSPassageCellFlux.hh" >> 39 #include "RE02PSFlatSurfaceFlux.hh" >> 40 #include "RE02PSFlatSurfaceCurrent.hh" >> 41 >> 42 #include "G4SDParticleWithEnergyFilter.hh" >> 43 #include "G4SDParticleFilter.hh" >> 44 #include "G4SDChargedFilter.hh" >> 45 >> 46 #include "G4NistManager.hh" >> 47 #include "G4Material.hh" 36 #include "G4Box.hh" 48 #include "G4Box.hh" 37 #include "G4Colour.hh" << 38 #include "G4LogicalVolume.hh" 49 #include "G4LogicalVolume.hh" 39 #include "G4Material.hh" << 40 #include "G4NistManager.hh" << 41 #include "G4PSCellFlux3D.hh" << 42 #include "G4PSEnergyDeposit3D.hh" << 43 #include "G4PSFlatSurfaceCurrent3D.hh" << 44 #include "G4PSFlatSurfaceFlux3D.hh" << 45 #include "G4PSNofStep3D.hh" << 46 #include "G4PSPassageCellFlux3D.hh" << 47 #include "G4PVParameterised.hh" << 48 #include "G4PVPlacement.hh" 50 #include "G4PVPlacement.hh" 49 #include "G4SDChargedFilter.hh" << 50 #include "G4SDManager.hh" 51 #include "G4SDManager.hh" 51 #include "G4SDParticleFilter.hh" << 52 52 #include "G4SDParticleWithEnergyFilter.hh" << 53 #include "G4PVParameterised.hh" 53 #include "G4SystemOfUnits.hh" << 54 #include "RE02NestedPhantomParameterisation.hh" >> 55 54 #include "G4VisAttributes.hh" 56 #include "G4VisAttributes.hh" >> 57 #include "G4Colour.hh" >> 58 55 #include "G4ios.hh" 59 #include "G4ios.hh" 56 60 57 //============================================ 61 //======================================================================= 58 // RE02DetectorConstruction 62 // RE02DetectorConstruction 59 // 63 // 60 // (Description) 64 // (Description) 61 // 65 // 62 // Detector construction for example RE02. 66 // Detector construction for example RE02. 63 // << 67 // 64 // [Geometry] << 68 // [Geometry] 65 // The world volume is defined as 200 cm x 69 // The world volume is defined as 200 cm x 200 cm x 200 cm box with Air. 66 // Water phantom is defined as 200 mm x 200 70 // Water phantom is defined as 200 mm x 200 mm x 400 mm box with Water. 67 // The water phantom is divided into 100 seg << 71 // The water phantom is divided into 100 segments in x,y plane using replication, 68 // replication, << 72 // and then divided into 200 segments perpendicular to z axis using nested 69 // and then divided into 200 segments perpen << 73 // parameterised volume. 70 // parameterised volume. << 71 // These values are defined at constructor, 74 // These values are defined at constructor, 72 // e.g. the size of water phantom (fPhantom << 75 // e.g. the size of water phantom (fphantomSize), and number of segmentation 73 // of water phantom (fNx, fNy, fNz). 76 // of water phantom (fNx, fNy, fNz). 74 // 77 // 75 // By default, lead plates are inserted into << 78 // By default, lead plates are inserted into the position of even order segments. 76 // segments. << 77 // NIST database is used for materials. 79 // NIST database is used for materials. 78 // 80 // 79 // 81 // 80 // [Scorer] 82 // [Scorer] 81 // Assignment of G4MultiFunctionalDetector << 83 // Assignment of G4MultiFunctionalDetector and G4PrimitiveScorer 82 // is demonstrated in this example. 84 // is demonstrated in this example. 83 // ------------------------------------- 85 // ------------------------------------------------- 84 // The collection names of defined Primi 86 // The collection names of defined Primitives are 85 // 0 PhantomSD/totalEDep << 87 // 0 PhantomSD/totalEDep 86 // 1 PhantomSD/protonEDep 88 // 1 PhantomSD/protonEDep 87 // 2 PhantomSD/protonNStep 89 // 2 PhantomSD/protonNStep 88 // 3 PhantomSD/chargedPassCellFlu 90 // 3 PhantomSD/chargedPassCellFlux 89 // 4 PhantomSD/chargedCellFlux << 91 // 4 PhantomSD/chargedCellFlux 90 // 5 PhantomSD/chargedSurfFlux << 92 // 5 PhantomSD/chargedSurfFlux 91 // 6 PhantomSD/gammaSurfCurr000 93 // 6 PhantomSD/gammaSurfCurr000 92 // 7 PhantomSD/gammaSurfCurr001 94 // 7 PhantomSD/gammaSurfCurr001 93 // 9 PhantomSD/gammaSurdCurr002 95 // 9 PhantomSD/gammaSurdCurr002 94 // 10 PhantomSD/gammaSurdCurr003 96 // 10 PhantomSD/gammaSurdCurr003 95 // -------------------------------------- 97 // ------------------------------------------------- 96 // Please see README for detail descripti 98 // Please see README for detail description. 97 // 99 // 98 //============================================ 100 //======================================================================= 99 101 100 //....oooOO0OOooo........oooOO0OOooo........oo << 102 // 101 RE02DetectorConstruction::RE02DetectorConstruc << 103 RE02DetectorConstruction::RE02DetectorConstruction() 102 { 104 { 103 // Default size of water phantom,and segment 105 // Default size of water phantom,and segmentation. 104 fPhantomSize.setX(200. * mm); << 106 fphantomSize.setX(200.*mm); 105 fPhantomSize.setY(200. * mm); << 107 fphantomSize.setY(200.*mm); 106 fPhantomSize.setZ(400. * mm); << 108 fphantomSize.setZ(400.*mm); 107 fNx = fNy = fNz = 100; << 109 fNx = fNy = fNz = 100; 108 fInsertLead = TRUE; << 109 } 110 } 110 111 111 //....oooOO0OOooo........oooOO0OOooo........oo << 112 // 112 RE02DetectorConstruction::~RE02DetectorConstru 113 RE02DetectorConstruction::~RE02DetectorConstruction() 113 { << 114 {;} 114 ; << 115 } << 116 115 117 //....oooOO0OOooo........oooOO0OOooo........oo << 116 // 118 G4VPhysicalVolume* RE02DetectorConstruction::C << 117 G4VPhysicalVolume* RE02DetectorConstruction::Construct() 119 { 118 { 120 //===================== 119 //===================== 121 // Material Definitions 120 // Material Definitions 122 //===================== 121 //===================== 123 // << 122 // 124 //-------- NIST Materials ------------------ 123 //-------- NIST Materials ---------------------------------------------------- 125 // Material Information imported from NIST 124 // Material Information imported from NIST database. 126 // 125 // 127 G4NistManager* NISTman = G4NistManager::Inst 126 G4NistManager* NISTman = G4NistManager::Instance(); 128 G4Material* air = NISTman->FindOrBuildMateri << 127 G4Material* Air = NISTman->FindOrBuildMaterial("G4_AIR"); 129 G4Material* water = NISTman->FindOrBuildMate << 128 G4Material* H2O = NISTman->FindOrBuildMaterial("G4_WATER"); 130 G4Material* lead = NISTman->FindOrBuildMater << 129 G4Material* LEAD = NISTman->FindOrBuildMaterial("G4_Pb"); 131 130 132 // 131 // 133 // Print all the materials defined. 132 // Print all the materials defined. 134 G4cout << G4endl << "The materials defined a 133 G4cout << G4endl << "The materials defined are : " << G4endl << G4endl; 135 G4cout << *(G4Material::GetMaterialTable()) 134 G4cout << *(G4Material::GetMaterialTable()) << G4endl; 136 135 >> 136 137 //========================================== 137 //============================================================================ 138 // Definitions of Solids, Logical Volum << 138 // Definitions of Solids, Logical Volumes, Physical Volumes 139 //========================================== 139 //============================================================================ 140 140 141 //------------- 141 //------------- 142 // World Volume << 142 // World Volume 143 //------------- 143 //------------- 144 144 145 G4ThreeVector worldSize = G4ThreeVector(200 << 145 G4ThreeVector worldSize = G4ThreeVector(200*cm, 200*cm, 200*cm); >> 146 >> 147 G4Box * solidWorld >> 148 = new G4Box("world", worldSize.x()/2., worldSize.y()/2., worldSize.z()/2.); >> 149 G4LogicalVolume * logicWorld >> 150 = new G4LogicalVolume(solidWorld, Air, "World", 0, 0, 0); 146 151 147 G4Box* solidWorld = << 152 // 148 new G4Box("world", worldSize.x() / 2., wor << 149 G4LogicalVolume* logicWorld = new G4LogicalV << 150 << 151 // << 152 // Must place the World Physical volume unr 153 // Must place the World Physical volume unrotated at (0,0,0). 153 G4VPhysicalVolume* physiWorld = new G4PVPlac << 154 G4VPhysicalVolume * physiWorld 154 << 155 = new G4PVPlacement(0, // no rotation 155 << 156 G4ThreeVector(), // at (0,0,0) 156 << 157 logicWorld, // its logical volume 157 << 158 "World", // its name 158 << 159 0, // its mother volume 159 << 160 false, // no boolean operations 160 << 161 0); // copy number >> 162 161 //--------------- 163 //--------------- 162 // Water Phantom 164 // Water Phantom 163 //--------------- 165 //--------------- 164 166 165 //................................ 167 //................................ 166 // Mother Volume of Water Phantom 168 // Mother Volume of Water Phantom 167 //................................ 169 //................................ 168 170 169 //-- Default size of water phantom is defin 171 //-- Default size of water phantom is defined at constructor. 170 G4ThreeVector phantomSize = fPhantomSize; << 172 G4ThreeVector phantomSize = fphantomSize; 171 << 173 172 G4Box* solidPhantom = << 174 G4Box * solidPhantom 173 new G4Box("phantom", phantomSize.x() / 2., << 175 = new G4Box("phantom", 174 G4LogicalVolume* logicPhantom = new G4Logica << 176 phantomSize.x()/2., phantomSize.y()/2., phantomSize.z()/2.); >> 177 G4LogicalVolume * logicPhantom >> 178 = new G4LogicalVolume(solidPhantom, H2O, "Phantom", 0, 0, 0); 175 179 176 G4RotationMatrix* rot = new G4RotationMatrix << 180 G4RotationMatrix* rot=new G4RotationMatrix(); 177 // rot->rotateY(30.*deg); << 181 //rot->rotateY(30.*deg); 178 G4ThreeVector positionPhantom; 182 G4ThreeVector positionPhantom; 179 // G4VPhysicalVolume * physiPhantom = << 183 //G4VPhysicalVolume * physiPhantom = 180 new G4PVPlacement(rot, // no rotation << 184 new G4PVPlacement(rot, // no rotation 181 positionPhantom, // at (x << 185 positionPhantom, // at (x,y,z) 182 logicPhantom, // its logi << 186 logicPhantom, // its logical volume 183 "Phantom", // its name << 187 "Phantom", // its name 184 logicWorld, // its mother << 188 logicWorld, // its mother volume 185 false, // no boolean oper << 189 false, // no boolean operations 186 0); // copy number << 190 0); // copy number 187 191 188 //.......................................... 192 //.............................................. 189 // Phantom segmentation using Parameterisati 193 // Phantom segmentation using Parameterisation 190 //.......................................... 194 //.............................................. 191 // 195 // 192 G4cout << "<-- RE02DetectorConstruction::Con << 196 G4cout << "<-- RE02DetectorConstruction::Construct-------" <<G4endl; 193 G4cout << " Water Phantom Size " << fPhanto << 197 G4cout << " Water Phantom Size " << fphantomSize/mm << G4endl; 194 G4cout << " Segmentation (" << fNx << "," << 198 G4cout << " Segmentation ("<< fNx<<","<<fNy<<","<<fNz<<")"<<G4endl; 195 G4cout << " Lead plate at even copy # (0-Fa << 199 G4cout << " Lead plate at even copy # (0-False,1-True): " << IsLeadSegment() <<G4endl; 196 G4cout << "<-------------------------------- << 200 G4cout << "<---------------------------------------------"<<G4endl; 197 // Number of segmentation. 201 // Number of segmentation. 198 // - Default number of segmentation is defin 202 // - Default number of segmentation is defined at constructor. 199 G4int nxCells = fNx; 203 G4int nxCells = fNx; 200 G4int nyCells = fNy; 204 G4int nyCells = fNy; 201 G4int nzCells = fNz; 205 G4int nzCells = fNz; 202 206 203 G4ThreeVector sensSize; 207 G4ThreeVector sensSize; 204 sensSize.setX(phantomSize.x() / (G4double)nx << 208 sensSize.setX(phantomSize.x()/(G4double)nxCells); 205 sensSize.setY(phantomSize.y() / (G4double)ny << 209 sensSize.setY(phantomSize.y()/(G4double)nyCells); 206 sensSize.setZ(phantomSize.z() / (G4double)nz << 210 sensSize.setZ(phantomSize.z()/(G4double)nzCells); 207 // i.e Voxel size will be 2.0 x 2.0 x 2.0 mm 211 // i.e Voxel size will be 2.0 x 2.0 x 2.0 mm3 cube by default. 208 // << 212 // 209 213 210 // Replication of Water Phantom Volume. 214 // Replication of Water Phantom Volume. 211 // Y Slice 215 // Y Slice 212 G4String yRepName("RepY"); 216 G4String yRepName("RepY"); 213 G4VSolid* solYRep = 217 G4VSolid* solYRep = 214 new G4Box(yRepName, phantomSize.x() / 2., << 218 new G4Box(yRepName,phantomSize.x()/2.,sensSize.y()/2.,phantomSize.z()/2.); 215 G4LogicalVolume* logYRep = new G4LogicalVolu << 219 G4LogicalVolume* logYRep = 216 // G4PVReplica* yReplica = << 220 new G4LogicalVolume(solYRep,H2O,yRepName); 217 new G4PVReplica(yRepName, logYRep, logicPhan << 221 //G4PVReplica* yReplica = >> 222 new G4PVReplica(yRepName,logYRep,logicPhantom,kYAxis,fNy,sensSize.y()); 218 // X Slice 223 // X Slice 219 G4String xRepName("RepX"); 224 G4String xRepName("RepX"); 220 G4VSolid* solXRep = 225 G4VSolid* solXRep = 221 new G4Box(xRepName, sensSize.x() / 2., sen << 226 new G4Box(xRepName,sensSize.x()/2.,sensSize.y()/2.,phantomSize.z()/2.); 222 G4LogicalVolume* logXRep = new G4LogicalVolu << 227 G4LogicalVolume* logXRep = 223 // G4PVReplica* xReplica = << 228 new G4LogicalVolume(solXRep,H2O,xRepName); 224 new G4PVReplica(xRepName, logXRep, logYRep, << 229 //G4PVReplica* xReplica = 225 << 230 new G4PVReplica(xRepName,logXRep,logYRep,kXAxis,fNx,sensSize.x()); >> 231 // >> 232 // 226 // 233 // 227 //.................................. 234 //.................................. 228 // Voxel solid and logical volumes 235 // Voxel solid and logical volumes 229 //.................................. 236 //.................................. 230 // Z Slice 237 // Z Slice 231 G4String zVoxName("phantomSens"); 238 G4String zVoxName("phantomSens"); 232 G4VSolid* solVoxel = new G4Box(zVoxName, sen << 239 G4VSolid* solVoxel = 233 fLVPhantomSens = new G4LogicalVolume(solVoxe << 240 new G4Box(zVoxName,sensSize.x()/2.,sensSize.y()/2.,sensSize.z()/2.); >> 241 G4LogicalVolume* logicPhantomSens = new G4LogicalVolume(solVoxel,H2O,zVoxName); 234 // 242 // 235 // 243 // 236 std::vector<G4Material*> phantomMat(2, water << 244 std::vector<G4Material*> phantomMat(2,H2O); 237 if (IsLeadSegment()) phantomMat[1] = lead; << 245 if ( IsLeadSegment() ) phantomMat[1]=LEAD; 238 // 246 // 239 // Parameterisation for transformation of vo 247 // Parameterisation for transformation of voxels. 240 // (voxel size is fixed in this example. << 248 // (voxel size is fixed in this example. 241 // e.g. nested parameterisation handles mat << 249 // e.g. nested parameterisation handles material and transfomation of voxels.) 242 RE02NestedPhantomParameterisation* paramPhan << 250 RE02NestedPhantomParameterisation* paramPhantom 243 new RE02NestedPhantomParameterisation(sens << 251 = new RE02NestedPhantomParameterisation(sensSize/2.,nzCells,phantomMat); 244 // G4VPhysicalVolume * physiPhantomSens = << 252 //G4VPhysicalVolume * physiPhantomSens = 245 new G4PVParameterised("PhantomSens", // the << 253 new G4PVParameterised("PhantomSens", // their name 246 fLVPhantomSens, // th << 254 logicPhantomSens, // their logical volume 247 logXRep, // Mother lo << 255 logXRep, // Mother logical volume 248 kUndefined, // Are pl << 256 kUndefined, // Are placed along this axis 249 nzCells, // Number of << 257 nzCells, // Number of cells 250 paramPhantom); // Par << 258 paramPhantom); // Parameterisation. 251 // Optimization flag is avaiable for, 259 // Optimization flag is avaiable for, 252 // kUndefined, kXAxis, kYAxis, kZAxis. 260 // kUndefined, kXAxis, kYAxis, kZAxis. 253 // 261 // 254 262 255 //=============================== << 256 // Visualization attributes << 257 //=============================== << 258 << 259 G4VisAttributes* boxVisAtt = new G4VisAttrib << 260 logicWorld->SetVisAttributes(boxVisAtt); << 261 // logicWorld->SetVisAttributes(G4VisAttribu << 262 << 263 // Mother volume of WaterPhantom << 264 G4VisAttributes* phantomVisAtt = new G4VisAt << 265 logicPhantom->SetVisAttributes(phantomVisAtt << 266 << 267 // Replica << 268 G4VisAttributes* yRepVisAtt = new G4VisAttri << 269 logYRep->SetVisAttributes(yRepVisAtt); << 270 G4VisAttributes* xRepVisAtt = new G4VisAttri << 271 logXRep->SetVisAttributes(xRepVisAtt); << 272 << 273 // Skip the visualization for those voxels. << 274 fLVPhantomSens->SetVisAttributes(G4VisAttrib << 275 << 276 return physiWorld; << 277 } << 278 << 279 void RE02DetectorConstruction::ConstructSDandF << 280 { << 281 //========================================== 263 //================================================ 282 // Sensitive detectors : MultiFunctionalDete 264 // Sensitive detectors : MultiFunctionalDetector 283 //========================================== 265 //================================================ 284 // 266 // 285 // Sensitive Detector Manager. 267 // Sensitive Detector Manager. 286 G4SDManager* pSDman = G4SDManager::GetSDMpoi << 268 G4SDManager* SDman = G4SDManager::GetSDMpointer(); 287 // 269 // 288 // Sensitive Detector Name 270 // Sensitive Detector Name 289 G4String phantomSDname = "PhantomSD"; 271 G4String phantomSDname = "PhantomSD"; 290 272 291 //------------------------ 273 //------------------------ 292 // MultiFunctionalDetector 274 // MultiFunctionalDetector 293 //------------------------ 275 //------------------------ 294 // 276 // 295 // Define MultiFunctionalDetector with name. 277 // Define MultiFunctionalDetector with name. 296 G4MultiFunctionalDetector* mFDet = new G4Mul << 278 G4MultiFunctionalDetector* MFDet = new G4MultiFunctionalDetector(phantomSDname); 297 pSDman->AddNewDetector(mFDet); // Register << 279 SDman->AddNewDetector( MFDet ); // Register SD to SDManager. 298 fLVPhantomSens->SetSensitiveDetector(mFDet); << 280 logicPhantomSens->SetSensitiveDetector(MFDet); // Assign SD to the logical volume. 299 281 300 //--------------------------------------- 282 //--------------------------------------- 301 // SDFilter : Sensitive Detector Filters 283 // SDFilter : Sensitive Detector Filters 302 //--------------------------------------- 284 //--------------------------------------- 303 // 285 // 304 // Particle Filter for Primitive Scorer with << 286 // Particle Filter for Primitive Scorer with filter name(fltName) 305 // and particle name(particleName), 287 // and particle name(particleName), 306 // or particle names are given by add("parti 288 // or particle names are given by add("particle name"); method. 307 // 289 // 308 G4String fltName, particleName; << 290 G4String fltName,particleName; 309 // 291 // 310 //-- proton filter 292 //-- proton filter 311 G4SDParticleFilter* protonFilter = << 293 G4SDParticleFilter* protonFilter = 312 new G4SDParticleFilter(fltName = "protonFi << 294 new G4SDParticleFilter(fltName="protonFilter", particleName="proton"); 313 // 295 // 314 //-- electron filter 296 //-- electron filter 315 G4SDParticleFilter* electronFilter = new G4S << 297 G4SDParticleFilter* electronFilter = 316 electronFilter->add(particleName = "e+"); / << 298 new G4SDParticleFilter(fltName="electronFilter"); 317 electronFilter->add(particleName = "e-"); / << 299 electronFilter->add(particleName="e+"); // accept electrons. >> 300 electronFilter->add(particleName="e-"); // accept positorons. 318 // 301 // 319 //-- charged particle filter 302 //-- charged particle filter 320 G4SDChargedFilter* chargedFilter = new G4SDC << 303 G4SDChargedFilter* chargedFilter = >> 304 new G4SDChargedFilter(fltName="chargedFilter"); 321 305 322 //------------------------ 306 //------------------------ 323 // PS : Primitive Scorers 307 // PS : Primitive Scorers 324 //------------------------ 308 //------------------------ 325 // Primitive Scorers are used with SDFilters 309 // Primitive Scorers are used with SDFilters according to your purpose. 326 // << 310 // 327 // 311 // 328 //-- Primitive Scorer for Energy Deposit. 312 //-- Primitive Scorer for Energy Deposit. 329 // Total, by protons, by electrons. 313 // Total, by protons, by electrons. 330 G4String psName; 314 G4String psName; 331 G4PSEnergyDeposit3D* scorer0 = new G4PSEnerg << 315 G4PSEnergyDeposit* scorer0 = new RE02PSEnergyDeposit(psName="totalEDep",fNx,fNy,fNz); 332 G4PSEnergyDeposit3D* scorer1 = new G4PSEnerg << 316 G4PSEnergyDeposit* scorer1 = new RE02PSEnergyDeposit(psName="protonEDep",fNx,fNy,fNz); 333 scorer1->SetFilter(protonFilter); 317 scorer1->SetFilter(protonFilter); 334 318 335 // 319 // 336 //-- Number of Steps for protons 320 //-- Number of Steps for protons 337 G4PSNofStep3D* scorer2 = new G4PSNofStep3D(p << 321 G4PSNofStep* scorer2 = new RE02PSNofStep(psName="protonNStep",fNx,fNy,fNz); 338 scorer2->SetFilter(protonFilter); 322 scorer2->SetFilter(protonFilter); 339 323 340 // 324 // 341 //-- CellFlux for charged particles 325 //-- CellFlux for charged particles 342 G4PSPassageCellFlux3D* scorer3 = << 326 G4PSPassageCellFlux* scorer3 = new RE02PSPassageCellFlux(psName="chargedPassCellFlux", 343 new G4PSPassageCellFlux3D(psName = "charge << 327 fNx,fNy,fNz); 344 G4PSCellFlux3D* scorer4 = new G4PSCellFlux3D << 328 G4PSCellFlux* scorer4 = new RE02PSCellFlux(psName="chargedCellFlux", 345 G4PSFlatSurfaceFlux3D* scorer5 = << 329 fNx,fNy,fNz); 346 new G4PSFlatSurfaceFlux3D(psName = "charge << 330 G4PSFlatSurfaceFlux* scorer5 = new RE02PSFlatSurfaceFlux(psName="chargedSurfFlux", >> 331 fFlux_InOut,fNx,fNy,fNz); 347 scorer3->SetFilter(chargedFilter); 332 scorer3->SetFilter(chargedFilter); 348 scorer4->SetFilter(chargedFilter); 333 scorer4->SetFilter(chargedFilter); 349 scorer5->SetFilter(chargedFilter); 334 scorer5->SetFilter(chargedFilter); 350 335 351 // 336 // 352 //------------------------------------------ 337 //------------------------------------------------------------ 353 // Register primitive scorers to MultiFunct 338 // Register primitive scorers to MultiFunctionalDetector 354 //------------------------------------------ 339 //------------------------------------------------------------ 355 mFDet->RegisterPrimitive(scorer0); << 340 MFDet->RegisterPrimitive(scorer0); 356 mFDet->RegisterPrimitive(scorer1); << 341 MFDet->RegisterPrimitive(scorer1); 357 mFDet->RegisterPrimitive(scorer2); << 342 MFDet->RegisterPrimitive(scorer2); 358 mFDet->RegisterPrimitive(scorer3); << 343 MFDet->RegisterPrimitive(scorer3); 359 mFDet->RegisterPrimitive(scorer4); << 344 MFDet->RegisterPrimitive(scorer4); 360 mFDet->RegisterPrimitive(scorer5); << 345 MFDet->RegisterPrimitive(scorer5); >> 346 361 347 362 //======================== 348 //======================== 363 // More additional Primitive Scoreres 349 // More additional Primitive Scoreres 364 //======================== 350 //======================== 365 // 351 // 366 //--- Surface Current for gamma with energy 352 //--- Surface Current for gamma with energy bin. 367 // This example creates four primitive score 353 // This example creates four primitive scorers. 368 // 4 bins with energy --- Primitive Sco 354 // 4 bins with energy --- Primitive Scorer Name 369 // 1. to 10 KeV, gammaSurfCur 355 // 1. to 10 KeV, gammaSurfCurr000 370 // 10 keV to 100 KeV, gammaSurfCur 356 // 10 keV to 100 KeV, gammaSurfCurr001 371 // 100 keV to 1 MeV, gammaSurfCur 357 // 100 keV to 1 MeV, gammaSurfCurr002 372 // 1 MeV to 10 MeV. gammaSurfCur 358 // 1 MeV to 10 MeV. gammaSurfCurr003 373 // 359 // 374 for (G4int i = 0; i < 4; i++) { << 360 char name[17]; 375 std::ostringstream name; << 361 for ( G4int i = 0; i < 4; i++){ 376 name << "gammaSurfCurr" << std::setfill('0 << 362 std::sprintf(name,"gammaSurfCurr%03d",i); 377 G4String psgName = name.str(); << 363 G4String psgName(name); 378 G4double kmin = std::pow(10., (G4double)i) << 364 G4double kmin = std::pow(10.,(G4double)i)*keV; 379 G4double kmax = std::pow(10., (G4double)(i << 365 G4double kmax = std::pow(10.,(G4double)(i+1))*keV; 380 //-- Particle with kinetic energy filter. << 366 //-- Particle with kinetic energy filter. 381 G4SDParticleWithEnergyFilter* pkinEFilter << 367 G4SDParticleWithEnergyFilter* pkinEFilter = 382 new G4SDParticleWithEnergyFilter(fltName << 368 new G4SDParticleWithEnergyFilter(fltName="gammaE filter",kmin,kmax); 383 pkinEFilter->add("gamma"); // Accept only << 369 pkinEFilter->add("gamma"); // Accept only gamma. 384 pkinEFilter->show(); // Show accepting co << 370 pkinEFilter->show(); // Show accepting condition to stdout. 385 //-- Surface Current Scorer which scores << 371 //-- Surface Current Scorer which scores number of tracks in unit area. 386 G4PSFlatSurfaceCurrent3D* scorer = << 372 G4PSFlatSurfaceCurrent* scorer = 387 new G4PSFlatSurfaceCurrent3D(psgName, fC << 373 new RE02PSFlatSurfaceCurrent(psgName,fCurrent_InOut,fNx,fNy,fNz); 388 scorer->SetFilter(pkinEFilter); // Assign << 374 scorer->SetFilter(pkinEFilter); // Assign filter. 389 mFDet->RegisterPrimitive(scorer); // Regi << 375 MFDet->RegisterPrimitive(scorer); // Register it to MultiFunctionalDetector. 390 } 376 } >> 377 // >> 378 >> 379 //=============================== >> 380 // Visualization attributes >> 381 //=============================== >> 382 >> 383 G4VisAttributes* BoxVisAtt= new G4VisAttributes(G4Colour(1.0,1.0,1.0)); >> 384 logicWorld ->SetVisAttributes(BoxVisAtt); >> 385 //logicWorld->SetVisAttributes(G4VisAttributes::Invisible); >> 386 >> 387 // Mother volume of WaterPhantom >> 388 G4VisAttributes* PhantomVisAtt = new G4VisAttributes(G4Colour(1.0,1.0,0.0)); >> 389 logicPhantom->SetVisAttributes(PhantomVisAtt); >> 390 >> 391 // Replica >> 392 G4VisAttributes* YRepVisAtt = new G4VisAttributes(G4Colour(0.0,1.0,0.0)); >> 393 logYRep->SetVisAttributes(YRepVisAtt); >> 394 G4VisAttributes* XRepVisAtt = new G4VisAttributes(G4Colour(0.0,1.0,0.0)); >> 395 logXRep->SetVisAttributes(XRepVisAtt); >> 396 >> 397 // Skip the visualization for those voxels. >> 398 logicPhantomSens->SetVisAttributes(G4VisAttributes::Invisible); >> 399 >> 400 >> 401 return physiWorld; 391 } 402 } >> 403 392 404