Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 /// \file runAndEvent/RE02/src/RE02DetectorCon << 27 /// \brief Implementation of the RE02DetectorC << 28 // 26 // >> 27 // $Id: RE02DetectorConstruction.cc,v 1.2 2006/06/29 17:45:10 gunter Exp $ >> 28 // GEANT4 tag $Name: geant4-08-01-patch-01 $ 29 // 29 // 30 // << 30 31 << 32 #include "RE02DetectorConstruction.hh" 31 #include "RE02DetectorConstruction.hh" 33 32 34 #include "RE02NestedPhantomParameterisation.hh << 33 #include "G4MultiFunctionalDetector.hh" 35 34 >> 35 #include "G4PSEnergyDeposit.hh" >> 36 //#include "G4PSDoseDeposit.hh" >> 37 #include "G4PSNofStep.hh" >> 38 //#include "G4PSNofSecondary.hh" >> 39 //#include "G4PSMinKinEAtGeneration.hh" >> 40 #include "G4PSCellFlux.hh" >> 41 //#include "G4PSTrackLength.hh" >> 42 //#include "G4PSPassageTrackLength.hh" >> 43 //#include "G4PSPassageCurrent.hh" >> 44 #include "G4PSPassageCellFlux.hh" >> 45 #include "G4PSFlatSurfaceFlux.hh" >> 46 #include "G4PSFlatSurfaceCurrent.hh" >> 47 //#include "G4PSSphereSurfaceCurrent.hh" >> 48 #include "G4SDParticleWithEnergyFilter.hh" >> 49 #include "G4SDParticleFilter.hh" >> 50 #include "G4SDChargedFilter.hh" >> 51 >> 52 #include "G4NistManager.hh" >> 53 #include "G4Material.hh" 36 #include "G4Box.hh" 54 #include "G4Box.hh" 37 #include "G4Colour.hh" << 38 #include "G4LogicalVolume.hh" 55 #include "G4LogicalVolume.hh" 39 #include "G4Material.hh" << 40 #include "G4NistManager.hh" << 41 #include "G4PSCellFlux3D.hh" << 42 #include "G4PSEnergyDeposit3D.hh" << 43 #include "G4PSFlatSurfaceCurrent3D.hh" << 44 #include "G4PSFlatSurfaceFlux3D.hh" << 45 #include "G4PSNofStep3D.hh" << 46 #include "G4PSPassageCellFlux3D.hh" << 47 #include "G4PVParameterised.hh" << 48 #include "G4PVPlacement.hh" 56 #include "G4PVPlacement.hh" 49 #include "G4SDChargedFilter.hh" << 50 #include "G4SDManager.hh" 57 #include "G4SDManager.hh" 51 #include "G4SDParticleFilter.hh" << 58 52 #include "G4SDParticleWithEnergyFilter.hh" << 59 #include "G4PVParameterised.hh" 53 #include "G4SystemOfUnits.hh" << 60 #include "RE02PhantomParameterisation.hh" >> 61 54 #include "G4VisAttributes.hh" 62 #include "G4VisAttributes.hh" >> 63 #include "G4Colour.hh" >> 64 55 #include "G4ios.hh" 65 #include "G4ios.hh" 56 66 57 //============================================ 67 //======================================================================= 58 // RE02DetectorConstruction 68 // RE02DetectorConstruction 59 // 69 // 60 // (Description) 70 // (Description) 61 // 71 // 62 // Detector construction for example RE02. 72 // Detector construction for example RE02. 63 // << 73 // 64 // [Geometry] << 74 // [Geometry] 65 // The world volume is defined as 200 cm x 75 // The world volume is defined as 200 cm x 200 cm x 200 cm box with Air. 66 // Water phantom is defined as 200 mm x 200 76 // Water phantom is defined as 200 mm x 200 mm x 400 mm box with Water. 67 // The water phantom is divided into 100 seg << 77 // The water phantom is divided into 100 segments in x,y plane, and 200 segments 68 // replication, << 78 // perpendicular to z axis using parameterised volume. 69 // and then divided into 200 segments perpen << 79 // These values are defined at constructor, 70 // parameterised volume. << 80 // e.g. the size of water phantom (fphantomSize), and number of segmentation 71 // These values are defined at constructor, << 72 // e.g. the size of water phantom (fPhantom << 73 // of water phantom (fNx, fNy, fNz). 81 // of water phantom (fNx, fNy, fNz). 74 // << 82 // NIST database is used for materials. 75 // By default, lead plates are inserted into << 76 // segments. << 77 // NIST database is used for materials. << 78 // << 79 // 83 // 80 // [Scorer] 84 // [Scorer] 81 // Assignment of G4MultiFunctionalDetector << 85 // Assignment of G4MultiFunctionalDetector and G4PrimitiveScorer 82 // is demonstrated in this example. 86 // is demonstrated in this example. 83 // ------------------------------------- 87 // ------------------------------------------------- 84 // The collection names of defined Primi 88 // The collection names of defined Primitives are 85 // 0 PhantomSD/totalEDep << 89 // 0 PhantomSD/totalEDep 86 // 1 PhantomSD/protonEDep 90 // 1 PhantomSD/protonEDep 87 // 2 PhantomSD/protonNStep 91 // 2 PhantomSD/protonNStep 88 // 3 PhantomSD/chargedPassCellFlu 92 // 3 PhantomSD/chargedPassCellFlux 89 // 4 PhantomSD/chargedCellFlux << 93 // 4 PhantomSD/chargedCellFlux 90 // 5 PhantomSD/chargedSurfFlux << 94 // 5 PhantomSD/chargedSurfFlux 91 // 6 PhantomSD/gammaSurfCurr000 95 // 6 PhantomSD/gammaSurfCurr000 92 // 7 PhantomSD/gammaSurfCurr001 96 // 7 PhantomSD/gammaSurfCurr001 93 // 9 PhantomSD/gammaSurdCurr002 97 // 9 PhantomSD/gammaSurdCurr002 94 // 10 PhantomSD/gammaSurdCurr003 98 // 10 PhantomSD/gammaSurdCurr003 95 // -------------------------------------- 99 // ------------------------------------------------- 96 // Please see README for detail descripti 100 // Please see README for detail description. 97 // 101 // 98 //============================================ 102 //======================================================================= 99 103 100 //....oooOO0OOooo........oooOO0OOooo........oo << 104 // 101 RE02DetectorConstruction::RE02DetectorConstruc << 105 RE02DetectorConstruction::RE02DetectorConstruction() 102 { 106 { 103 // Default size of water phantom,and segment << 107 fphantomSize.setX(200.*mm); 104 fPhantomSize.setX(200. * mm); << 108 fphantomSize.setY(200.*mm); 105 fPhantomSize.setY(200. * mm); << 109 fphantomSize.setZ(400.*mm); 106 fPhantomSize.setZ(400. * mm); << 110 //fNx = fNy = fNz = 100; 107 fNx = fNy = fNz = 100; << 111 fNx = 100; fNy = 100; fNz = 200; 108 fInsertLead = TRUE; << 112 //fNx = 1; fNy = 1; fNz = 200; >> 113 G4cout << "<-- RE02DetectorConstruction -----------------" <<G4endl; >> 114 G4cout << " Water Phantom Size " << fphantomSize/mm << G4endl; >> 115 G4cout << " Segmentation ("<< fNx<<","<<fNy<<","<<fNz<<")"<<G4endl; >> 116 G4cout << "<---------------------------------------------"<<G4endl; 109 } 117 } 110 118 111 //....oooOO0OOooo........oooOO0OOooo........oo << 119 // 112 RE02DetectorConstruction::~RE02DetectorConstru 120 RE02DetectorConstruction::~RE02DetectorConstruction() 113 { << 121 {;} 114 ; << 115 } << 116 122 117 //....oooOO0OOooo........oooOO0OOooo........oo << 123 // 118 G4VPhysicalVolume* RE02DetectorConstruction::C << 124 G4VPhysicalVolume* RE02DetectorConstruction::Construct() 119 { 125 { 120 //===================== 126 //===================== 121 // Material Definitions 127 // Material Definitions 122 //===================== 128 //===================== 123 // << 129 // 124 //-------- NIST Materials ------------------ 130 //-------- NIST Materials ---------------------------------------------------- 125 // Material Information imported from NIST 131 // Material Information imported from NIST database. 126 // 132 // 127 G4NistManager* NISTman = G4NistManager::Inst 133 G4NistManager* NISTman = G4NistManager::Instance(); 128 G4Material* air = NISTman->FindOrBuildMateri << 134 G4Material* Air = NISTman->FindOrBuildMaterial("G4_AIR"); 129 G4Material* water = NISTman->FindOrBuildMate << 135 G4Material* H2O = NISTman->FindOrBuildMaterial("G4_WATER"); 130 G4Material* lead = NISTman->FindOrBuildMater << 131 136 132 // 137 // 133 // Print all the materials defined. 138 // Print all the materials defined. 134 G4cout << G4endl << "The materials defined a 139 G4cout << G4endl << "The materials defined are : " << G4endl << G4endl; 135 G4cout << *(G4Material::GetMaterialTable()) 140 G4cout << *(G4Material::GetMaterialTable()) << G4endl; 136 141 >> 142 137 //========================================== 143 //============================================================================ 138 // Definitions of Solids, Logical Volum << 144 // Definitions of Solids, Logical Volumes, Physical Volumes 139 //========================================== 145 //============================================================================ 140 146 141 //------------- 147 //------------- 142 // World Volume << 148 // World Volume 143 //------------- 149 //------------- 144 150 145 G4ThreeVector worldSize = G4ThreeVector(200 << 151 G4ThreeVector worldSize = G4ThreeVector(200*cm, 200*cm, 200*cm); >> 152 >> 153 G4Box * solidWorld >> 154 = new G4Box("world", worldSize.x()/2., worldSize.y()/2., worldSize.z()/2.); >> 155 G4LogicalVolume * logicWorld >> 156 = new G4LogicalVolume(solidWorld, Air, "World", 0, 0, 0); 146 157 147 G4Box* solidWorld = << 158 // 148 new G4Box("world", worldSize.x() / 2., wor << 149 G4LogicalVolume* logicWorld = new G4LogicalV << 150 << 151 // << 152 // Must place the World Physical volume unr 159 // Must place the World Physical volume unrotated at (0,0,0). 153 G4VPhysicalVolume* physiWorld = new G4PVPlac << 160 G4VPhysicalVolume * physiWorld 154 << 161 = new G4PVPlacement(0, // no rotation 155 << 162 G4ThreeVector(), // at (0,0,0) 156 << 163 logicWorld, // its logical volume 157 << 164 "World", // its name 158 << 165 0, // its mother volume 159 << 166 false, // no boolean operations 160 << 167 0); // copy number >> 168 161 //--------------- 169 //--------------- 162 // Water Phantom 170 // Water Phantom 163 //--------------- 171 //--------------- 164 172 165 //................................ 173 //................................ 166 // Mother Volume of Water Phantom 174 // Mother Volume of Water Phantom 167 //................................ 175 //................................ 168 176 169 //-- Default size of water phantom is defin 177 //-- Default size of water phantom is defined at constructor. 170 G4ThreeVector phantomSize = fPhantomSize; << 178 G4ThreeVector phantomSize = fphantomSize; 171 << 179 172 G4Box* solidPhantom = << 180 G4Box * solidPhantom 173 new G4Box("phantom", phantomSize.x() / 2., << 181 = new G4Box("phantom", 174 G4LogicalVolume* logicPhantom = new G4Logica << 182 phantomSize.x()/2., phantomSize.y()/2., phantomSize.z()/2.); >> 183 G4LogicalVolume * logicPhantom >> 184 = new G4LogicalVolume(solidPhantom, H2O, "Phantom", 0, 0, 0); 175 185 176 G4RotationMatrix* rot = new G4RotationMatrix << 186 G4RotationMatrix* rot=new G4RotationMatrix(); 177 // rot->rotateY(30.*deg); << 187 //rot->rotateY(30.*deg); 178 G4ThreeVector positionPhantom; 188 G4ThreeVector positionPhantom; 179 // G4VPhysicalVolume * physiPhantom = << 189 //G4VPhysicalVolume * physiPhantom = 180 new G4PVPlacement(rot, // no rotation << 190 new G4PVPlacement(rot, // no rotation 181 positionPhantom, // at (x << 191 positionPhantom, // at (x,y,z) 182 logicPhantom, // its logi << 192 logicPhantom, // its logical volume 183 "Phantom", // its name << 193 "Phantom", // its name 184 logicWorld, // its mother << 194 logicWorld, // its mother volume 185 false, // no boolean oper << 195 false, // no boolean operations 186 0); // copy number << 196 0); // copy number 187 197 188 //.......................................... 198 //.............................................. 189 // Phantom segmentation using Parameterisati 199 // Phantom segmentation using Parameterisation 190 //.......................................... 200 //.............................................. 191 // 201 // 192 G4cout << "<-- RE02DetectorConstruction::Con << 193 G4cout << " Water Phantom Size " << fPhanto << 194 G4cout << " Segmentation (" << fNx << "," << 195 G4cout << " Lead plate at even copy # (0-Fa << 196 G4cout << "<-------------------------------- << 197 // Number of segmentation. 202 // Number of segmentation. 198 // - Default number of segmentation is defin 203 // - Default number of segmentation is defined at constructor. 199 G4int nxCells = fNx; 204 G4int nxCells = fNx; 200 G4int nyCells = fNy; 205 G4int nyCells = fNy; 201 G4int nzCells = fNz; 206 G4int nzCells = fNz; 202 207 >> 208 G4int nCells = nxCells*nyCells*nzCells; 203 G4ThreeVector sensSize; 209 G4ThreeVector sensSize; 204 sensSize.setX(phantomSize.x() / (G4double)nx << 210 sensSize.setX(phantomSize.x()/(G4double)nxCells); 205 sensSize.setY(phantomSize.y() / (G4double)ny << 211 sensSize.setY(phantomSize.y()/(G4double)nyCells); 206 sensSize.setZ(phantomSize.z() / (G4double)nz << 212 sensSize.setZ(phantomSize.z()/(G4double)nzCells); 207 // i.e Voxel size will be 2.0 x 2.0 x 2.0 mm 213 // i.e Voxel size will be 2.0 x 2.0 x 2.0 mm3 cube by default. 208 // << 214 // 209 215 210 // Replication of Water Phantom Volume. << 211 // Y Slice << 212 G4String yRepName("RepY"); << 213 G4VSolid* solYRep = << 214 new G4Box(yRepName, phantomSize.x() / 2., << 215 G4LogicalVolume* logYRep = new G4LogicalVolu << 216 // G4PVReplica* yReplica = << 217 new G4PVReplica(yRepName, logYRep, logicPhan << 218 // X Slice << 219 G4String xRepName("RepX"); << 220 G4VSolid* solXRep = << 221 new G4Box(xRepName, sensSize.x() / 2., sen << 222 G4LogicalVolume* logXRep = new G4LogicalVolu << 223 // G4PVReplica* xReplica = << 224 new G4PVReplica(xRepName, logXRep, logYRep, << 225 << 226 // << 227 //.................................. 216 //.................................. 228 // Voxel solid and logical volumes 217 // Voxel solid and logical volumes 229 //.................................. 218 //.................................. 230 // Z Slice << 231 G4String zVoxName("phantomSens"); << 232 G4VSolid* solVoxel = new G4Box(zVoxName, sen << 233 fLVPhantomSens = new G4LogicalVolume(solVoxe << 234 // 219 // 235 // << 220 G4Box * solidPhantomSens 236 std::vector<G4Material*> phantomMat(2, water << 221 = new G4Box("phantomSens", 237 if (IsLeadSegment()) phantomMat[1] = lead; << 222 sensSize.x()/2., sensSize.y()/2., sensSize.z()/2.); >> 223 G4LogicalVolume * logicPhantomSens >> 224 = new G4LogicalVolume(solidPhantomSens, H2O,"PhantomSens",0,0,0); 238 // 225 // 239 // Parameterisation for transformation of vo 226 // Parameterisation for transformation of voxels. 240 // (voxel size is fixed in this example. << 227 // (voxel size is fixed in this example. i.e parameterisation handles 241 // e.g. nested parameterisation handles mat << 228 // only transfomation of voxels.) 242 RE02NestedPhantomParameterisation* paramPhan << 229 RE02PhantomParameterisation* paramPhantom 243 new RE02NestedPhantomParameterisation(sens << 230 = new RE02PhantomParameterisation(phantomSize/2.,nxCells,nyCells,nzCells); 244 // G4VPhysicalVolume * physiPhantomSens = << 231 //G4VPhysicalVolume * physiPhantomSens = 245 new G4PVParameterised("PhantomSens", // the << 232 new G4PVParameterised("PhantomSens", // their name 246 fLVPhantomSens, // th << 233 logicPhantomSens, // their logical volume 247 logXRep, // Mother lo << 234 logicPhantom, // Mother logical volume 248 kUndefined, // Are pl << 235 kUndefined, // Are placed along this axis 249 nzCells, // Number of << 236 nCells, // Number of cells 250 paramPhantom); // Par << 237 paramPhantom); // Parameterisation. 251 // Optimization flag is avaiable for, 238 // Optimization flag is avaiable for, 252 // kUndefined, kXAxis, kYAxis, kZAxis. 239 // kUndefined, kXAxis, kYAxis, kZAxis. 253 // 240 // 254 241 255 //=============================== << 256 // Visualization attributes << 257 //=============================== << 258 << 259 G4VisAttributes* boxVisAtt = new G4VisAttrib << 260 logicWorld->SetVisAttributes(boxVisAtt); << 261 // logicWorld->SetVisAttributes(G4VisAttribu << 262 << 263 // Mother volume of WaterPhantom << 264 G4VisAttributes* phantomVisAtt = new G4VisAt << 265 logicPhantom->SetVisAttributes(phantomVisAtt << 266 << 267 // Replica << 268 G4VisAttributes* yRepVisAtt = new G4VisAttri << 269 logYRep->SetVisAttributes(yRepVisAtt); << 270 G4VisAttributes* xRepVisAtt = new G4VisAttri << 271 logXRep->SetVisAttributes(xRepVisAtt); << 272 << 273 // Skip the visualization for those voxels. << 274 fLVPhantomSens->SetVisAttributes(G4VisAttrib << 275 << 276 return physiWorld; << 277 } << 278 << 279 void RE02DetectorConstruction::ConstructSDandF << 280 { << 281 //========================================== 242 //================================================ 282 // Sensitive detectors : MultiFunctionalDete 243 // Sensitive detectors : MultiFunctionalDetector 283 //========================================== 244 //================================================ 284 // 245 // 285 // Sensitive Detector Manager. 246 // Sensitive Detector Manager. 286 G4SDManager* pSDman = G4SDManager::GetSDMpoi << 247 G4SDManager* SDman = G4SDManager::GetSDMpointer(); 287 // 248 // 288 // Sensitive Detector Name 249 // Sensitive Detector Name 289 G4String phantomSDname = "PhantomSD"; 250 G4String phantomSDname = "PhantomSD"; 290 251 291 //------------------------ 252 //------------------------ 292 // MultiFunctionalDetector 253 // MultiFunctionalDetector 293 //------------------------ 254 //------------------------ 294 // 255 // 295 // Define MultiFunctionalDetector with name. 256 // Define MultiFunctionalDetector with name. 296 G4MultiFunctionalDetector* mFDet = new G4Mul << 257 G4MultiFunctionalDetector* MFDet = new G4MultiFunctionalDetector(phantomSDname); 297 pSDman->AddNewDetector(mFDet); // Register << 258 SDman->AddNewDetector( MFDet ); // Register SD to SDManager. 298 fLVPhantomSens->SetSensitiveDetector(mFDet); << 259 logicPhantomSens->SetSensitiveDetector(MFDet); // Assign SD to the logical volume. 299 260 300 //--------------------------------------- 261 //--------------------------------------- 301 // SDFilter : Sensitive Detector Filters 262 // SDFilter : Sensitive Detector Filters 302 //--------------------------------------- 263 //--------------------------------------- 303 // 264 // 304 // Particle Filter for Primitive Scorer with << 265 // Particle Filter for Primitive Scorer with filter name(fltName) 305 // and particle name(particleName), 266 // and particle name(particleName), 306 // or particle names are given by add("parti 267 // or particle names are given by add("particle name"); method. 307 // 268 // 308 G4String fltName, particleName; << 269 G4String fltName,particleName; 309 // 270 // 310 //-- proton filter 271 //-- proton filter 311 G4SDParticleFilter* protonFilter = << 272 G4SDParticleFilter* protonFilter = 312 new G4SDParticleFilter(fltName = "protonFi << 273 new G4SDParticleFilter(fltName="protonFilter", particleName="proton"); 313 // 274 // 314 //-- electron filter 275 //-- electron filter 315 G4SDParticleFilter* electronFilter = new G4S << 276 G4SDParticleFilter* electronFilter = 316 electronFilter->add(particleName = "e+"); / << 277 new G4SDParticleFilter(fltName="electronFilter"); 317 electronFilter->add(particleName = "e-"); / << 278 electronFilter->add(particleName="e+"); // accept electrons. >> 279 electronFilter->add(particleName="e-"); // accept positorons. 318 // 280 // 319 //-- charged particle filter 281 //-- charged particle filter 320 G4SDChargedFilter* chargedFilter = new G4SDC << 282 G4SDChargedFilter* chargedFilter = >> 283 new G4SDChargedFilter(fltName="chargedFilter"); 321 284 322 //------------------------ 285 //------------------------ 323 // PS : Primitive Scorers 286 // PS : Primitive Scorers 324 //------------------------ 287 //------------------------ 325 // Primitive Scorers are used with SDFilters 288 // Primitive Scorers are used with SDFilters according to your purpose. 326 // << 289 // 327 // 290 // 328 //-- Primitive Scorer for Energy Deposit. 291 //-- Primitive Scorer for Energy Deposit. 329 // Total, by protons, by electrons. 292 // Total, by protons, by electrons. 330 G4String psName; 293 G4String psName; 331 G4PSEnergyDeposit3D* scorer0 = new G4PSEnerg << 294 G4PSEnergyDeposit* scorer0 = new G4PSEnergyDeposit(psName="totalEDep"); 332 G4PSEnergyDeposit3D* scorer1 = new G4PSEnerg << 295 G4PSEnergyDeposit* scorer1 = new G4PSEnergyDeposit(psName="protonEDep"); 333 scorer1->SetFilter(protonFilter); 296 scorer1->SetFilter(protonFilter); 334 297 335 // 298 // 336 //-- Number of Steps for protons 299 //-- Number of Steps for protons 337 G4PSNofStep3D* scorer2 = new G4PSNofStep3D(p << 300 G4PSNofStep* scorer2 = new G4PSNofStep(psName="protonNStep"); 338 scorer2->SetFilter(protonFilter); 301 scorer2->SetFilter(protonFilter); 339 302 340 // 303 // 341 //-- CellFlux for charged particles 304 //-- CellFlux for charged particles 342 G4PSPassageCellFlux3D* scorer3 = << 305 G4PSPassageCellFlux* scorer3 = new G4PSPassageCellFlux(psName="chargedPassCellFlux"); 343 new G4PSPassageCellFlux3D(psName = "charge << 306 G4PSCellFlux* scorer4 = new G4PSCellFlux(psName="chargedCellFlux"); 344 G4PSCellFlux3D* scorer4 = new G4PSCellFlux3D << 307 G4PSFlatSurfaceFlux* scorer5 = new G4PSFlatSurfaceFlux(psName="chargedSurfFlux",fFlux_InOut); 345 G4PSFlatSurfaceFlux3D* scorer5 = << 346 new G4PSFlatSurfaceFlux3D(psName = "charge << 347 scorer3->SetFilter(chargedFilter); 308 scorer3->SetFilter(chargedFilter); 348 scorer4->SetFilter(chargedFilter); 309 scorer4->SetFilter(chargedFilter); 349 scorer5->SetFilter(chargedFilter); 310 scorer5->SetFilter(chargedFilter); 350 311 351 // 312 // 352 //------------------------------------------ 313 //------------------------------------------------------------ 353 // Register primitive scorers to MultiFunct 314 // Register primitive scorers to MultiFunctionalDetector 354 //------------------------------------------ 315 //------------------------------------------------------------ 355 mFDet->RegisterPrimitive(scorer0); << 316 MFDet->RegisterPrimitive(scorer0); 356 mFDet->RegisterPrimitive(scorer1); << 317 MFDet->RegisterPrimitive(scorer1); 357 mFDet->RegisterPrimitive(scorer2); << 318 MFDet->RegisterPrimitive(scorer2); 358 mFDet->RegisterPrimitive(scorer3); << 319 MFDet->RegisterPrimitive(scorer3); 359 mFDet->RegisterPrimitive(scorer4); << 320 MFDet->RegisterPrimitive(scorer4); 360 mFDet->RegisterPrimitive(scorer5); << 321 MFDet->RegisterPrimitive(scorer5); >> 322 361 323 362 //======================== 324 //======================== 363 // More additional Primitive Scoreres 325 // More additional Primitive Scoreres 364 //======================== 326 //======================== 365 // 327 // 366 //--- Surface Current for gamma with energy 328 //--- Surface Current for gamma with energy bin. 367 // This example creates four primitive score 329 // This example creates four primitive scorers. 368 // 4 bins with energy --- Primitive Sco 330 // 4 bins with energy --- Primitive Scorer Name 369 // 1. to 10 KeV, gammaSurfCur 331 // 1. to 10 KeV, gammaSurfCurr000 370 // 10 keV to 100 KeV, gammaSurfCur 332 // 10 keV to 100 KeV, gammaSurfCurr001 371 // 100 keV to 1 MeV, gammaSurfCur 333 // 100 keV to 1 MeV, gammaSurfCurr002 372 // 1 MeV to 10 MeV. gammaSurfCur 334 // 1 MeV to 10 MeV. gammaSurfCurr003 373 // 335 // 374 for (G4int i = 0; i < 4; i++) { << 336 char name[16]; 375 std::ostringstream name; << 337 for ( G4int i = 0; i < 4; i++){ 376 name << "gammaSurfCurr" << std::setfill('0 << 338 std::sprintf(name,"gammaSurfCurr%03d",i); 377 G4String psgName = name.str(); << 339 G4String psgName(name); 378 G4double kmin = std::pow(10., (G4double)i) << 340 G4double kmin = std::pow(10.,(G4double)i)*keV; 379 G4double kmax = std::pow(10., (G4double)(i << 341 G4double kmax = std::pow(10.,(G4double)(i+1))*keV; 380 //-- Particle with kinetic energy filter. << 342 //-- Particle with kinetic energy filter. 381 G4SDParticleWithEnergyFilter* pkinEFilter << 343 G4SDParticleWithEnergyFilter* pkinEFilter = 382 new G4SDParticleWithEnergyFilter(fltName << 344 new G4SDParticleWithEnergyFilter(fltName="gammaE filter",kmin,kmax); 383 pkinEFilter->add("gamma"); // Accept only << 345 pkinEFilter->add("gamma"); // Accept only gamma. 384 pkinEFilter->show(); // Show accepting co << 346 pkinEFilter->show(); // Show accepting condition to stdout. 385 //-- Surface Current Scorer which scores << 347 //-- Surface Current Scorer which scores number of tracks in unit area. 386 G4PSFlatSurfaceCurrent3D* scorer = << 348 G4PSFlatSurfaceCurrent* scorer = 387 new G4PSFlatSurfaceCurrent3D(psgName, fC << 349 new G4PSFlatSurfaceCurrent(psgName,fCurrent_InOut); 388 scorer->SetFilter(pkinEFilter); // Assign << 350 scorer->SetFilter(pkinEFilter); // Assign filter. 389 mFDet->RegisterPrimitive(scorer); // Regi << 351 MFDet->RegisterPrimitive(scorer); // Register it to MultiFunctionalDetector. 390 } 352 } >> 353 // >> 354 >> 355 //=============================== >> 356 // Visualization attributes >> 357 //=============================== >> 358 >> 359 G4VisAttributes* BoxVisAtt= new G4VisAttributes(G4Colour(1.0,1.0,1.0)); >> 360 logicWorld ->SetVisAttributes(BoxVisAtt); >> 361 //logicWorld->SetVisAttributes(G4VisAttributes::Invisible); >> 362 >> 363 G4VisAttributes* PhantomVisAtt = new G4VisAttributes(G4Colour(1.0,1.0,0.0)); >> 364 logicPhantom->SetVisAttributes(PhantomVisAtt); >> 365 >> 366 // If number of segmentation of water phantom is too large, >> 367 // skip the visualization for those voxels. >> 368 if ( nCells > 1000 ) { >> 369 logicPhantomSens->SetVisAttributes(G4VisAttributes::Invisible); >> 370 } >> 371 >> 372 return physiWorld; 391 } 373 } >> 374 392 375