Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 /// \file field/field01/src/F01DetectorConstru << 27 /// \brief Implementation of the F01DetectorCo << 28 // 23 // >> 24 // $Id: F01DetectorConstruction.cc,v 1.14 2004/12/02 11:32:59 japost Exp $ >> 25 // GEANT4 tag $Name: geant4-07-00-patch-01 $ 29 // 26 // 30 // << 27 // 31 // << 32 //....oooOO0OOooo........oooOO0OOooo........oo << 33 //....oooOO0OOooo........oooOO0OOooo........oo << 34 28 35 #include "F01DetectorConstruction.hh" 29 #include "F01DetectorConstruction.hh" >> 30 #include "F01DetectorMessenger.hh" 36 31 37 #include "F01CalorimeterSD.hh" 32 #include "F01CalorimeterSD.hh" 38 #include "F01DetectorMessenger.hh" << 33 #include "F01FieldSetup.hh" 39 34 40 #include "G4AutoDelete.hh" << 41 #include "G4GeometryManager.hh" << 42 #include "G4FieldBuilder.hh" << 43 #include "G4LogicalVolume.hh" << 44 #include "G4LogicalVolumeStore.hh" << 45 #include "G4Material.hh" 35 #include "G4Material.hh" >> 36 #include "G4Tubs.hh" >> 37 #include "G4LogicalVolume.hh" 46 #include "G4PVPlacement.hh" 38 #include "G4PVPlacement.hh" 47 #include "G4PhysicalConstants.hh" << 39 #include "G4UniformMagField.hh" 48 #include "G4PhysicalVolumeStore.hh" << 40 #include "G4FieldManager.hh" 49 #include "G4RunManager.hh" << 41 #include "G4TransportationManager.hh" 50 #include "G4SDManager.hh" 42 #include "G4SDManager.hh" >> 43 #include "G4RunManager.hh" >> 44 >> 45 #include "G4GeometryManager.hh" >> 46 #include "G4PhysicalVolumeStore.hh" >> 47 #include "G4LogicalVolumeStore.hh" 51 #include "G4SolidStore.hh" 48 #include "G4SolidStore.hh" 52 #include "G4SystemOfUnits.hh" << 53 #include "G4Tubs.hh" << 54 #include "G4UniformMagField.hh" << 55 49 56 //....oooOO0OOooo........oooOO0OOooo........oo << 50 #include "G4ios.hh" >> 51 >> 52 ///////////////////////////////////////////////////////////////////////////// >> 53 // >> 54 // 57 55 58 F01DetectorConstruction::F01DetectorConstructi 56 F01DetectorConstruction::F01DetectorConstruction() >> 57 : solidWorld(0), logicWorld(0), physiWorld(0), >> 58 solidAbsorber(0),logicAbsorber(0), physiAbsorber(0), >> 59 fEmFieldSetup(0), calorimeterSD(0), >> 60 AbsorberMaterial(0), worldchanged(false), WorldMaterial(0) 59 { 61 { 60 // create commands for interactive definitio << 62 // default parameter values of the calorimeter >> 63 >> 64 WorldSizeZ = 44000.*mm; >> 65 WorldSizeR = 22000.*mm; 61 66 62 G4cout << "F01DetectorConstruction::F01Detec << 67 AbsorberThickness = 1.0*mm; 63 68 64 fDetectorMessenger = new F01DetectorMessenge << 69 AbsorberRadius = 20000.*mm; 65 70 66 // create field builder << 71 zAbsorber = 21990.0*mm ; 67 // this will create commands for field confi << 72 68 G4FieldBuilder::Instance(); << 73 // create commands for interactive definition of the calorimeter 69 // G4FieldBuilder::Instance()->SetVerboseLev << 74 >> 75 detectorMessenger = new F01DetectorMessenger(this); 70 76 71 // create materials 77 // create materials 72 78 73 DefineMaterials(); 79 DefineMaterials(); >> 80 74 } 81 } 75 82 76 //....oooOO0OOooo........oooOO0OOooo........oo << 83 ////////////////////////////////////////////////////////////////////////// >> 84 // >> 85 // 77 86 78 F01DetectorConstruction::~F01DetectorConstruct 87 F01DetectorConstruction::~F01DetectorConstruction() 79 { << 88 { 80 // delete fDetectorMessenger; << 89 delete detectorMessenger; >> 90 if (fEmFieldSetup) delete fEmFieldSetup; 81 } 91 } 82 92 83 //....oooOO0OOooo........oooOO0OOooo........oo << 93 ////////////////////////////////////////////////////////////////////////// >> 94 // >> 95 // 84 96 85 G4VPhysicalVolume* F01DetectorConstruction::Co 97 G4VPhysicalVolume* F01DetectorConstruction::Construct() 86 { 98 { 87 return ConstructCalorimeter(); << 99 G4VPhysicalVolume* calorWorld= ConstructCalorimeter(); >> 100 >> 101 // Construct the field creator - this will register the field it creates >> 102 fEmFieldSetup= new F01FieldSetup( // G4ThreeVector(0.0, 0.0, 1.0*tesla) ); >> 103 G4ThreeVector( 3.3*tesla, 0.0, 0.0 ) ) ; >> 104 return calorWorld; 88 } 105 } 89 106 90 //....oooOO0OOooo........oooOO0OOooo........oo << 107 ////////////////////////////////////////////////////////////////////////////// >> 108 // >> 109 // 91 110 92 void F01DetectorConstruction::DefineMaterials( 111 void F01DetectorConstruction::DefineMaterials() 93 { << 112 { 94 // This function illustrates the possible wa << 113 //This function illustrates the possible ways to define materials 95 << 114 96 G4String name, symbol; // a=mass of a mole; << 115 G4String name, symbol ; // a=mass of a mole; 97 G4double a, z, density; // z=mean number of << 116 G4double a, z, density ; // z=mean number of protons; 98 G4int nel; << 117 G4int nel ; 99 G4int ncomponents; 118 G4int ncomponents; 100 G4double fractionmass, pressure, temperature 119 G4double fractionmass, pressure, temperature; 101 120 102 // 121 // 103 // define Elements 122 // define Elements 104 // 123 // 105 124 106 a = 1.01 * g / mole; << 125 a = 1.01*g/mole; 107 auto elH = new G4Element(name = "Hydrogen", << 126 G4Element* elH = new G4Element(name="Hydrogen",symbol="H" , z= 1., a); 108 127 109 a = 12.01 * g / mole; << 128 a = 12.01*g/mole; 110 auto elC = new G4Element(name = "Carbon", sy << 129 G4Element* elC = new G4Element(name="Carbon", symbol="C", z=6., a); 111 130 112 a = 14.01 * g / mole; << 131 a = 14.01*g/mole; 113 auto elN = new G4Element(name = "Nitrogen", << 132 G4Element* elN = new G4Element(name="Nitrogen",symbol="N" , z= 7., a); 114 133 115 a = 16.00 * g / mole; << 134 a = 16.00*g/mole; 116 auto elO = new G4Element(name = "Oxygen", sy << 135 G4Element* elO = new G4Element(name="Oxygen" ,symbol="O" , z= 8., a); 117 136 118 a = 39.948 * g / mole; << 137 a = 39.948*g/mole; 119 auto elAr = new G4Element(name = "Argon", sy << 138 G4Element* elAr = new G4Element(name="Argon", symbol="Ar", z=18., a); 120 139 121 // 140 // 122 // define simple materials 141 // define simple materials 123 // 142 // 124 143 125 // Mylar 144 // Mylar 126 145 127 density = 1.39 * g / cm3; << 146 density = 1.39*g/cm3; 128 auto mylar = new G4Material(name = "Mylar", << 147 G4Material* Mylar = new G4Material(name="Mylar", density, nel=3); 129 mylar->AddElement(elO, 2); << 148 Mylar->AddElement(elO,2); 130 mylar->AddElement(elC, 5); << 149 Mylar->AddElement(elC,5); 131 mylar->AddElement(elH, 4); << 150 Mylar->AddElement(elH,4); 132 151 133 // Polypropelene 152 // Polypropelene 134 153 135 auto CH2 = new G4Material("Polypropelene", 0 << 154 G4Material* CH2 = new G4Material ("Polypropelene" , 0.91*g/cm3, 2); 136 CH2->AddElement(elH, 2); << 155 CH2->AddElement(elH,2); 137 CH2->AddElement(elC, 1); << 156 CH2->AddElement(elC,1); 138 157 139 // Krypton as detector gas, STP 158 // Krypton as detector gas, STP 140 159 141 density = 3.700 * mg / cm3; << 160 density = 3.700*mg/cm3 ; 142 a = 83.80 * g / mole; << 161 a = 83.80*g/mole ; 143 auto Kr = new G4Material(name = "Kr", z = 36 << 162 G4Material* Kr = new G4Material(name="Kr",z=36., a, density ); 144 163 145 // Dry air (average composition) 164 // Dry air (average composition) 146 165 147 density = 1.7836 * mg / cm3; // STP << 166 density = 1.7836*mg/cm3 ; // STP 148 auto argon = new G4Material(name = "Argon", << 167 G4Material* Argon = new G4Material(name="Argon" , density, ncomponents=1); 149 argon->AddElement(elAr, 1); << 168 Argon->AddElement(elAr, 1); 150 << 169 151 density = 1.25053 * mg / cm3; // STP << 170 density = 1.25053*mg/cm3 ; // STP 152 auto nitrogen = new G4Material(name = "N2", << 171 G4Material* Nitrogen = new G4Material(name="N2" , density, ncomponents=1); 153 nitrogen->AddElement(elN, 2); << 172 Nitrogen->AddElement(elN, 2); 154 << 173 155 density = 1.4289 * mg / cm3; // STP << 174 density = 1.4289*mg/cm3 ; // STP 156 auto oxygen = new G4Material(name = "O2", de << 175 G4Material* Oxygen = new G4Material(name="O2" , density, ncomponents=1); 157 oxygen->AddElement(elO, 2); << 176 Oxygen->AddElement(elO, 2); 158 177 159 density = 1.2928 * mg / cm3; // STP << 178 density = 1.2928*mg/cm3 ; // STP 160 density *= 1.0e-8; // pumped vacuum << 179 density *= 1.0e-8 ; // pumped vacuum 161 180 162 temperature = STP_Temperature; 181 temperature = STP_Temperature; 163 pressure = 1.0e-8 * STP_Pressure; << 182 pressure = 1.0e-8*STP_Pressure; 164 << 165 auto air = << 166 new G4Material(name = "Air", density, ncom << 167 air->AddMaterial(nitrogen, fractionmass = 0. << 168 air->AddMaterial(oxygen, fractionmass = 0.23 << 169 183 170 air->AddMaterial(argon, fractionmass = 0.012 << 184 G4Material* Air = new G4Material(name="Air" , density, ncomponents=3, >> 185 kStateGas,temperature,pressure); >> 186 Air->AddMaterial( Nitrogen, fractionmass = 0.7557 ) ; >> 187 Air->AddMaterial( Oxygen, fractionmass = 0.2315 ) ; >> 188 Air->AddMaterial( Argon, fractionmass = 0.0128 ) ; 171 189 172 // Xenon as detector gas, STP 190 // Xenon as detector gas, STP 173 191 174 density = 5.858 * mg / cm3; << 192 density = 5.858*mg/cm3 ; 175 a = 131.29 * g / mole; << 193 a = 131.29*g/mole ; 176 auto Xe = new G4Material(name = "Xenon", z = << 194 G4Material* Xe = new G4Material(name="Xenon",z=54., a, density ); 177 195 178 // Carbon dioxide, STP 196 // Carbon dioxide, STP 179 197 180 density = 1.842 * mg / cm3; << 198 density = 1.977*mg/cm3; 181 auto CarbonDioxide = new G4Material(name = " << 199 G4Material* CarbonDioxide = new G4Material(name="CO2", density, nel=2); 182 CarbonDioxide->AddElement(elC, 1); << 200 CarbonDioxide->AddElement(elC,1); 183 CarbonDioxide->AddElement(elO, 2); << 201 CarbonDioxide->AddElement(elO,2); 184 202 185 // 80% Xe + 20% CO2, STP 203 // 80% Xe + 20% CO2, STP 186 204 187 density = 5.0818 * mg / cm3; << 205 density = 5.0818*mg/cm3 ; 188 auto Xe20CO2 = new G4Material(name = "Xe20CO << 206 G4Material* Xe20CO2 = new G4Material(name="Xe20CO2", density, ncomponents=2); 189 Xe20CO2->AddMaterial(Xe, fractionmass = 0.92 << 207 Xe20CO2->AddMaterial( Xe, fractionmass = 0.922 ) ; 190 Xe20CO2->AddMaterial(CarbonDioxide, fraction << 208 Xe20CO2->AddMaterial( CarbonDioxide, fractionmass = 0.078 ) ; 191 209 192 // 80% Kr + 20% CO2, STP 210 // 80% Kr + 20% CO2, STP 193 211 194 density = 3.601 * mg / cm3; << 212 density = 3.601*mg/cm3 ; 195 auto Kr20CO2 = new G4Material(name = "Kr20CO << 213 G4Material* Kr20CO2 = new G4Material(name="Kr20CO2", density, ncomponents=2); 196 Kr20CO2->AddMaterial(Kr, fractionmass = 0.89 << 214 Kr20CO2->AddMaterial( Kr, fractionmass = 0.89 ) ; 197 Kr20CO2->AddMaterial(CarbonDioxide, fraction << 215 Kr20CO2->AddMaterial( CarbonDioxide, fractionmass = 0.11 ) ; 198 << 199 // Print material table -- silence it for no << 200 // G4cout << *(G4Material::GetMaterialTable( << 201 G4cout << "F01DetectorConstruction: not prin << 202 << G4endl; << 203 216 204 // default materials of the calorimeter << 205 217 206 fAbsorberMaterial = air; // Kr20CO2; // << 218 G4cout << *(G4Material::GetMaterialTable()) << G4endl; 207 219 208 fWorldMaterial = air; << 220 // default materials of the calorimeter 209 } << 221 >> 222 AbsorberMaterial = Air ; // Kr20CO2 ; // XeCO2CF4 ; 210 223 211 //....oooOO0OOooo........oooOO0OOooo........oo << 224 WorldMaterial = Air ; >> 225 } 212 226 >> 227 ///////////////////////////////////////////////////////////////////////// >> 228 // >> 229 // >> 230 213 G4VPhysicalVolume* F01DetectorConstruction::Co 231 G4VPhysicalVolume* F01DetectorConstruction::ConstructCalorimeter() 214 { 232 { 215 // In case an old geometry is present... cle << 233 // complete the Calor parameters definition and Print >> 234 >> 235 ComputeCalorParameters(); >> 236 PrintCalorParameters(); >> 237 >> 238 // Cleanup old geometry 216 239 217 if (fPhysiWorld) { << 240 if (physiWorld) >> 241 { 218 G4GeometryManager::GetInstance()->OpenGeom 242 G4GeometryManager::GetInstance()->OpenGeometry(); 219 G4PhysicalVolumeStore::GetInstance()->Clea 243 G4PhysicalVolumeStore::GetInstance()->Clean(); 220 G4LogicalVolumeStore::GetInstance()->Clean 244 G4LogicalVolumeStore::GetInstance()->Clean(); 221 G4SolidStore::GetInstance()->Clean(); 245 G4SolidStore::GetInstance()->Clean(); 222 } 246 } 223 247 224 // Compute the Calor parameters definition a << 225 << 226 ComputeCalorParameters(); << 227 PrintCalorParameters(); << 228 << 229 // World 248 // World 230 << 249 231 fSolidWorld = new G4Tubs("World", // its na << 250 solidWorld = new G4Tubs("World", // its name 232 0., fWorldSizeR, fW << 251 0.,WorldSizeR,WorldSizeZ/2.,0.,twopi); // its size 233 << 252 234 fLogicWorld = new G4LogicalVolume(fSolidWorl << 253 logicWorld = new G4LogicalVolume(solidWorld, // its solid 235 fWorldMate << 254 WorldMaterial, // its material 236 "World"); << 255 "World"); // its name 237 << 256 238 fPhysiWorld = new G4PVPlacement(nullptr, // << 257 physiWorld = new G4PVPlacement(0, // no rotation 239 G4ThreeVecto << 258 G4ThreeVector(), // at (0,0,0) 240 "World", // << 259 "World", // its name 241 fLogicWorld, << 260 logicWorld, // its logical volume 242 nullptr, // << 261 0, // its mother volume 243 false, // n << 262 false, // no boolean operation 244 0); // copy << 263 0); // copy number 245 // Absorber 264 // Absorber 246 265 247 fSolidAbsorber = << 266 if (AbsorberThickness > 0.) 248 new G4Tubs("Absorber", 1.0 * mm, fAbsorber << 267 { 249 << 268 solidAbsorber = new G4Tubs("Absorber", 1.0*mm, 250 fLogicAbsorber = new G4LogicalVolume(fSolidA << 269 AbsorberRadius, 251 << 270 AbsorberThickness/2., 252 fPhysiAbsorber = new G4PVPlacement(nullptr, << 271 0.0,twopi); 253 fLogicAbs << 272 >> 273 logicAbsorber = new G4LogicalVolume(solidAbsorber, >> 274 AbsorberMaterial, >> 275 "Absorber"); >> 276 >> 277 physiAbsorber = new G4PVPlacement(0, >> 278 G4ThreeVector(0.,0.,zAbsorber), >> 279 "Absorber", >> 280 logicAbsorber, >> 281 physiWorld, >> 282 false, >> 283 0); >> 284 } >> 285 >> 286 // Sensitive Detectors: Absorber >> 287 >> 288 G4SDManager* SDman = G4SDManager::GetSDMpointer(); >> 289 >> 290 if(!calorimeterSD) >> 291 { >> 292 calorimeterSD = new F01CalorimeterSD("CalorSD",this); >> 293 SDman->AddNewDetector( calorimeterSD ); >> 294 } >> 295 if (logicAbsorber) logicAbsorber->SetSensitiveDetector(calorimeterSD); 254 296 255 return fPhysiWorld; << 297 return physiWorld; 256 } 298 } 257 299 258 //....oooOO0OOooo........oooOO0OOooo........oo << 300 //////////////////////////////////////////////////////////////////////////// >> 301 // >> 302 // 259 303 260 void F01DetectorConstruction::PrintCalorParame 304 void F01DetectorConstruction::PrintCalorParameters() 261 { 305 { 262 G4cout << "\n The WORLD is made of " << f << 306 G4cout << "\n The WORLD is made of " 263 << fWorldMaterial->GetName(); << 307 << WorldSizeZ/mm << "mm of " << WorldMaterial->GetName() ; 264 G4cout << ", the transverse size (R) of the << 308 G4cout << ", the transverse size (R) of the world is " << WorldSizeR/mm << " mm. " << G4endl; 265 G4cout << " The ABSORBER is made of " << fAb << 309 G4cout << " The ABSORBER is made of " 266 << fAbsorberMaterial->GetName(); << 310 << AbsorberThickness/mm << "mm of " << AbsorberMaterial->GetName() ; 267 G4cout << ", the transverse size (R) is " << << 311 G4cout << ", the transverse size (R) is " << AbsorberRadius/mm << " mm. " << G4endl; 268 G4cout << " Z position of the (middle of the << 312 G4cout << " Z position of the (middle of the) absorber " << zAbsorber/mm << " mm." << G4endl; 269 G4cout << G4endl; 313 G4cout << G4endl; 270 } 314 } 271 315 272 //....oooOO0OOooo........oooOO0OOooo........oo << 316 /////////////////////////////////////////////////////////////////////////// >> 317 // >> 318 // 273 319 274 void F01DetectorConstruction::SetAbsorberMater 320 void F01DetectorConstruction::SetAbsorberMaterial(G4String materialChoice) 275 { 321 { 276 // get the pointer to the material table 322 // get the pointer to the material table 277 const G4MaterialTable* theMaterialTable = G4 323 const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); 278 324 279 // search the material by its name << 325 // search the material by its name 280 G4Material* material; << 326 G4Material* pttoMaterial; 281 for (size_t j = 0; j < theMaterialTable->siz << 327 for (size_t J=0 ; J<theMaterialTable->size() ; J++) 282 material = (*theMaterialTable)[j]; << 328 { pttoMaterial = (*theMaterialTable)[J]; 283 if (material->GetName() == materialChoice) << 329 if(pttoMaterial->GetName() == materialChoice) 284 fAbsorberMaterial = material; << 330 { 285 fLogicAbsorber->SetMaterial(material); << 331 AbsorberMaterial = pttoMaterial; 286 G4RunManager::GetRunManager()->PhysicsHa << 332 logicAbsorber->SetMaterial(pttoMaterial); 287 } << 333 } 288 } << 334 } 289 } 335 } 290 336 291 //....oooOO0OOooo........oooOO0OOooo........oo << 337 //////////////////////////////////////////////////////////////////////////// >> 338 // >> 339 // 292 340 293 void F01DetectorConstruction::SetWorldMaterial 341 void F01DetectorConstruction::SetWorldMaterial(G4String materialChoice) 294 { 342 { 295 // get the pointer to the material table 343 // get the pointer to the material table 296 const G4MaterialTable* theMaterialTable = G4 344 const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); 297 345 298 // search the material by its name << 346 // search the material by its name 299 G4Material* material; << 347 G4Material* pttoMaterial; 300 for (size_t j = 0; j < theMaterialTable->siz << 348 for (size_t J=0 ; J<theMaterialTable->size() ; J++) 301 material = (*theMaterialTable)[j]; << 349 { pttoMaterial = (*theMaterialTable)[J]; 302 if (material->GetName() == materialChoice) << 350 if(pttoMaterial->GetName() == materialChoice) 303 fWorldMaterial = material; << 351 { 304 fLogicWorld->SetMaterial(material); << 352 WorldMaterial = pttoMaterial; 305 G4RunManager::GetRunManager()->PhysicsHa << 353 logicWorld->SetMaterial(pttoMaterial); 306 } << 354 } 307 } << 355 } 308 } 356 } 309 357 310 //....oooOO0OOooo........oooOO0OOooo........oo << 358 /////////////////////////////////////////////////////////////////////////// >> 359 // >> 360 // 311 361 312 void F01DetectorConstruction::SetAbsorberThick 362 void F01DetectorConstruction::SetAbsorberThickness(G4double val) 313 { 363 { 314 // change Absorber thickness and recompute t 364 // change Absorber thickness and recompute the calorimeter parameters 315 fAbsorberThickness = val; << 365 AbsorberThickness = val; 316 ComputeCalorParameters(); 366 ComputeCalorParameters(); 317 G4RunManager::GetRunManager()->GeometryHasBe << 367 } 318 } << 319 368 320 //....oooOO0OOooo........oooOO0OOooo........oo << 369 ///////////////////////////////////////////////////////////////////////////// >> 370 // >> 371 // 321 372 322 void F01DetectorConstruction::SetAbsorberRadiu 373 void F01DetectorConstruction::SetAbsorberRadius(G4double val) 323 { 374 { 324 // change the transverse size and recompute 375 // change the transverse size and recompute the calorimeter parameters 325 fAbsorberRadius = val; << 376 AbsorberRadius = val; 326 ComputeCalorParameters(); 377 ComputeCalorParameters(); 327 G4RunManager::GetRunManager()->GeometryHasBe << 378 } 328 } << 329 379 330 //....oooOO0OOooo........oooOO0OOooo........oo << 380 //////////////////////////////////////////////////////////////////////////// >> 381 // >> 382 // 331 383 332 void F01DetectorConstruction::SetWorldSizeZ(G4 384 void F01DetectorConstruction::SetWorldSizeZ(G4double val) 333 { 385 { 334 fWorldSizeZ = val; << 386 worldchanged=true; >> 387 WorldSizeZ = val; 335 ComputeCalorParameters(); 388 ComputeCalorParameters(); 336 G4RunManager::GetRunManager()->GeometryHasBe << 389 } 337 } << 338 390 339 //....oooOO0OOooo........oooOO0OOooo........oo << 391 /////////////////////////////////////////////////////////////////////////// >> 392 // >> 393 // 340 394 341 void F01DetectorConstruction::SetWorldSizeR(G4 395 void F01DetectorConstruction::SetWorldSizeR(G4double val) 342 { 396 { 343 fWorldSizeR = val; << 397 worldchanged=true; >> 398 WorldSizeR = val; 344 ComputeCalorParameters(); 399 ComputeCalorParameters(); 345 G4RunManager::GetRunManager()->GeometryHasBe << 400 } 346 } << 347 401 348 //....oooOO0OOooo........oooOO0OOooo........oo << 402 ////////////////////////////////////////////////////////////////////////////// >> 403 // >> 404 // 349 405 350 void F01DetectorConstruction::SetAbsorberZpos( 406 void F01DetectorConstruction::SetAbsorberZpos(G4double val) 351 { 407 { 352 fZAbsorber = val; << 408 zAbsorber = val; 353 ComputeCalorParameters(); 409 ComputeCalorParameters(); 354 G4RunManager::GetRunManager()->GeometryHasBe << 410 } 355 } << 356 << 357 //....oooOO0OOooo........oooOO0OOooo........oo << 358 << 359 void F01DetectorConstruction::SetFieldValue(G4 << 360 { << 361 fFieldVector = value; << 362 << 363 G4UniformMagField* magField = nullptr; << 364 if (fFieldVector != G4ThreeVector(0.,0.,0.)) << 365 magField = new G4UniformMagField(fFieldVec << 366 } << 367 << 368 // Set field to the field builder << 369 auto fieldBuilder = G4FieldBuilder::Instance << 370 fieldBuilder->SetGlobalField(magField); << 371 } << 372 411 373 //....oooOO0OOooo........oooOO0OOooo........oo << 374 #include "G4FieldManager.hh" << 375 412 376 void F01DetectorConstruction::ConstructSDandFi << 413 /////////////////////////////////////////////////////////////////////////////// >> 414 // >> 415 // >> 416 >> 417 void F01DetectorConstruction::UpdateGeometry() 377 { 418 { 378 // Sensitive Detectors: Absorber << 419 G4RunManager::GetRunManager()->DefineWorldVolume(ConstructCalorimeter()); 379 << 380 if (!fCalorimeterSD.Get()) { << 381 auto calorimeterSD = new F01CalorimeterSD( << 382 fCalorimeterSD.Put(calorimeterSD); << 383 } << 384 G4SDManager::GetSDMpointer()->AddNewDetector << 385 SetSensitiveDetector(fLogicAbsorber, fCalori << 386 << 387 // Create detector field << 388 SetFieldValue(fFieldVector); << 389 << 390 // Construct all Geant4 field objects << 391 auto fieldBuilder = G4FieldBuilder::Instance << 392 fieldBuilder->ConstructFieldSetup(); << 393 } 420 } 394 421 395 //....oooOO0OOooo........oooOO0OOooo........oo << 422 // >> 423 // >> 424 //////////////////////////////////////////////////////////////////////////// 396 425