Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/extended/electromagnetic/TestEm5/src/DetectorConstruction.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /examples/extended/electromagnetic/TestEm5/src/DetectorConstruction.cc (Version 11.3.0) and /examples/extended/electromagnetic/TestEm5/src/DetectorConstruction.cc (Version 9.6.p4)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 /// \file electromagnetic/TestEm5/src/Detector     26 /// \file electromagnetic/TestEm5/src/DetectorConstruction.cc
 27 /// \brief Implementation of the DetectorConst     27 /// \brief Implementation of the DetectorConstruction class
 28 //                                                 28 //
                                                   >>  29 // $Id$
 29 //                                                 30 //
 30 //....oooOO0OOooo........oooOO0OOooo........oo     31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 31 //....oooOO0OOooo........oooOO0OOooo........oo     32 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 32                                                    33 
 33 #include "DetectorConstruction.hh"                 34 #include "DetectorConstruction.hh"
 34                                                << 
 35 #include "DetectorMessenger.hh"                    35 #include "DetectorMessenger.hh"
 36                                                    36 
 37 #include "G4AutoDelete.hh"                     <<  37 #include "G4Material.hh"
 38 #include "G4Box.hh"                                38 #include "G4Box.hh"
 39 #include "G4GeometryManager.hh"                << 
 40 #include "G4GlobalMagFieldMessenger.hh"        << 
 41 #include "G4LogicalVolume.hh"                      39 #include "G4LogicalVolume.hh"
 42 #include "G4LogicalVolumeStore.hh"             << 
 43 #include "G4Material.hh"                       << 
 44 #include "G4NistManager.hh"                    << 
 45 #include "G4PVPlacement.hh"                        40 #include "G4PVPlacement.hh"
 46 #include "G4PhysicalConstants.hh"              <<  41 #include "G4UniformMagField.hh"
                                                   >>  42 
                                                   >>  43 #include "G4GeometryManager.hh"
 47 #include "G4PhysicalVolumeStore.hh"                44 #include "G4PhysicalVolumeStore.hh"
 48 #include "G4RunManager.hh"                     <<  45 #include "G4LogicalVolumeStore.hh"
 49 #include "G4SolidStore.hh"                         46 #include "G4SolidStore.hh"
 50 #include "G4SystemOfUnits.hh"                  <<  47 
 51 #include "G4UniformMagField.hh"                << 
 52 #include "G4UnitsTable.hh"                         48 #include "G4UnitsTable.hh"
                                                   >>  49 #include "G4NistManager.hh"
                                                   >>  50 #include "G4RunManager.hh"
                                                   >>  51 
                                                   >>  52 #include "G4PhysicalConstants.hh"
                                                   >>  53 #include "G4SystemOfUnits.hh"
 53                                                    54 
 54 //....oooOO0OOooo........oooOO0OOooo........oo     55 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 55                                                    56 
 56 DetectorConstruction::DetectorConstruction()       57 DetectorConstruction::DetectorConstruction()
                                                   >>  58 :fAbsorberMaterial(0),fWorldMaterial(0),fDefaultWorld(true),
                                                   >>  59  fSolidWorld(0),fLogicWorld(0),fPhysiWorld(0),
                                                   >>  60  fSolidAbsorber(0),fLogicAbsorber(0),fPhysiAbsorber(0),
                                                   >>  61  fMagField(0)
 57 {                                                  62 {
 58   // default parameter values of the calorimet     63   // default parameter values of the calorimeter
 59   fAbsorberThickness = 1. * cm;                <<  64   fAbsorberThickness = 1.*cm;
 60   fAbsorberSizeYZ = 2. * cm;                   <<  65   fAbsorberSizeYZ    = 2.*cm;
 61   fXposAbs = 0. * cm;                          <<  66   fXposAbs           = 0.*cm;
 62   ComputeGeomParameters();                     <<  67   ComputeCalorParameters();
 63                                                <<  68   
 64   // materials                                 <<  69   // materials  
 65   DefineMaterials();                               70   DefineMaterials();
 66   SetWorldMaterial("G4_Galactic");             <<  71   SetWorldMaterial   ("Galactic");
 67   SetAbsorberMaterial("G4_Si");                <<  72   SetAbsorberMaterial("Silicon");
 68                                                <<  73  
 69   // create commands for interactive definitio <<  74   // create commands for interactive definition of the calorimeter  
 70   fDetectorMessenger = new DetectorMessenger(t     75   fDetectorMessenger = new DetectorMessenger(this);
 71 }                                                  76 }
 72                                                    77 
 73 //....oooOO0OOooo........oooOO0OOooo........oo     78 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 74                                                    79 
 75 DetectorConstruction::~DetectorConstruction()      80 DetectorConstruction::~DetectorConstruction()
 76 {                                              <<  81 { 
 77   delete fDetectorMessenger;                       82   delete fDetectorMessenger;
 78 }                                                  83 }
 79                                                    84 
 80 //....oooOO0OOooo........oooOO0OOooo........oo     85 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 81                                                    86 
 82 void DetectorConstruction::DefineMaterials()   <<  87 G4VPhysicalVolume* DetectorConstruction::Construct()
 83 {                                                  88 {
 84   // This function illustrates the possible wa <<  89   return ConstructCalorimeter();
                                                   >>  90 }
 85                                                    91 
 86   G4String symbol;  // a=mass of a mole;       <<  92 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 87   G4double a, z, density;  // z=mean number of <<  93 
                                                   >>  94 void DetectorConstruction::DefineMaterials()
                                                   >>  95 { 
                                                   >>  96   //This function illustrates the possible ways to define materials
                                                   >>  97  
                                                   >>  98   G4String symbol;             //a=mass of a mole;
                                                   >>  99   G4double a, z, density;      //z=mean number of protons;  
 88                                                   100 
 89   G4int ncomponents, natoms;                      101   G4int ncomponents, natoms;
 90   G4double fractionmass;                          102   G4double fractionmass;
 91   G4double temperature, pressure;                 103   G4double temperature, pressure;
 92                                                << 104   
 93   //                                              105   //
 94   // define Elements                              106   // define Elements
 95   //                                              107   //
 96                                                   108 
 97   G4Element* H = new G4Element("Hydrogen", sym << 109   G4Element* H  = new G4Element("Hydrogen",symbol="H",  z= 1, a=   1.01*g/mole);
 98   G4Element* C = new G4Element("Carbon", symbo << 110   G4Element* C  = new G4Element("Carbon",  symbol="C",  z= 6, a=  12.01*g/mole);
 99   G4Element* N = new G4Element("Nitrogen", sym << 111   G4Element* N  = new G4Element("Nitrogen",symbol="N",  z= 7, a=  14.01*g/mole);
100   G4Element* O = new G4Element("Oxygen", symbo << 112   G4Element* O  = new G4Element("Oxygen",  symbol="O",  z= 8, a=  16.00*g/mole);
101   G4Element* Na = new G4Element("Sodium", symb << 113   G4Element* Na = new G4Element("Sodium",  symbol="Na", z=11, a=  22.99*g/mole);
102   G4Element* Ar = new G4Element("Argon", symbo << 114   G4Element* Ar = new G4Element("Argon",   symbol="Ar", z=18, a=  39.95*g/mole);
103   G4Element* I = new G4Element("Iodine", symbo << 115   G4Element* I  = new G4Element("Iodine",  symbol="I" , z=53, a= 126.90*g/mole);
104   G4Element* Xe = new G4Element("Xenon", symbo << 116   G4Element* Xe = new G4Element("Xenon",   symbol="Xe", z=54, a= 131.29*g/mole);
105                                                   117 
106   //                                              118   //
107   // define simple materials                      119   // define simple materials
108   //                                              120   //
109                                                   121 
110   new G4Material("H2Liq", z = 1, a = 1.01 * g  << 122   new G4Material("H2Liq"    , z= 1, a= 1.01*g/mole, density= 70.8*mg/cm3);
111   new G4Material("Beryllium", z = 4, a = 9.01  << 123   new G4Material("Beryllium", z= 4, a= 9.01*g/mole, density= 1.848*g/cm3);
112   new G4Material("Aluminium", z = 13, a = 26.9 << 124   new G4Material("Aluminium", z=13, a=26.98*g/mole, density= 2.700*g/cm3);
113   new G4Material("Silicon", z = 14, a = 28.09  << 125   new G4Material("Silicon"  , z=14, a=28.09*g/mole, density= 2.330*g/cm3);
114                                                << 126 
115   G4Material* lAr = new G4Material("liquidArgo << 127   G4Material* lAr = 
116   lAr->AddElement(Ar, natoms = 1);             << 128     new G4Material("liquidArgon", density= 1.390*g/cm3, ncomponents=1);
117                                                << 129   lAr->AddElement(Ar, natoms=1);
118   new G4Material("Iron", z = 26, a = 55.85 * g << 130 
119   new G4Material("Copper", z = 29, a = 63.55 * << 131   new G4Material("Iron",     z=26, a= 55.85*g/mole, density= 7.870*g/cm3);
120   new G4Material("Germanium", z = 32, a = 72.6 << 132   new G4Material("Copper",   z=29, a= 63.55*g/mole, density= 8.960*g/cm3);
121   new G4Material("Silver", z = 47, a = 107.87  << 133   new G4Material("Germanium",z=32, a= 72.61*g/mole, density= 5.323*g/cm3);
122   new G4Material("Tungsten", z = 74, a = 183.8 << 134   new G4Material("Silver",   z=47, a=107.87*g/mole, density= 10.50*g/cm3);
123   new G4Material("Gold", z = 79, a = 196.97 *  << 135   new G4Material("Tungsten", z=74, a=183.85*g/mole, density= 19.30*g/cm3);
124   new G4Material("Lead", z = 82, a = 207.19 *  << 136   new G4Material("Gold",     z=79, a=196.97*g/mole, density= 19.32*g/cm3);
                                                   >> 137   new G4Material("Lead",     z=82, a=207.19*g/mole, density= 11.35*g/cm3);
125                                                   138 
126   //                                              139   //
127   // define a material from elements.   case 1    140   // define a material from elements.   case 1: chemical molecule
128   //                                              141   //
129                                                   142 
130   G4Material* H2O = new G4Material("Water", de << 143   G4Material* H2O = new G4Material("Water", density= 1.000*g/cm3, ncomponents=2);
131   H2O->AddElement(H, natoms = 2);              << 144   H2O->AddElement(H, natoms=2);
132   H2O->AddElement(O, natoms = 1);              << 145   H2O->AddElement(O, natoms=1);
133   H2O->GetIonisation()->SetMeanExcitationEnerg << 146   H2O->GetIonisation()->SetMeanExcitationEnergy(78*eV);
134                                                << 147 
135   G4Material* CH = new G4Material("Plastic", d << 148   G4Material* CH = new G4Material("Plastic", density= 1.04*g/cm3, ncomponents=2);
136   CH->AddElement(C, natoms = 1);               << 149   CH->AddElement(C, natoms=1);
137   CH->AddElement(H, natoms = 1);               << 150   CH->AddElement(H, natoms=1);
138                                                << 151 
139   G4Material* NaI = new G4Material("NaI", dens << 152   G4Material* NaI = new G4Material("NaI", density= 3.67*g/cm3, ncomponents=2);
140   NaI->AddElement(Na, natoms = 1);             << 153   NaI->AddElement(Na, natoms=1);
141   NaI->AddElement(I, natoms = 1);              << 154   NaI->AddElement(I , natoms=1);
142   NaI->GetIonisation()->SetMeanExcitationEnerg << 155   NaI->GetIonisation()->SetMeanExcitationEnergy(452*eV);
143                                                   156 
144   //                                              157   //
145   // define a material from elements.   case 2    158   // define a material from elements.   case 2: mixture by fractional mass
146   //                                              159   //
147                                                   160 
148   G4Material* Air = new G4Material("Air", dens << 161   G4Material* Air = new G4Material("Air", density= 1.290*mg/cm3, ncomponents=2);
149   Air->AddElement(N, fractionmass = 0.7);      << 162   Air->AddElement(N, fractionmass=0.7);
150   Air->AddElement(O, fractionmass = 0.3);      << 163   Air->AddElement(O, fractionmass=0.3);
151                                                << 164 
152   G4Material* Air20 = new G4Material("Air20",  << 165   G4Material* Air20 = 
153                                      kStateGas << 166     new G4Material("Air20", density= 1.205*mg/cm3, ncomponents=2,
154   Air20->AddElement(N, fractionmass = 0.7);    << 167                    kStateGas, 293.*kelvin, 1.*atmosphere);
155   Air20->AddElement(O, fractionmass = 0.3);    << 168   Air20->AddElement(N, fractionmass=0.7);
156                                                << 169   Air20->AddElement(O, fractionmass=0.3);
157   // Graphite                                  << 170 
158   //                                           << 171   //Graphite
159   G4Material* Graphite = new G4Material("Graph << 172   //
160   Graphite->AddElement(C, fractionmass = 1.);  << 173   G4Material* Graphite = 
161                                                << 174     new G4Material("Graphite", density= 1.7*g/cm3, ncomponents=1);
162   // Havar                                     << 175   Graphite->AddElement(C, fractionmass=1.);
163   //                                           << 176 
164   G4Element* Cr = new G4Element("Chrome", "Cr" << 177   //Havar
165   G4Element* Fe = new G4Element("Iron", "Fe",  << 178   //
166   G4Element* Co = new G4Element("Cobalt", "Co" << 179   G4Element* Cr = new G4Element("Chrome", "Cr", z=25, a=  51.996*g/mole);
167   G4Element* Ni = new G4Element("Nickel", "Ni" << 180   G4Element* Fe = new G4Element("Iron"  , "Fe", z=26, a=  55.845*g/mole);
168   G4Element* W = new G4Element("Tungsten", "W" << 181   G4Element* Co = new G4Element("Cobalt", "Co", z=27, a=  58.933*g/mole);
169                                                << 182   G4Element* Ni = new G4Element("Nickel", "Ni", z=28, a=  58.693*g/mole);
170   G4Material* Havar = new G4Material("Havar",  << 183   G4Element* W  = new G4Element("Tungsten","W", z=74, a= 183.850*g/mole);
171   Havar->AddElement(Cr, fractionmass = 0.1785) << 184 
172   Havar->AddElement(Fe, fractionmass = 0.1822) << 185   G4Material* Havar = 
173   Havar->AddElement(Co, fractionmass = 0.4452) << 186     new G4Material("Havar", density= 8.3*g/cm3, ncomponents=5);
174   Havar->AddElement(Ni, fractionmass = 0.1310) << 187   Havar->AddElement(Cr, fractionmass=0.1785);
175   Havar->AddElement(W, fractionmass = 0.0631); << 188   Havar->AddElement(Fe, fractionmass=0.1822);
                                                   >> 189   Havar->AddElement(Co, fractionmass=0.4452);
                                                   >> 190   Havar->AddElement(Ni, fractionmass=0.1310);
                                                   >> 191   Havar->AddElement(W , fractionmass=0.0631);
176                                                   192 
177   //                                              193   //
178   // examples of gas                              194   // examples of gas
179   //                                           << 195   //  
180   new G4Material("ArgonGas", z = 18, a = 39.94 << 196   new G4Material("ArgonGas", z=18, a=39.948*g/mole, density= 1.782*mg/cm3,
181                  273.15 * kelvin, 1 * atmosphe << 197                  kStateGas, 273.15*kelvin, 1*atmosphere);
182                                                << 198                            
183   new G4Material("XenonGas", z = 54, a = 131.2 << 199   new G4Material("XenonGas", z=54, a=131.29*g/mole, density= 5.458*mg/cm3,
184                  293.15 * kelvin, 1 * atmosphe << 200                  kStateGas, 293.15*kelvin, 1*atmosphere);
185                                                << 201                            
186   G4Material* CO2 = new G4Material("CarbonicGa << 202   G4Material* CO2 =
187   CO2->AddElement(C, natoms = 1);              << 203     new G4Material("CarbonicGas", density= 1.977*mg/cm3, ncomponents=2);
188   CO2->AddElement(O, natoms = 2);              << 204   CO2->AddElement(C, natoms=1);
189                                                << 205   CO2->AddElement(O, natoms=2);
190   G4Material* ArCO2 = new G4Material("ArgonCO2 << 206 
191   ArCO2->AddElement(Ar, fractionmass = 0.7844) << 207   G4Material* ArCO2 =
192   ArCO2->AddMaterial(CO2, fractionmass = 0.215 << 208     new G4Material("ArgonCO2",   density= 1.8223*mg/cm3, ncomponents=2);
                                                   >> 209   ArCO2->AddElement (Ar,  fractionmass=0.7844);
                                                   >> 210   ArCO2->AddMaterial(CO2, fractionmass=0.2156);
193                                                   211 
194   // another way to define mixture of gas per  << 212   //another way to define mixture of gas per volume
195   G4Material* NewArCO2 =                          213   G4Material* NewArCO2 =
196     new G4Material("NewArgonCO2", density = 1. << 214     new G4Material("NewArgonCO2", density= 1.8223*mg/cm3, ncomponents=3);
197   NewArCO2->AddElement(Ar, natoms = 8);        << 215   NewArCO2->AddElement (Ar, natoms=8);
198   NewArCO2->AddElement(C, natoms = 2);         << 216   NewArCO2->AddElement (C,  natoms=2);
199   NewArCO2->AddElement(O, natoms = 4);         << 217   NewArCO2->AddElement (O,  natoms=4);
200                                                << 218 
201   G4Material* ArCH4 = new G4Material("ArgonCH4 << 219   G4Material* ArCH4 = 
202   ArCH4->AddElement(Ar, natoms = 93);          << 220     new G4Material("ArgonCH4",    density= 1.709*mg/cm3,  ncomponents=3);
203   ArCH4->AddElement(C, natoms = 7);            << 221   ArCH4->AddElement (Ar, natoms=93);
204   ArCH4->AddElement(H, natoms = 28);           << 222   ArCH4->AddElement (C,  natoms=7);
205                                                << 223   ArCH4->AddElement (H,  natoms=28);
206   G4Material* XeCH = new G4Material("XenonMeth << 224 
207                                     ncomponent << 225   G4Material* XeCH = 
208   XeCH->AddElement(Xe, natoms = 875);          << 226     new G4Material("XenonMethanePropane", density= 4.9196*mg/cm3, ncomponents=3,
209   XeCH->AddElement(C, natoms = 225);           << 227                    kStateGas, 293.15*kelvin, 1*atmosphere);
210   XeCH->AddElement(H, natoms = 700);           << 228   XeCH->AddElement (Xe, natoms=875);
211                                                << 229   XeCH->AddElement (C,  natoms=225);
212   G4Material* steam = new G4Material("WaterSte << 230   XeCH->AddElement (H,  natoms=700);
213   steam->AddMaterial(H2O, fractionmass = 1.);  << 231 
214   steam->GetIonisation()->SetMeanExcitationEne << 232   G4Material* steam = 
215                                                << 233     new G4Material("WaterSteam", density= 1.0*mg/cm3, ncomponents=1);
216   G4Material* rock1 = new G4Material("Standard << 234   steam->AddMaterial(H2O, fractionmass=1.);
217   rock1->AddElement(Na, 1);                    << 235   steam->GetIonisation()->SetMeanExcitationEnergy(71.6*eV);  
218                                                   236 
219   //                                              237   //
220   // example of vacuum                            238   // example of vacuum
221   //                                              239   //
222   density = universe_mean_density;  // from Ph << 240 
223   pressure = 3.e-18 * pascal;                  << 241   density     = universe_mean_density;    //from PhysicalConstants.h
224   temperature = 2.73 * kelvin;                 << 242   pressure    = 3.e-18*pascal;
225   new G4Material("Galactic", z = 1, a = 1.01 * << 243   temperature = 2.73*kelvin;
                                                   >> 244   new G4Material("Galactic", z=1, a=1.01*g/mole,density,
                                                   >> 245                  kStateGas,temperature,pressure);
226 }                                                 246 }
227                                                   247 
228 //....oooOO0OOooo........oooOO0OOooo........oo    248 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
229                                                   249 
230 void DetectorConstruction::ComputeGeomParamete << 250 void DetectorConstruction::ComputeCalorParameters()
231 {                                                 251 {
232   // Compute derived parameters of the calorim    252   // Compute derived parameters of the calorimeter
233   fXstartAbs = fXposAbs - 0.5 * fAbsorberThick << 253   fXstartAbs = fXposAbs-0.5*fAbsorberThickness; 
234   fXendAbs = fXposAbs + 0.5 * fAbsorberThickne << 254   fXendAbs   = fXposAbs+0.5*fAbsorberThickness;
235                                                << 255      
236   G4double xmax = std::max(std::abs(fXstartAbs << 256   if (fDefaultWorld) {
237   fWorldSizeX = 2.4 * xmax;                    << 257      fWorldSizeX = 1.5*fAbsorberThickness; fWorldSizeYZ= 1.2*fAbsorberSizeYZ;
238   fWorldSizeYZ = 1.2 * fAbsorberSizeYZ;        << 258   }         
239   if (nullptr != fPhysiWorld) {                << 
240     ChangeGeometry();                          << 
241   }                                            << 
242 }                                                 259 }
243                                                   260 
244 //....oooOO0OOooo........oooOO0OOooo........oo    261 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
245                                                << 262   
246 G4VPhysicalVolume* DetectorConstruction::Const << 263 G4VPhysicalVolume* DetectorConstruction::ConstructCalorimeter()
247 {                                              << 264 { 
248   if (nullptr != fPhysiWorld) {                << 265   // Cleanup old geometry
249     return fPhysiWorld;                        << 266   //
250   }                                            << 267   G4GeometryManager::GetInstance()->OpenGeometry();
                                                   >> 268   G4PhysicalVolumeStore::GetInstance()->Clean();
                                                   >> 269   G4LogicalVolumeStore::GetInstance()->Clean();
                                                   >> 270   G4SolidStore::GetInstance()->Clean();
                                                   >> 271   
                                                   >> 272   // complete the Calor parameters definition 
                                                   >> 273   ComputeCalorParameters();
                                                   >> 274         
251   // World                                        275   // World
252   //                                              276   //
253   fSolidWorld = new G4Box("World",  // its nam << 277   fSolidWorld = new G4Box("World",                                //its name
254                           fWorldSizeX / 2, fWo << 278                    fWorldSizeX/2,fWorldSizeYZ/2,fWorldSizeYZ/2);   //its size
255                                                << 279                          
256   fLogicWorld = new G4LogicalVolume(fSolidWorl << 280   fLogicWorld = new G4LogicalVolume(fSolidWorld,                //its solid
257                                     fWorldMate << 281                                    fWorldMaterial,        //its material
258                                     "World");  << 282                                    "World");                //its name
259                                                << 283                                    
260   fPhysiWorld = new G4PVPlacement(0,  // no ro << 284   fPhysiWorld = new G4PVPlacement(0,                        //no rotation
261                                   G4ThreeVecto << 285                                    G4ThreeVector(),        //at (0,0,0)
262                                   fLogicWorld, << 286                                  fLogicWorld,                //its logical volume
263                                   "World",  // << 287                                  "World",                //its name
264                                   0,  // its m << 288                                  0,                        //its mother  volume
265                                   false,  // n << 289                                  false,                        //no boolean operation
266                                   0);  // copy << 290                                  0);                        //copy number
267                                                << 291                                  
268   // Absorber                                     292   // Absorber
269   //                                           << 293   // 
270   fSolidAbsorber =                             << 294   fSolidAbsorber = new G4Box("Absorber",        
271     new G4Box("Absorber", fAbsorberThickness / << 295                       fAbsorberThickness/2,fAbsorberSizeYZ/2,fAbsorberSizeYZ/2); 
272                                                << 296                           
273   fLogicAbsorber = new G4LogicalVolume(fSolidA << 297   fLogicAbsorber = new G4LogicalVolume(fSolidAbsorber,    //its solid
274                                        fAbsorb << 298                                             fAbsorberMaterial, //its material
275                                        "Absorb << 299                                           "Absorber");       //its name
276                                                << 300                                                 
277   fPhysiAbsorber = new G4PVPlacement(0,  // no << 301   fPhysiAbsorber = new G4PVPlacement(0,                   //no rotation
278                                      G4ThreeVe << 302                         G4ThreeVector(fXposAbs,0.,0.),    //its position
279                                      fLogicAbs << 303                                 fLogicAbsorber,     //its logical volume
280                                      "Absorber << 304                                 "Absorber",         //its name
281                                      fLogicWor << 305                                 fLogicWorld,        //its mother
282                                      false,  / << 306                                 false,             //no boulean operat
283                                      0);  // c << 307                                 0);                //copy number
284                                                << 308                                         
285   PrintGeomParameters();                       << 309   PrintCalorParameters();         
286                                                << 310   
287   // always return the physical World          << 311   //always return the physical World
288   //                                              312   //
289   return fPhysiWorld;                             313   return fPhysiWorld;
290 }                                                 314 }
291                                                   315 
292 //....oooOO0OOooo........oooOO0OOooo........oo    316 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
293                                                   317 
294 void DetectorConstruction::PrintGeomParameters << 318 void DetectorConstruction::PrintCalorParameters()
295 {                                                 319 {
296   G4cout << "\n" << fWorldMaterial << G4endl;  << 320   G4cout << "\n" << fWorldMaterial    << G4endl;
297   G4cout << "\n" << fAbsorberMaterial << G4end    321   G4cout << "\n" << fAbsorberMaterial << G4endl;
298                                                << 322     
299   G4cout << "\n The  WORLD   is made of " << G << 323   G4cout << "\n The  WORLD   is made of "  << G4BestUnit(fWorldSizeX,"Length")
300          << fWorldMaterial->GetName();         << 324          << " of " << fWorldMaterial->GetName();
301   G4cout << ". The transverse size (YZ) of the << 325   G4cout << ". The transverse size (YZ) of the world is " 
302          << G4endl;                            << 326          << G4BestUnit(fWorldSizeYZ,"Length") << G4endl;
303   G4cout << " The ABSORBER is made of " << G4B << 327   G4cout << " The ABSORBER is made of " 
304          << fAbsorberMaterial->GetName();      << 328          <<G4BestUnit(fAbsorberThickness,"Length")
305   G4cout << ". The transverse size (YZ) is " < << 329          << " of " << fAbsorberMaterial->GetName();
306   G4cout << " X position of the middle of the  << 330   G4cout << ". The transverse size (YZ) is " 
                                                   >> 331          << G4BestUnit(fAbsorberSizeYZ,"Length") << G4endl;
                                                   >> 332   G4cout << " X position of the middle of the absorber "
                                                   >> 333          << G4BestUnit(fXposAbs,"Length");
307   G4cout << G4endl;                               334   G4cout << G4endl;
308 }                                                 335 }
309                                                   336 
310 //....oooOO0OOooo........oooOO0OOooo........oo    337 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
311                                                   338 
312 void DetectorConstruction::SetAbsorberMaterial << 339 void DetectorConstruction::SetAbsorberMaterial(G4String materialChoice)
313 {                                                 340 {
314   // search the material by its name              341   // search the material by its name
315   G4Material* pttoMaterial = G4NistManager::In << 342   G4Material* pttoMaterial =
                                                   >> 343     G4NistManager::Instance()->FindOrBuildMaterial(materialChoice);
316                                                   344 
317   if (pttoMaterial && fAbsorberMaterial != ptt    345   if (pttoMaterial && fAbsorberMaterial != pttoMaterial) {
318     fAbsorberMaterial = pttoMaterial;          << 346     fAbsorberMaterial = pttoMaterial;                  
319     if (fLogicAbsorber) {                      << 347     if(fLogicAbsorber) fLogicAbsorber->SetMaterial(fAbsorberMaterial);
320       fLogicAbsorber->SetMaterial(fAbsorberMat << 
321     }                                          << 
322     G4RunManager::GetRunManager()->PhysicsHasB    348     G4RunManager::GetRunManager()->PhysicsHasBeenModified();
323   }                                               349   }
324 }                                                 350 }
325                                                   351 
326 //....oooOO0OOooo........oooOO0OOooo........oo    352 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
327                                                   353 
328 void DetectorConstruction::SetWorldMaterial(co << 354 void DetectorConstruction::SetWorldMaterial(G4String materialChoice)
329 {                                                 355 {
330   // search the material by its name              356   // search the material by its name
331   G4Material* pttoMaterial = G4NistManager::In << 357   G4Material* pttoMaterial =
                                                   >> 358     G4NistManager::Instance()->FindOrBuildMaterial(materialChoice);
332                                                   359 
333   if (pttoMaterial && fWorldMaterial != pttoMa    360   if (pttoMaterial && fWorldMaterial != pttoMaterial) {
334     fWorldMaterial = pttoMaterial;             << 361     fWorldMaterial = pttoMaterial;                  
335     if (fLogicWorld) {                         << 362     if(fLogicWorld) fLogicWorld->SetMaterial(fWorldMaterial);
336       fLogicWorld->SetMaterial(fWorldMaterial) << 
337     }                                          << 
338     G4RunManager::GetRunManager()->PhysicsHasB    363     G4RunManager::GetRunManager()->PhysicsHasBeenModified();
339   }                                               364   }
340 }                                                 365 }
341                                                << 366     
342 //....oooOO0OOooo........oooOO0OOooo........oo    367 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
343                                                   368 
344 void DetectorConstruction::SetAbsorberThicknes    369 void DetectorConstruction::SetAbsorberThickness(G4double val)
345 {                                                 370 {
346   fAbsorberThickness = val;                       371   fAbsorberThickness = val;
347   ComputeGeomParameters();                     << 372   G4RunManager::GetRunManager()->GeometryHasBeenModified();
348 }                                              << 373 }  
349                                                   374 
350 //....oooOO0OOooo........oooOO0OOooo........oo    375 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
351                                                   376 
352 void DetectorConstruction::SetAbsorberSizeYZ(G    377 void DetectorConstruction::SetAbsorberSizeYZ(G4double val)
353 {                                                 378 {
354   fAbsorberSizeYZ = val;                          379   fAbsorberSizeYZ = val;
355   ComputeGeomParameters();                     << 380   G4RunManager::GetRunManager()->GeometryHasBeenModified();
356 }                                              << 381 }  
357                                                   382 
358 //....oooOO0OOooo........oooOO0OOooo........oo    383 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
359                                                   384 
360 void DetectorConstruction::SetWorldSizeX(G4dou    385 void DetectorConstruction::SetWorldSizeX(G4double val)
361 {                                                 386 {
362   fWorldSizeX = val;                              387   fWorldSizeX = val;
363   ComputeGeomParameters();                     << 388   fDefaultWorld = false;
364 }                                              << 389   G4RunManager::GetRunManager()->GeometryHasBeenModified();
                                                   >> 390 }  
365                                                   391 
366 //....oooOO0OOooo........oooOO0OOooo........oo    392 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
367                                                   393 
368 void DetectorConstruction::SetWorldSizeYZ(G4do    394 void DetectorConstruction::SetWorldSizeYZ(G4double val)
369 {                                                 395 {
370   fWorldSizeYZ = val;                             396   fWorldSizeYZ = val;
371   ComputeGeomParameters();                     << 397   fDefaultWorld = false;
372 }                                              << 398   G4RunManager::GetRunManager()->GeometryHasBeenModified();
                                                   >> 399 }  
373                                                   400 
374 //....oooOO0OOooo........oooOO0OOooo........oo    401 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
375                                                   402 
376 void DetectorConstruction::SetAbsorberXpos(G4d    403 void DetectorConstruction::SetAbsorberXpos(G4double val)
377 {                                                 404 {
378   fXposAbs = val;                              << 405   fXposAbs  = val;
379   ComputeGeomParameters();                     << 406   G4RunManager::GetRunManager()->GeometryHasBeenModified();
380 }                                              << 407 }  
381                                                   408 
382 //....oooOO0OOooo........oooOO0OOooo........oo    409 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
383                                                   410 
384 void DetectorConstruction::ConstructSDandField << 411 #include "G4FieldManager.hh"
                                                   >> 412 #include "G4TransportationManager.hh"
                                                   >> 413 
                                                   >> 414 void DetectorConstruction::SetMagField(G4double fieldValue)
385 {                                                 415 {
386   if (fFieldMessenger.Get() == 0) {            << 416   //apply a global uniform magnetic field along Z axis
387     // Create global magnetic field messenger. << 417   G4FieldManager* fieldMgr 
388     // Uniform magnetic field is then created  << 418    = G4TransportationManager::GetTransportationManager()->GetFieldManager();
389     // the field value is not zero.            << 419     
390     G4ThreeVector fieldValue = G4ThreeVector() << 420   if(fMagField) delete fMagField;                //delete the existing magn field
391     G4GlobalMagFieldMessenger* msg = new G4Glo << 421   
392     // msg->SetVerboseLevel(1);                << 422   if(fieldValue!=0.)                        // create a new one if non nul
393     G4AutoDelete::Register(msg);               << 423   { fMagField = new G4UniformMagField(G4ThreeVector(0.,0.,fieldValue));        
394     fFieldMessenger.Put(msg);                  << 424     fieldMgr->SetDetectorField(fMagField);
                                                   >> 425     fieldMgr->CreateChordFinder(fMagField);
                                                   >> 426   } else {
                                                   >> 427     fMagField = NULL;
                                                   >> 428     fieldMgr->SetDetectorField(fMagField);
395   }                                               429   }
396 }                                                 430 }
397                                                   431 
398 //....oooOO0OOooo........oooOO0OOooo........oo << 432 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
399                                                   433 
400 void DetectorConstruction::ChangeGeometry()    << 434 void DetectorConstruction::UpdateGeometry()
401 {                                                 435 {
402   fSolidWorld->SetXHalfLength(fWorldSizeX * 0. << 436   G4RunManager::GetRunManager()->PhysicsHasBeenModified();
403   fSolidWorld->SetYHalfLength(fWorldSizeYZ * 0 << 437   G4RunManager::GetRunManager()->DefineWorldVolume(ConstructCalorimeter());
404   fSolidWorld->SetZHalfLength(fWorldSizeYZ * 0 << 
405                                                << 
406   fSolidAbsorber->SetXHalfLength(fAbsorberThic << 
407   fSolidAbsorber->SetYHalfLength(fAbsorberSize << 
408   fSolidAbsorber->SetZHalfLength(fAbsorberSize << 
409 }                                                 438 }
410                                                   439 
411 //....oooOO0OOooo........oooOO0OOooo........oo    440 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 441 
412                                                   442