Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/examples/extended/electromagnetic/TestEm5/src/DetectorConstruction.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /examples/extended/electromagnetic/TestEm5/src/DetectorConstruction.cc (Version 11.3.0) and /examples/extended/electromagnetic/TestEm5/src/DetectorConstruction.cc (Version 8.2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 /// \file electromagnetic/TestEm5/src/Detector <<  26 // $Id: DetectorConstruction.cc,v 1.13 2006/09/25 17:06:29 maire Exp $
 27 /// \brief Implementation of the DetectorConst <<  27 // GEANT4 tag $Name: geant4-08-02 $
 28 //                                             << 
 29 //                                                 28 //
 30 //....oooOO0OOooo........oooOO0OOooo........oo     29 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 31 //....oooOO0OOooo........oooOO0OOooo........oo     30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 32                                                    31 
 33 #include "DetectorConstruction.hh"                 32 #include "DetectorConstruction.hh"
 34                                                << 
 35 #include "DetectorMessenger.hh"                    33 #include "DetectorMessenger.hh"
 36                                                    34 
 37 #include "G4AutoDelete.hh"                     <<  35 #include "G4Material.hh"
 38 #include "G4Box.hh"                                36 #include "G4Box.hh"
 39 #include "G4GeometryManager.hh"                << 
 40 #include "G4GlobalMagFieldMessenger.hh"        << 
 41 #include "G4LogicalVolume.hh"                      37 #include "G4LogicalVolume.hh"
 42 #include "G4LogicalVolumeStore.hh"             << 
 43 #include "G4Material.hh"                       << 
 44 #include "G4NistManager.hh"                    << 
 45 #include "G4PVPlacement.hh"                        38 #include "G4PVPlacement.hh"
 46 #include "G4PhysicalConstants.hh"              <<  39 #include "G4UniformMagField.hh"
                                                   >>  40 
                                                   >>  41 #include "G4GeometryManager.hh"
 47 #include "G4PhysicalVolumeStore.hh"                42 #include "G4PhysicalVolumeStore.hh"
 48 #include "G4RunManager.hh"                     <<  43 #include "G4LogicalVolumeStore.hh"
 49 #include "G4SolidStore.hh"                         44 #include "G4SolidStore.hh"
 50 #include "G4SystemOfUnits.hh"                  <<  45 
 51 #include "G4UniformMagField.hh"                << 
 52 #include "G4UnitsTable.hh"                         46 #include "G4UnitsTable.hh"
                                                   >>  47 #include "G4NistManager.hh"
 53                                                    48 
 54 //....oooOO0OOooo........oooOO0OOooo........oo     49 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 55                                                    50 
 56 DetectorConstruction::DetectorConstruction()       51 DetectorConstruction::DetectorConstruction()
                                                   >>  52 :AbsorberMaterial(0),WorldMaterial(0),defaultWorld(true),
                                                   >>  53  solidWorld(0),logicWorld(0),physiWorld(0),
                                                   >>  54  solidAbsorber(0),logicAbsorber(0),physiAbsorber(0),
                                                   >>  55  magField(0)
 57 {                                                  56 {
 58   // default parameter values of the calorimet     57   // default parameter values of the calorimeter
 59   fAbsorberThickness = 1. * cm;                <<  58   AbsorberThickness = 1.*cm;
 60   fAbsorberSizeYZ = 2. * cm;                   <<  59   AbsorberSizeYZ    = 2.*cm;
 61   fXposAbs = 0. * cm;                          <<  60   XposAbs           = 0.*cm;
 62   ComputeGeomParameters();                     <<  61   ComputeCalorParameters();
 63                                                <<  62   
 64   // materials                                 <<  63   // materials  
 65   DefineMaterials();                               64   DefineMaterials();
 66   SetWorldMaterial("G4_Galactic");             <<  65   SetWorldMaterial   ("Galactic");
 67   SetAbsorberMaterial("G4_Si");                <<  66   SetAbsorberMaterial("Silicon");
 68                                                <<  67  
 69   // create commands for interactive definitio <<  68   // create commands for interactive definition of the calorimeter  
 70   fDetectorMessenger = new DetectorMessenger(t <<  69   detectorMessenger = new DetectorMessenger(this);
 71 }                                                  70 }
 72                                                    71 
 73 //....oooOO0OOooo........oooOO0OOooo........oo     72 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 74                                                    73 
 75 DetectorConstruction::~DetectorConstruction()      74 DetectorConstruction::~DetectorConstruction()
 76 {                                              <<  75 { 
 77   delete fDetectorMessenger;                   <<  76   delete detectorMessenger;
 78 }                                                  77 }
 79                                                    78 
 80 //....oooOO0OOooo........oooOO0OOooo........oo     79 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 81                                                    80 
 82 void DetectorConstruction::DefineMaterials()   <<  81 G4VPhysicalVolume* DetectorConstruction::Construct()
 83 {                                                  82 {
 84   // This function illustrates the possible wa <<  83   return ConstructCalorimeter();
 85                                                <<  84 }
 86   G4String symbol;  // a=mass of a mole;       << 
 87   G4double a, z, density;  // z=mean number of << 
 88                                                << 
 89   G4int ncomponents, natoms;                   << 
 90   G4double fractionmass;                       << 
 91   G4double temperature, pressure;              << 
 92                                                    85 
 93   //                                           <<  86 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 94   // define Elements                           << 
 95   //                                           << 
 96                                                    87 
 97   G4Element* H = new G4Element("Hydrogen", sym <<  88 void DetectorConstruction::DefineMaterials()
 98   G4Element* C = new G4Element("Carbon", symbo <<  89 { 
 99   G4Element* N = new G4Element("Nitrogen", sym <<  90  //This function illustrates the possible ways to define materials
100   G4Element* O = new G4Element("Oxygen", symbo <<  91  
101   G4Element* Na = new G4Element("Sodium", symb <<  92 G4String symbol;             //a=mass of a mole;
102   G4Element* Ar = new G4Element("Argon", symbo <<  93 G4double a, z, density;      //z=mean number of protons;  
103   G4Element* I = new G4Element("Iodine", symbo <<  94 
104   G4Element* Xe = new G4Element("Xenon", symbo <<  95 G4int ncomponents, natoms;
                                                   >>  96 G4double fractionmass;
                                                   >>  97 G4double temperature, pressure;
105                                                    98 
106   //                                           <<  99 //
107   // define simple materials                   << 100 // define Elements
108   //                                           << 101 //
109                                                   102 
110   new G4Material("H2Liq", z = 1, a = 1.01 * g  << 103 G4Element* H  = new G4Element("Hydrogen",symbol="H",  z= 1, a=   1.01*g/mole);
111   new G4Material("Beryllium", z = 4, a = 9.01  << 104 G4Element* C  = new G4Element("Carbon",  symbol="C",  z= 6, a=  12.01*g/mole);
112   new G4Material("Aluminium", z = 13, a = 26.9 << 105 G4Element* N  = new G4Element("Nitrogen",symbol="N",  z= 7, a=  14.01*g/mole);
113   new G4Material("Silicon", z = 14, a = 28.09  << 106 G4Element* O  = new G4Element("Oxygen",  symbol="O",  z= 8, a=  16.00*g/mole);
114                                                << 107 G4Element* Na = new G4Element("Sodium",  symbol="Na", z=11, a=  22.99*g/mole);
115   G4Material* lAr = new G4Material("liquidArgo << 108 G4Element* Ar = new G4Element("Argon",   symbol="Ar", z=18, a=  39.95*g/mole);
116   lAr->AddElement(Ar, natoms = 1);             << 109 G4Element* I  = new G4Element("Iodine",  symbol="I" , z=53, a= 126.90*g/mole);
117                                                << 110 G4Element* Xe = new G4Element("Xenon",   symbol="Xe", z=54, a= 131.29*g/mole);
118   new G4Material("Iron", z = 26, a = 55.85 * g << 
119   new G4Material("Copper", z = 29, a = 63.55 * << 
120   new G4Material("Germanium", z = 32, a = 72.6 << 
121   new G4Material("Silver", z = 47, a = 107.87  << 
122   new G4Material("Tungsten", z = 74, a = 183.8 << 
123   new G4Material("Gold", z = 79, a = 196.97 *  << 
124   new G4Material("Lead", z = 82, a = 207.19 *  << 
125                                                   111 
126   //                                           << 112 //
127   // define a material from elements.   case 1 << 113 // define simple materials
128   //                                           << 114 //
129                                                   115 
130   G4Material* H2O = new G4Material("Water", de << 116 new G4Material("H2Liq"    , z= 1, a= 1.01*g/mole, density= 70.8*mg/cm3);
131   H2O->AddElement(H, natoms = 2);              << 117 new G4Material("Beryllium", z= 4, a= 9.01*g/mole, density= 1.848*g/cm3);
132   H2O->AddElement(O, natoms = 1);              << 118 new G4Material("Aluminium", z=13, a=26.98*g/mole, density= 2.700*g/cm3);
133   H2O->GetIonisation()->SetMeanExcitationEnerg << 119 new G4Material("Silicon"  , z=14, a=28.09*g/mole, density= 2.330*g/cm3);
134                                                << 120 
135   G4Material* CH = new G4Material("Plastic", d << 121 G4Material* lAr = 
136   CH->AddElement(C, natoms = 1);               << 122 new G4Material("liquidArgon", density= 1.390*g/cm3, ncomponents=1);
137   CH->AddElement(H, natoms = 1);               << 123 lAr->AddElement(Ar, natoms=1);
138                                                << 124 
139   G4Material* NaI = new G4Material("NaI", dens << 125 new G4Material("Iron",     z=26, a= 55.85*g/mole, density= 7.870*g/cm3);
140   NaI->AddElement(Na, natoms = 1);             << 126 new G4Material("Copper",   z=29, a= 63.55*g/mole, density= 8.960*g/cm3);
141   NaI->AddElement(I, natoms = 1);              << 127 new G4Material("Silver",   z=47, a=107.87*g/mole, density= 10.50*g/cm3);
142   NaI->GetIonisation()->SetMeanExcitationEnerg << 128 new G4Material("Tungsten", z=74, a=183.85*g/mole, density= 19.30*g/cm3);
                                                   >> 129 new G4Material("Gold",     z=79, a=196.97*g/mole, density= 19.32*g/cm3);
                                                   >> 130 new G4Material("Lead",     z=82, a=207.19*g/mole, density= 11.35*g/cm3);
143                                                   131 
144   //                                           << 132 //
145   // define a material from elements.   case 2 << 133 // define a material from elements.   case 1: chemical molecule
146   //                                           << 134 //
147                                                   135 
148   G4Material* Air = new G4Material("Air", dens << 136 G4Material* H2O = new G4Material("Water", density= 1.000*g/cm3, ncomponents=2);
149   Air->AddElement(N, fractionmass = 0.7);      << 137 H2O->AddElement(H, natoms=2);
150   Air->AddElement(O, fractionmass = 0.3);      << 138 H2O->AddElement(O, natoms=1);
151                                                << 139 H2O->GetIonisation()->SetMeanExcitationEnergy(75*eV);
152   G4Material* Air20 = new G4Material("Air20",  << 140 
153                                      kStateGas << 141 G4Material* CH = new G4Material("Plastic", density= 1.04*g/cm3, ncomponents=2);
154   Air20->AddElement(N, fractionmass = 0.7);    << 142 CH->AddElement(C, natoms=1);
155   Air20->AddElement(O, fractionmass = 0.3);    << 143 CH->AddElement(H, natoms=1);
                                                   >> 144 
                                                   >> 145 G4Material* NaI = new G4Material("NaI", density= 3.67*g/cm3, ncomponents=2);
                                                   >> 146 NaI->AddElement(Na, natoms=1);
                                                   >> 147 NaI->AddElement(I , natoms=1);
                                                   >> 148 NaI->GetIonisation()->SetMeanExcitationEnergy(452*eV);
156                                                   149 
157   // Graphite                                  << 150 //
158   //                                           << 151 // define a material from elements.   case 2: mixture by fractional mass
159   G4Material* Graphite = new G4Material("Graph << 152 //
160   Graphite->AddElement(C, fractionmass = 1.);  << 
161                                                   153 
162   // Havar                                     << 154 G4Material* Air = new G4Material("Air", density= 1.290*mg/cm3, ncomponents=2);
163   //                                           << 155 Air->AddElement(N, fractionmass=0.7);
164   G4Element* Cr = new G4Element("Chrome", "Cr" << 156 Air->AddElement(O, fractionmass=0.3);
165   G4Element* Fe = new G4Element("Iron", "Fe",  << 157 
166   G4Element* Co = new G4Element("Cobalt", "Co" << 158 G4Material* Air20 = 
167   G4Element* Ni = new G4Element("Nickel", "Ni" << 159 new G4Material("Air20", density= 1.205*mg/cm3, ncomponents=2,
168   G4Element* W = new G4Element("Tungsten", "W" << 160                         kStateGas, 293.*kelvin, 1.*atmosphere);
169                                                << 161 Air20->AddElement(N, fractionmass=0.7);
170   G4Material* Havar = new G4Material("Havar",  << 162 Air20->AddElement(O, fractionmass=0.3);
171   Havar->AddElement(Cr, fractionmass = 0.1785) << 
172   Havar->AddElement(Fe, fractionmass = 0.1822) << 
173   Havar->AddElement(Co, fractionmass = 0.4452) << 
174   Havar->AddElement(Ni, fractionmass = 0.1310) << 
175   Havar->AddElement(W, fractionmass = 0.0631); << 
176                                                   163 
177   //                                           << 164 //Graphite
178   // examples of gas                           << 165 //
179   //                                           << 166 G4Material* Graphite = 
180   new G4Material("ArgonGas", z = 18, a = 39.94 << 167 new G4Material("Graphite", density= 1.7*g/cm3, ncomponents=1);
181                  273.15 * kelvin, 1 * atmosphe << 168 Graphite->AddElement(C, fractionmass=1.);
182                                                   169 
183   new G4Material("XenonGas", z = 54, a = 131.2 << 170 //Havar
184                  293.15 * kelvin, 1 * atmosphe << 171 //
                                                   >> 172 G4Element* Cr = new G4Element("Chrome", "Cr", z=25, a=  51.996*g/mole);
                                                   >> 173 G4Element* Fe = new G4Element("Iron"  , "Fe", z=26, a=  55.845*g/mole);
                                                   >> 174 G4Element* Co = new G4Element("Cobalt", "Co", z=27, a=  58.933*g/mole);
                                                   >> 175 G4Element* Ni = new G4Element("Nickel", "Ni", z=28, a=  58.693*g/mole);
                                                   >> 176 G4Element* W  = new G4Element("Tungsten","W", z=74, a= 183.850*g/mole);
                                                   >> 177 
                                                   >> 178 G4Material* Havar = 
                                                   >> 179 new G4Material("Havar", density= 8.3*g/cm3, ncomponents=5);
                                                   >> 180 Havar->AddElement(Cr, fractionmass=0.1785);
                                                   >> 181 Havar->AddElement(Fe, fractionmass=0.1822);
                                                   >> 182 Havar->AddElement(Co, fractionmass=0.4452);
                                                   >> 183 Havar->AddElement(Ni, fractionmass=0.1310);
                                                   >> 184 Havar->AddElement(W , fractionmass=0.0631);
185                                                   185 
186   G4Material* CO2 = new G4Material("CarbonicGa << 186 //
187   CO2->AddElement(C, natoms = 1);              << 187 // examples of gas
188   CO2->AddElement(O, natoms = 2);              << 188 //  
189                                                << 189 new G4Material("ArgonGas", z=18, a=39.948*g/mole, density= 1.782*mg/cm3,
190   G4Material* ArCO2 = new G4Material("ArgonCO2 << 190                            kStateGas, 273.15*kelvin, 1*atmosphere);
191   ArCO2->AddElement(Ar, fractionmass = 0.7844) << 191          
192   ArCO2->AddMaterial(CO2, fractionmass = 0.215 << 192 new G4Material("XenonGas", z=54, a=131.29*g/mole, density= 5.458*mg/cm3,
193                                                << 193                            kStateGas, 293.15*kelvin, 1*atmosphere);
194   // another way to define mixture of gas per  << 194          
195   G4Material* NewArCO2 =                       << 195 G4Material* CO2 =
196     new G4Material("NewArgonCO2", density = 1. << 196 new G4Material("CarbonicGas", density= 1.977*mg/cm3, ncomponents=2);
197   NewArCO2->AddElement(Ar, natoms = 8);        << 197 CO2->AddElement(C, natoms=1);
198   NewArCO2->AddElement(C, natoms = 2);         << 198 CO2->AddElement(O, natoms=2);
199   NewArCO2->AddElement(O, natoms = 4);         << 199 
200                                                << 200 G4Material* ArCO2 =
201   G4Material* ArCH4 = new G4Material("ArgonCH4 << 201 new G4Material("ArgonCO2",   density= 1.8223*mg/cm3, ncomponents=2);
202   ArCH4->AddElement(Ar, natoms = 93);          << 202 ArCO2->AddElement (Ar,  fractionmass=0.7844);
203   ArCH4->AddElement(C, natoms = 7);            << 203 ArCO2->AddMaterial(CO2, fractionmass=0.2156);
204   ArCH4->AddElement(H, natoms = 28);           << 204 
205                                                << 205 //another way to define mixture of gas per volume
206   G4Material* XeCH = new G4Material("XenonMeth << 206 G4Material* NewArCO2 =
207                                     ncomponent << 207 new G4Material("NewArgonCO2", density= 1.8223*mg/cm3, ncomponents=3);
208   XeCH->AddElement(Xe, natoms = 875);          << 208 NewArCO2->AddElement (Ar, natoms=8);
209   XeCH->AddElement(C, natoms = 225);           << 209 NewArCO2->AddElement (C,  natoms=2);
210   XeCH->AddElement(H, natoms = 700);           << 210 NewArCO2->AddElement (O,  natoms=4);
211                                                << 211 
212   G4Material* steam = new G4Material("WaterSte << 212 G4Material* ArCH4 = 
213   steam->AddMaterial(H2O, fractionmass = 1.);  << 213 new G4Material("ArgonCH4",    density= 1.709*mg/cm3,  ncomponents=3);
214   steam->GetIonisation()->SetMeanExcitationEne << 214 ArCH4->AddElement (Ar, natoms=93);
                                                   >> 215 ArCH4->AddElement (C,  natoms=7);
                                                   >> 216 ArCH4->AddElement (H,  natoms=28);
                                                   >> 217 
                                                   >> 218 G4Material* XeCH = 
                                                   >> 219 new G4Material("XenonMethanePropane", density= 4.9196*mg/cm3, ncomponents=3,
                                                   >> 220                                       kStateGas, 293.15*kelvin, 1*atmosphere);
                                                   >> 221 XeCH->AddElement (Xe, natoms=875);
                                                   >> 222 XeCH->AddElement (C,  natoms=225);
                                                   >> 223 XeCH->AddElement (H,  natoms=700);
                                                   >> 224 
                                                   >> 225 G4Material* steam = 
                                                   >> 226 new G4Material("WaterSteam", density= 1.0*mg/cm3, ncomponents=1);
                                                   >> 227 steam->AddMaterial(H2O, fractionmass=1.);
                                                   >> 228 steam->GetIonisation()->SetMeanExcitationEnergy(71.6*eV);  
215                                                   229 
216   G4Material* rock1 = new G4Material("Standard << 230 //
217   rock1->AddElement(Na, 1);                    << 231 // example of vacuum
                                                   >> 232 //
218                                                   233 
219   //                                           << 234 density     = universe_mean_density;    //from PhysicalConstants.h
220   // example of vacuum                         << 235 pressure    = 3.e-18*pascal;
221   //                                           << 236 temperature = 2.73*kelvin;
222   density = universe_mean_density;  // from Ph << 237 new G4Material("Galactic", z=1, a=1.01*g/mole,density,
223   pressure = 3.e-18 * pascal;                  << 238                                               kStateGas,temperature,pressure);
224   temperature = 2.73 * kelvin;                 << 
225   new G4Material("Galactic", z = 1, a = 1.01 * << 
226 }                                                 239 }
227                                                   240 
228 //....oooOO0OOooo........oooOO0OOooo........oo    241 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
229                                                   242 
230 void DetectorConstruction::ComputeGeomParamete << 243 void DetectorConstruction::ComputeCalorParameters()
231 {                                                 244 {
232   // Compute derived parameters of the calorim    245   // Compute derived parameters of the calorimeter
233   fXstartAbs = fXposAbs - 0.5 * fAbsorberThick << 246   xstartAbs = XposAbs-0.5*AbsorberThickness; 
234   fXendAbs = fXposAbs + 0.5 * fAbsorberThickne << 247   xendAbs   = XposAbs+0.5*AbsorberThickness;
235                                                << 248      
236   G4double xmax = std::max(std::abs(fXstartAbs << 249   if (defaultWorld) {
237   fWorldSizeX = 2.4 * xmax;                    << 250      WorldSizeX = 1.5*AbsorberThickness; WorldSizeYZ= 1.2*AbsorberSizeYZ;
238   fWorldSizeYZ = 1.2 * fAbsorberSizeYZ;        << 251   }   
239   if (nullptr != fPhysiWorld) {                << 
240     ChangeGeometry();                          << 
241   }                                            << 
242 }                                                 252 }
243                                                   253 
244 //....oooOO0OOooo........oooOO0OOooo........oo    254 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
245                                                << 255   
246 G4VPhysicalVolume* DetectorConstruction::Const << 256 G4VPhysicalVolume* DetectorConstruction::ConstructCalorimeter()
247 {                                              << 257 { 
248   if (nullptr != fPhysiWorld) {                << 258   // Cleanup old geometry
249     return fPhysiWorld;                        << 259   //
250   }                                            << 260   G4GeometryManager::GetInstance()->OpenGeometry();
                                                   >> 261   G4PhysicalVolumeStore::GetInstance()->Clean();
                                                   >> 262   G4LogicalVolumeStore::GetInstance()->Clean();
                                                   >> 263   G4SolidStore::GetInstance()->Clean();
                                                   >> 264   
                                                   >> 265   // complete the Calor parameters definition 
                                                   >> 266   ComputeCalorParameters();
                                                   >> 267         
251   // World                                        268   // World
252   //                                              269   //
253   fSolidWorld = new G4Box("World",  // its nam << 270   solidWorld = new G4Box("World",       //its name
254                           fWorldSizeX / 2, fWo << 271                    WorldSizeX/2,WorldSizeYZ/2,WorldSizeYZ/2);   //its size
255                                                << 272                          
256   fLogicWorld = new G4LogicalVolume(fSolidWorl << 273   logicWorld = new G4LogicalVolume(solidWorld,    //its solid
257                                     fWorldMate << 274                                    WorldMaterial, //its material
258                                     "World");  << 275                                    "World");    //its name
259                                                << 276                                    
260   fPhysiWorld = new G4PVPlacement(0,  // no ro << 277   physiWorld = new G4PVPlacement(0,     //no rotation
261                                   G4ThreeVecto << 278            G4ThreeVector(), //at (0,0,0)
262                                   fLogicWorld, << 279                                  logicWorld,    //its logical volume
263                                   "World",  // << 280                                  "World",   //its name
264                                   0,  // its m << 281                                  0,     //its mother  volume
265                                   false,  // n << 282                                  false,     //no boolean operation
266                                   0);  // copy << 283                                  0);      //copy number
267                                                << 284                                  
268   // Absorber                                     285   // Absorber
269   //                                           << 286   // 
270   fSolidAbsorber =                             << 287   solidAbsorber = new G4Box("Absorber", 
271     new G4Box("Absorber", fAbsorberThickness / << 288                       AbsorberThickness/2,AbsorberSizeYZ/2,AbsorberSizeYZ/2); 
272                                                << 289                           
273   fLogicAbsorber = new G4LogicalVolume(fSolidA << 290   logicAbsorber = new G4LogicalVolume(solidAbsorber,    //its solid
274                                        fAbsorb << 291                                 AbsorberMaterial, //its material
275                                        "Absorb << 292                              "Absorber");       //its name
276                                                << 293                               
277   fPhysiAbsorber = new G4PVPlacement(0,  // no << 294   physiAbsorber = new G4PVPlacement(0,       //no rotation
278                                      G4ThreeVe << 295             G4ThreeVector(XposAbs,0.,0.),    //its position
279                                      fLogicAbs << 296                                 logicAbsorber,     //its logical volume
280                                      "Absorber << 297         "Absorber",         //its name
281                                      fLogicWor << 298                                 logicWorld,        //its mother
282                                      false,  / << 299                                 false,             //no boulean operat
283                                      0);  // c << 300                                 0);                //copy number
284                                                << 301                                         
285   PrintGeomParameters();                       << 302    PrintCalorParameters();         
286                                                << 303   
287   // always return the physical World          << 304   //always return the physical World
288   //                                           << 305   //
289   return fPhysiWorld;                          << 306   return physiWorld;
290 }                                                 307 }
291                                                   308 
292 //....oooOO0OOooo........oooOO0OOooo........oo    309 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
293                                                   310 
294 void DetectorConstruction::PrintGeomParameters << 311 void DetectorConstruction::PrintCalorParameters()
295 {                                              << 312 {
296   G4cout << "\n" << fWorldMaterial << G4endl;  << 313   G4cout << "\n" << WorldMaterial    << G4endl;
297   G4cout << "\n" << fAbsorberMaterial << G4end << 314   G4cout << "\n" << AbsorberMaterial << G4endl;
298                                                << 315     
299   G4cout << "\n The  WORLD   is made of " << G << 316   G4cout << "\n The  WORLD   is made of "  << G4BestUnit(WorldSizeX,"Length")
300          << fWorldMaterial->GetName();         << 317          << " of " << WorldMaterial->GetName();
301   G4cout << ". The transverse size (YZ) of the << 318   G4cout << ". The transverse size (YZ) of the world is " 
302          << G4endl;                            << 319          << G4BestUnit(WorldSizeYZ,"Length") << G4endl;
303   G4cout << " The ABSORBER is made of " << G4B << 320   G4cout << " The ABSORBER is made of " 
304          << fAbsorberMaterial->GetName();      << 321          <<G4BestUnit(AbsorberThickness,"Length")
305   G4cout << ". The transverse size (YZ) is " < << 322    << " of " << AbsorberMaterial->GetName();
306   G4cout << " X position of the middle of the  << 323   G4cout << ". The transverse size (YZ) is " 
                                                   >> 324          << G4BestUnit(AbsorberSizeYZ,"Length") << G4endl;
                                                   >> 325   G4cout << " X position of the middle of the absorber "
                                                   >> 326          << G4BestUnit(XposAbs,"Length");
307   G4cout << G4endl;                               327   G4cout << G4endl;
308 }                                                 328 }
309                                                   329 
310 //....oooOO0OOooo........oooOO0OOooo........oo    330 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
311                                                   331 
312 void DetectorConstruction::SetAbsorberMaterial << 332 void DetectorConstruction::SetAbsorberMaterial(G4String materialChoice)
313 {                                                 333 {
314   // search the material by its name              334   // search the material by its name
315   G4Material* pttoMaterial = G4NistManager::In << 335   G4Material* pttoMaterial =
                                                   >> 336     G4NistManager::Instance()->FindOrBuildMaterial(materialChoice);
316                                                   337 
317   if (pttoMaterial && fAbsorberMaterial != ptt << 338   if (pttoMaterial) AbsorberMaterial = pttoMaterial;                  
318     fAbsorberMaterial = pttoMaterial;          << 
319     if (fLogicAbsorber) {                      << 
320       fLogicAbsorber->SetMaterial(fAbsorberMat << 
321     }                                          << 
322     G4RunManager::GetRunManager()->PhysicsHasB << 
323   }                                            << 
324 }                                                 339 }
325                                                   340 
326 //....oooOO0OOooo........oooOO0OOooo........oo    341 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
327                                                   342 
328 void DetectorConstruction::SetWorldMaterial(co << 343 void DetectorConstruction::SetWorldMaterial(G4String materialChoice)
329 {                                                 344 {
330   // search the material by its name              345   // search the material by its name
331   G4Material* pttoMaterial = G4NistManager::In << 346   G4Material* pttoMaterial =
                                                   >> 347     G4NistManager::Instance()->FindOrBuildMaterial(materialChoice);
332                                                   348 
333   if (pttoMaterial && fWorldMaterial != pttoMa << 349   if (pttoMaterial) WorldMaterial = pttoMaterial;
334     fWorldMaterial = pttoMaterial;             << 
335     if (fLogicWorld) {                         << 
336       fLogicWorld->SetMaterial(fWorldMaterial) << 
337     }                                          << 
338     G4RunManager::GetRunManager()->PhysicsHasB << 
339   }                                            << 
340 }                                                 350 }
341                                                << 351     
342 //....oooOO0OOooo........oooOO0OOooo........oo    352 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
343                                                   353 
344 void DetectorConstruction::SetAbsorberThicknes    354 void DetectorConstruction::SetAbsorberThickness(G4double val)
345 {                                                 355 {
346   fAbsorberThickness = val;                    << 356   AbsorberThickness = val;
347   ComputeGeomParameters();                     << 357 }  
348 }                                              << 
349                                                   358 
350 //....oooOO0OOooo........oooOO0OOooo........oo    359 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
351                                                   360 
352 void DetectorConstruction::SetAbsorberSizeYZ(G    361 void DetectorConstruction::SetAbsorberSizeYZ(G4double val)
353 {                                                 362 {
354   fAbsorberSizeYZ = val;                       << 363   AbsorberSizeYZ = val;
355   ComputeGeomParameters();                     << 364 }  
356 }                                              << 
357                                                   365 
358 //....oooOO0OOooo........oooOO0OOooo........oo    366 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
359                                                   367 
360 void DetectorConstruction::SetWorldSizeX(G4dou    368 void DetectorConstruction::SetWorldSizeX(G4double val)
361 {                                                 369 {
362   fWorldSizeX = val;                           << 370   WorldSizeX = val;
363   ComputeGeomParameters();                     << 371   defaultWorld = false;
364 }                                              << 372 }  
365                                                   373 
366 //....oooOO0OOooo........oooOO0OOooo........oo    374 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
367                                                   375 
368 void DetectorConstruction::SetWorldSizeYZ(G4do    376 void DetectorConstruction::SetWorldSizeYZ(G4double val)
369 {                                                 377 {
370   fWorldSizeYZ = val;                          << 378   WorldSizeYZ = val;
371   ComputeGeomParameters();                     << 379   defaultWorld = false;
372 }                                              << 380 }  
373                                                   381 
374 //....oooOO0OOooo........oooOO0OOooo........oo    382 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
375                                                   383 
376 void DetectorConstruction::SetAbsorberXpos(G4d    384 void DetectorConstruction::SetAbsorberXpos(G4double val)
377 {                                                 385 {
378   fXposAbs = val;                              << 386   XposAbs  = val;
379   ComputeGeomParameters();                     << 387 }  
380 }                                              << 
381                                                   388 
382 //....oooOO0OOooo........oooOO0OOooo........oo    389 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
383                                                   390 
384 void DetectorConstruction::ConstructSDandField << 391 #include "G4FieldManager.hh"
                                                   >> 392 #include "G4TransportationManager.hh"
                                                   >> 393 
                                                   >> 394 void DetectorConstruction::SetMagField(G4double fieldValue)
385 {                                                 395 {
386   if (fFieldMessenger.Get() == 0) {            << 396   //apply a global uniform magnetic field along Z axis
387     // Create global magnetic field messenger. << 397   G4FieldManager* fieldMgr 
388     // Uniform magnetic field is then created  << 398    = G4TransportationManager::GetTransportationManager()->GetFieldManager();
389     // the field value is not zero.            << 399     
390     G4ThreeVector fieldValue = G4ThreeVector() << 400   if(magField) delete magField;   //delete the existing magn field
391     G4GlobalMagFieldMessenger* msg = new G4Glo << 401   
392     // msg->SetVerboseLevel(1);                << 402   if(fieldValue!=0.)      // create a new one if non nul
393     G4AutoDelete::Register(msg);               << 403   { magField = new G4UniformMagField(G4ThreeVector(0.,0.,fieldValue));        
394     fFieldMessenger.Put(msg);                  << 404     fieldMgr->SetDetectorField(magField);
                                                   >> 405     fieldMgr->CreateChordFinder(magField);
                                                   >> 406   } else {
                                                   >> 407     magField = NULL;
                                                   >> 408     fieldMgr->SetDetectorField(magField);
395   }                                               409   }
396 }                                                 410 }
397                                                   411 
398 //....oooOO0OOooo........oooOO0OOooo........oo << 412 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
399                                                   413 
400 void DetectorConstruction::ChangeGeometry()    << 414 #include "G4RunManager.hh" 
                                                   >> 415  
                                                   >> 416 void DetectorConstruction::UpdateGeometry()
401 {                                                 417 {
402   fSolidWorld->SetXHalfLength(fWorldSizeX * 0. << 418   G4RunManager::GetRunManager()->DefineWorldVolume(ConstructCalorimeter());
403   fSolidWorld->SetYHalfLength(fWorldSizeYZ * 0 << 
404   fSolidWorld->SetZHalfLength(fWorldSizeYZ * 0 << 
405                                                << 
406   fSolidAbsorber->SetXHalfLength(fAbsorberThic << 
407   fSolidAbsorber->SetYHalfLength(fAbsorberSize << 
408   fSolidAbsorber->SetZHalfLength(fAbsorberSize << 
409 }                                                 419 }
410                                                   420 
411 //....oooOO0OOooo........oooOO0OOooo........oo    421 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 422 
412                                                   423