Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 /// \file electromagnetic/TestEm5/src/Detector 26 /// \file electromagnetic/TestEm5/src/DetectorConstruction.cc 27 /// \brief Implementation of the DetectorConst 27 /// \brief Implementation of the DetectorConstruction class 28 // 28 // 29 // 29 // 30 //....oooOO0OOooo........oooOO0OOooo........oo 30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 31 //....oooOO0OOooo........oooOO0OOooo........oo 31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 32 32 33 #include "DetectorConstruction.hh" 33 #include "DetectorConstruction.hh" 34 << 35 #include "DetectorMessenger.hh" 34 #include "DetectorMessenger.hh" 36 35 37 #include "G4AutoDelete.hh" << 36 #include "G4Material.hh" 38 #include "G4Box.hh" 37 #include "G4Box.hh" 39 #include "G4GeometryManager.hh" << 40 #include "G4GlobalMagFieldMessenger.hh" << 41 #include "G4LogicalVolume.hh" 38 #include "G4LogicalVolume.hh" 42 #include "G4LogicalVolumeStore.hh" << 43 #include "G4Material.hh" << 44 #include "G4NistManager.hh" << 45 #include "G4PVPlacement.hh" 39 #include "G4PVPlacement.hh" 46 #include "G4PhysicalConstants.hh" << 40 #include "G4UniformMagField.hh" >> 41 >> 42 #include "G4GeometryManager.hh" 47 #include "G4PhysicalVolumeStore.hh" 43 #include "G4PhysicalVolumeStore.hh" 48 #include "G4RunManager.hh" << 44 #include "G4LogicalVolumeStore.hh" 49 #include "G4SolidStore.hh" 45 #include "G4SolidStore.hh" 50 #include "G4SystemOfUnits.hh" << 46 51 #include "G4UniformMagField.hh" << 52 #include "G4UnitsTable.hh" 47 #include "G4UnitsTable.hh" >> 48 #include "G4NistManager.hh" >> 49 #include "G4RunManager.hh" >> 50 >> 51 #include "G4PhysicalConstants.hh" >> 52 #include "G4SystemOfUnits.hh" >> 53 >> 54 #include "G4GlobalMagFieldMessenger.hh" >> 55 #include "G4AutoDelete.hh" 53 56 54 //....oooOO0OOooo........oooOO0OOooo........oo 57 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 55 58 56 DetectorConstruction::DetectorConstruction() 59 DetectorConstruction::DetectorConstruction() 57 { 60 { 58 // default parameter values of the calorimet 61 // default parameter values of the calorimeter 59 fAbsorberThickness = 1. * cm; << 62 fAbsorberThickness = 1.*cm; 60 fAbsorberSizeYZ = 2. * cm; << 63 fAbsorberSizeYZ = 2.*cm; 61 fXposAbs = 0. * cm; << 64 fXposAbs = 0.*cm; 62 ComputeGeomParameters(); 65 ComputeGeomParameters(); 63 << 66 64 // materials << 67 // materials 65 DefineMaterials(); 68 DefineMaterials(); 66 SetWorldMaterial("G4_Galactic"); << 69 SetWorldMaterial ("G4_Galactic"); 67 SetAbsorberMaterial("G4_Si"); 70 SetAbsorberMaterial("G4_Si"); 68 << 71 69 // create commands for interactive definitio << 72 // create commands for interactive definition of the calorimeter 70 fDetectorMessenger = new DetectorMessenger(t 73 fDetectorMessenger = new DetectorMessenger(this); 71 } 74 } 72 75 73 //....oooOO0OOooo........oooOO0OOooo........oo 76 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 74 77 75 DetectorConstruction::~DetectorConstruction() 78 DetectorConstruction::~DetectorConstruction() 76 { << 79 { 77 delete fDetectorMessenger; 80 delete fDetectorMessenger; 78 } 81 } 79 82 80 //....oooOO0OOooo........oooOO0OOooo........oo 83 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 81 84 82 void DetectorConstruction::DefineMaterials() 85 void DetectorConstruction::DefineMaterials() 83 { << 86 { 84 // This function illustrates the possible wa << 87 //This function illustrates the possible ways to define materials 85 << 88 86 G4String symbol; // a=mass of a mole; << 89 G4String symbol; //a=mass of a mole; 87 G4double a, z, density; // z=mean number of << 90 G4double a, z, density; //z=mean number of protons; 88 91 89 G4int ncomponents, natoms; 92 G4int ncomponents, natoms; 90 G4double fractionmass; 93 G4double fractionmass; 91 G4double temperature, pressure; 94 G4double temperature, pressure; 92 << 95 93 // 96 // 94 // define Elements 97 // define Elements 95 // 98 // 96 99 97 G4Element* H = new G4Element("Hydrogen", sym << 100 G4Element* H = new G4Element("Hydrogen",symbol="H", z= 1, a= 1.01*g/mole); 98 G4Element* C = new G4Element("Carbon", symbo << 101 G4Element* C = new G4Element("Carbon", symbol="C", z= 6, a= 12.01*g/mole); 99 G4Element* N = new G4Element("Nitrogen", sym << 102 G4Element* N = new G4Element("Nitrogen",symbol="N", z= 7, a= 14.01*g/mole); 100 G4Element* O = new G4Element("Oxygen", symbo << 103 G4Element* O = new G4Element("Oxygen", symbol="O", z= 8, a= 16.00*g/mole); 101 G4Element* Na = new G4Element("Sodium", symb << 104 G4Element* Na = new G4Element("Sodium", symbol="Na", z=11, a= 22.99*g/mole); 102 G4Element* Ar = new G4Element("Argon", symbo << 105 G4Element* Ar = new G4Element("Argon", symbol="Ar", z=18, a= 39.95*g/mole); 103 G4Element* I = new G4Element("Iodine", symbo << 106 G4Element* I = new G4Element("Iodine", symbol="I" , z=53, a= 126.90*g/mole); 104 G4Element* Xe = new G4Element("Xenon", symbo << 107 G4Element* Xe = new G4Element("Xenon", symbol="Xe", z=54, a= 131.29*g/mole); 105 108 106 // 109 // 107 // define simple materials 110 // define simple materials 108 // 111 // 109 112 110 new G4Material("H2Liq", z = 1, a = 1.01 * g << 113 new G4Material("H2Liq" , z= 1, a= 1.01*g/mole, density= 70.8*mg/cm3); 111 new G4Material("Beryllium", z = 4, a = 9.01 << 114 new G4Material("Beryllium", z= 4, a= 9.01*g/mole, density= 1.848*g/cm3); 112 new G4Material("Aluminium", z = 13, a = 26.9 << 115 new G4Material("Aluminium", z=13, a=26.98*g/mole, density= 2.700*g/cm3); 113 new G4Material("Silicon", z = 14, a = 28.09 << 116 new G4Material("Silicon" , z=14, a=28.09*g/mole, density= 2.330*g/cm3); 114 << 117 115 G4Material* lAr = new G4Material("liquidArgo << 118 G4Material* lAr = 116 lAr->AddElement(Ar, natoms = 1); << 119 new G4Material("liquidArgon", density= 1.390*g/cm3, ncomponents=1); 117 << 120 lAr->AddElement(Ar, natoms=1); 118 new G4Material("Iron", z = 26, a = 55.85 * g << 121 119 new G4Material("Copper", z = 29, a = 63.55 * << 122 new G4Material("Iron", z=26, a= 55.85*g/mole, density= 7.870*g/cm3); 120 new G4Material("Germanium", z = 32, a = 72.6 << 123 new G4Material("Copper", z=29, a= 63.55*g/mole, density= 8.960*g/cm3); 121 new G4Material("Silver", z = 47, a = 107.87 << 124 new G4Material("Germanium",z=32, a= 72.61*g/mole, density= 5.323*g/cm3); 122 new G4Material("Tungsten", z = 74, a = 183.8 << 125 new G4Material("Silver", z=47, a=107.87*g/mole, density= 10.50*g/cm3); 123 new G4Material("Gold", z = 79, a = 196.97 * << 126 new G4Material("Tungsten", z=74, a=183.85*g/mole, density= 19.30*g/cm3); 124 new G4Material("Lead", z = 82, a = 207.19 * << 127 new G4Material("Gold", z=79, a=196.97*g/mole, density= 19.32*g/cm3); >> 128 new G4Material("Lead", z=82, a=207.19*g/mole, density= 11.35*g/cm3); 125 129 126 // 130 // 127 // define a material from elements. case 1 131 // define a material from elements. case 1: chemical molecule 128 // 132 // 129 133 130 G4Material* H2O = new G4Material("Water", de << 134 G4Material* H2O = new G4Material("Water",density= 1.000*g/cm3,ncomponents=2); 131 H2O->AddElement(H, natoms = 2); << 135 H2O->AddElement(H, natoms=2); 132 H2O->AddElement(O, natoms = 1); << 136 H2O->AddElement(O, natoms=1); 133 H2O->GetIonisation()->SetMeanExcitationEnerg << 137 H2O->GetIonisation()->SetMeanExcitationEnergy(78*eV); 134 << 138 135 G4Material* CH = new G4Material("Plastic", d << 139 G4Material* CH = new G4Material("Plastic",density= 1.04*g/cm3,ncomponents=2); 136 CH->AddElement(C, natoms = 1); << 140 CH->AddElement(C, natoms=1); 137 CH->AddElement(H, natoms = 1); << 141 CH->AddElement(H, natoms=1); 138 << 142 139 G4Material* NaI = new G4Material("NaI", dens << 143 G4Material* NaI = new G4Material("NaI", density= 3.67*g/cm3, ncomponents=2); 140 NaI->AddElement(Na, natoms = 1); << 144 NaI->AddElement(Na, natoms=1); 141 NaI->AddElement(I, natoms = 1); << 145 NaI->AddElement(I , natoms=1); 142 NaI->GetIonisation()->SetMeanExcitationEnerg << 146 NaI->GetIonisation()->SetMeanExcitationEnergy(452*eV); 143 147 144 // 148 // 145 // define a material from elements. case 2 149 // define a material from elements. case 2: mixture by fractional mass 146 // 150 // 147 151 148 G4Material* Air = new G4Material("Air", dens << 152 G4Material* Air = new G4Material("Air", density= 1.290*mg/cm3, ncomponents=2); 149 Air->AddElement(N, fractionmass = 0.7); << 153 Air->AddElement(N, fractionmass=0.7); 150 Air->AddElement(O, fractionmass = 0.3); << 154 Air->AddElement(O, fractionmass=0.3); 151 << 155 152 G4Material* Air20 = new G4Material("Air20", << 156 G4Material* Air20 = 153 kStateGas << 157 new G4Material("Air20", density= 1.205*mg/cm3, ncomponents=2, 154 Air20->AddElement(N, fractionmass = 0.7); << 158 kStateGas, 293.*kelvin, 1.*atmosphere); 155 Air20->AddElement(O, fractionmass = 0.3); << 159 Air20->AddElement(N, fractionmass=0.7); 156 << 160 Air20->AddElement(O, fractionmass=0.3); 157 // Graphite << 161 158 // << 162 //Graphite 159 G4Material* Graphite = new G4Material("Graph << 163 // 160 Graphite->AddElement(C, fractionmass = 1.); << 164 G4Material* Graphite = 161 << 165 new G4Material("Graphite", density= 1.7*g/cm3, ncomponents=1); 162 // Havar << 166 Graphite->AddElement(C, fractionmass=1.); 163 // << 167 164 G4Element* Cr = new G4Element("Chrome", "Cr" << 168 //Havar 165 G4Element* Fe = new G4Element("Iron", "Fe", << 169 // 166 G4Element* Co = new G4Element("Cobalt", "Co" << 170 G4Element* Cr = new G4Element("Chrome", "Cr", z=24, a= 51.996*g/mole); 167 G4Element* Ni = new G4Element("Nickel", "Ni" << 171 G4Element* Fe = new G4Element("Iron" , "Fe", z=26, a= 55.845*g/mole); 168 G4Element* W = new G4Element("Tungsten", "W" << 172 G4Element* Co = new G4Element("Cobalt", "Co", z=27, a= 58.933*g/mole); 169 << 173 G4Element* Ni = new G4Element("Nickel", "Ni", z=28, a= 58.693*g/mole); 170 G4Material* Havar = new G4Material("Havar", << 174 G4Element* W = new G4Element("Tungsten","W", z=74, a= 183.850*g/mole); 171 Havar->AddElement(Cr, fractionmass = 0.1785) << 175 172 Havar->AddElement(Fe, fractionmass = 0.1822) << 176 G4Material* Havar = 173 Havar->AddElement(Co, fractionmass = 0.4452) << 177 new G4Material("Havar", density= 8.3*g/cm3, ncomponents=5); 174 Havar->AddElement(Ni, fractionmass = 0.1310) << 178 Havar->AddElement(Cr, fractionmass=0.1785); 175 Havar->AddElement(W, fractionmass = 0.0631); << 179 Havar->AddElement(Fe, fractionmass=0.1822); >> 180 Havar->AddElement(Co, fractionmass=0.4452); >> 181 Havar->AddElement(Ni, fractionmass=0.1310); >> 182 Havar->AddElement(W , fractionmass=0.0631); 176 183 177 // 184 // 178 // examples of gas 185 // examples of gas 179 // << 186 // 180 new G4Material("ArgonGas", z = 18, a = 39.94 << 187 new G4Material("ArgonGas", z=18, a=39.948*g/mole, density= 1.782*mg/cm3, 181 273.15 * kelvin, 1 * atmosphe << 188 kStateGas, 273.15*kelvin, 1*atmosphere); 182 << 189 183 new G4Material("XenonGas", z = 54, a = 131.2 << 190 new G4Material("XenonGas", z=54, a=131.29*g/mole, density= 5.458*mg/cm3, 184 293.15 * kelvin, 1 * atmosphe << 191 kStateGas, 293.15*kelvin, 1*atmosphere); 185 << 192 186 G4Material* CO2 = new G4Material("CarbonicGa << 193 G4Material* CO2 = 187 CO2->AddElement(C, natoms = 1); << 194 new G4Material("CarbonicGas", density= 1.977*mg/cm3, ncomponents=2); 188 CO2->AddElement(O, natoms = 2); << 195 CO2->AddElement(C, natoms=1); >> 196 CO2->AddElement(O, natoms=2); >> 197 >> 198 G4Material* ArCO2 = >> 199 new G4Material("ArgonCO2", density= 1.8223*mg/cm3, ncomponents=2); >> 200 ArCO2->AddElement (Ar, fractionmass=0.7844); >> 201 ArCO2->AddMaterial(CO2, fractionmass=0.2156); 189 202 190 G4Material* ArCO2 = new G4Material("ArgonCO2 << 203 //another way to define mixture of gas per volume 191 ArCO2->AddElement(Ar, fractionmass = 0.7844) << 192 ArCO2->AddMaterial(CO2, fractionmass = 0.215 << 193 << 194 // another way to define mixture of gas per << 195 G4Material* NewArCO2 = 204 G4Material* NewArCO2 = 196 new G4Material("NewArgonCO2", density = 1. << 205 new G4Material("NewArgonCO2", density= 1.8223*mg/cm3, ncomponents=3); 197 NewArCO2->AddElement(Ar, natoms = 8); << 206 NewArCO2->AddElement (Ar, natoms=8); 198 NewArCO2->AddElement(C, natoms = 2); << 207 NewArCO2->AddElement (C, natoms=2); 199 NewArCO2->AddElement(O, natoms = 4); << 208 NewArCO2->AddElement (O, natoms=4); 200 << 209 201 G4Material* ArCH4 = new G4Material("ArgonCH4 << 210 G4Material* ArCH4 = 202 ArCH4->AddElement(Ar, natoms = 93); << 211 new G4Material("ArgonCH4", density= 1.709*mg/cm3, ncomponents=3); 203 ArCH4->AddElement(C, natoms = 7); << 212 ArCH4->AddElement (Ar, natoms=93); 204 ArCH4->AddElement(H, natoms = 28); << 213 ArCH4->AddElement (C, natoms=7); 205 << 214 ArCH4->AddElement (H, natoms=28); 206 G4Material* XeCH = new G4Material("XenonMeth << 215 207 ncomponent << 216 G4Material* XeCH = 208 XeCH->AddElement(Xe, natoms = 875); << 217 new G4Material("XenonMethanePropane", density= 4.9196*mg/cm3, ncomponents=3, 209 XeCH->AddElement(C, natoms = 225); << 218 kStateGas, 293.15*kelvin, 1*atmosphere); 210 XeCH->AddElement(H, natoms = 700); << 219 XeCH->AddElement (Xe, natoms=875); 211 << 220 XeCH->AddElement (C, natoms=225); 212 G4Material* steam = new G4Material("WaterSte << 221 XeCH->AddElement (H, natoms=700); 213 steam->AddMaterial(H2O, fractionmass = 1.); << 222 214 steam->GetIonisation()->SetMeanExcitationEne << 223 G4Material* steam = >> 224 new G4Material("WaterSteam", density= 1.0*mg/cm3, ncomponents=1); >> 225 steam->AddMaterial(H2O, fractionmass=1.); >> 226 steam->GetIonisation()->SetMeanExcitationEnergy(71.6*eV); 215 227 216 G4Material* rock1 = new G4Material("Standard << 228 G4Material* rock1 = new G4Material("StandardRock", >> 229 2.65*CLHEP::g/CLHEP::cm3, 1, kStateSolid); 217 rock1->AddElement(Na, 1); 230 rock1->AddElement(Na, 1); 218 231 219 // 232 // 220 // example of vacuum 233 // example of vacuum 221 // 234 // 222 density = universe_mean_density; // from Ph << 235 density = universe_mean_density; //from PhysicalConstants.h 223 pressure = 3.e-18 * pascal; << 236 pressure = 3.e-18*pascal; 224 temperature = 2.73 * kelvin; << 237 temperature = 2.73*kelvin; 225 new G4Material("Galactic", z = 1, a = 1.01 * << 238 new G4Material("Galactic", z=1, a=1.01*g/mole,density, >> 239 kStateGas,temperature,pressure); 226 } 240 } 227 241 228 //....oooOO0OOooo........oooOO0OOooo........oo 242 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 229 243 230 void DetectorConstruction::ComputeGeomParamete 244 void DetectorConstruction::ComputeGeomParameters() 231 { 245 { 232 // Compute derived parameters of the calorim 246 // Compute derived parameters of the calorimeter 233 fXstartAbs = fXposAbs - 0.5 * fAbsorberThick << 247 fXstartAbs = fXposAbs-0.5*fAbsorberThickness; 234 fXendAbs = fXposAbs + 0.5 * fAbsorberThickne << 248 fXendAbs = fXposAbs+0.5*fAbsorberThickness; 235 249 236 G4double xmax = std::max(std::abs(fXstartAbs 250 G4double xmax = std::max(std::abs(fXstartAbs), std::abs(fXendAbs)); 237 fWorldSizeX = 2.4 * xmax; << 251 fWorldSizeX = 2.4*xmax; 238 fWorldSizeYZ = 1.2 * fAbsorberSizeYZ; << 252 fWorldSizeYZ= 1.2*fAbsorberSizeYZ; 239 if (nullptr != fPhysiWorld) { << 253 if(nullptr != fPhysiWorld) { ChangeGeometry(); } 240 ChangeGeometry(); << 241 } << 242 } 254 } 243 255 244 //....oooOO0OOooo........oooOO0OOooo........oo 256 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 245 << 257 246 G4VPhysicalVolume* DetectorConstruction::Const 258 G4VPhysicalVolume* DetectorConstruction::Construct() 247 { << 259 { 248 if (nullptr != fPhysiWorld) { << 260 if(nullptr != fPhysiWorld) { return fPhysiWorld; } 249 return fPhysiWorld; << 250 } << 251 // World 261 // World 252 // 262 // 253 fSolidWorld = new G4Box("World", // its nam << 263 fSolidWorld = new G4Box("World", //its name 254 fWorldSizeX / 2, fWo << 264 fWorldSizeX/2,fWorldSizeYZ/2,fWorldSizeYZ/2); //its size 255 << 265 256 fLogicWorld = new G4LogicalVolume(fSolidWorl << 266 fLogicWorld = new G4LogicalVolume(fSolidWorld, //its solid 257 fWorldMate << 267 fWorldMaterial, //its material 258 "World"); << 268 "World"); //its name 259 << 269 260 fPhysiWorld = new G4PVPlacement(0, // no ro << 270 fPhysiWorld = new G4PVPlacement(0, //no rotation 261 G4ThreeVecto << 271 G4ThreeVector(0.,0.,0.), //at (0,0,0) 262 fLogicWorld, << 272 fLogicWorld, //its logical volume 263 "World", // << 273 "World", //its name 264 0, // its m << 274 0, //its mother volume 265 false, // n << 275 false, //no boolean operation 266 0); // copy << 276 0); //copy number 267 << 277 268 // Absorber 278 // Absorber 269 // << 279 // 270 fSolidAbsorber = << 280 fSolidAbsorber = new G4Box("Absorber", 271 new G4Box("Absorber", fAbsorberThickness / << 281 fAbsorberThickness/2,fAbsorberSizeYZ/2,fAbsorberSizeYZ/2); 272 << 282 273 fLogicAbsorber = new G4LogicalVolume(fSolidA << 283 fLogicAbsorber = new G4LogicalVolume(fSolidAbsorber, //its solid 274 fAbsorb << 284 fAbsorberMaterial, //its material 275 "Absorb << 285 "Absorber"); //its name 276 << 286 277 fPhysiAbsorber = new G4PVPlacement(0, // no << 287 fPhysiAbsorber = new G4PVPlacement(0, //no rotation 278 G4ThreeVe << 288 G4ThreeVector(fXposAbs,0.,0.), //its position 279 fLogicAbs << 289 fLogicAbsorber, //its logical volume 280 "Absorber << 290 "Absorber", //its name 281 fLogicWor << 291 fLogicWorld, //its mother 282 false, / << 292 false, //no boulean operat 283 0); // c << 293 0); //copy number 284 << 294 285 PrintGeomParameters(); << 295 PrintGeomParameters(); 286 << 296 287 // always return the physical World << 297 //always return the physical World 288 // 298 // 289 return fPhysiWorld; 299 return fPhysiWorld; 290 } 300 } 291 301 292 //....oooOO0OOooo........oooOO0OOooo........oo 302 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 293 303 294 void DetectorConstruction::PrintGeomParameters 304 void DetectorConstruction::PrintGeomParameters() 295 { 305 { 296 G4cout << "\n" << fWorldMaterial << G4endl; << 306 G4cout << "\n" << fWorldMaterial << G4endl; 297 G4cout << "\n" << fAbsorberMaterial << G4end 307 G4cout << "\n" << fAbsorberMaterial << G4endl; 298 << 308 299 G4cout << "\n The WORLD is made of " << G << 309 G4cout << "\n The WORLD is made of " << G4BestUnit(fWorldSizeX,"Length") 300 << fWorldMaterial->GetName(); << 310 << " of " << fWorldMaterial->GetName(); 301 G4cout << ". The transverse size (YZ) of the << 311 G4cout << ". The transverse size (YZ) of the world is " 302 << G4endl; << 312 << G4BestUnit(fWorldSizeYZ,"Length") << G4endl; 303 G4cout << " The ABSORBER is made of " << G4B << 313 G4cout << " The ABSORBER is made of " 304 << fAbsorberMaterial->GetName(); << 314 <<G4BestUnit(fAbsorberThickness,"Length") 305 G4cout << ". The transverse size (YZ) is " < << 315 << " of " << fAbsorberMaterial->GetName(); 306 G4cout << " X position of the middle of the << 316 G4cout << ". The transverse size (YZ) is " >> 317 << G4BestUnit(fAbsorberSizeYZ,"Length") << G4endl; >> 318 G4cout << " X position of the middle of the absorber " >> 319 << G4BestUnit(fXposAbs,"Length"); 307 G4cout << G4endl; 320 G4cout << G4endl; 308 } 321 } 309 322 310 //....oooOO0OOooo........oooOO0OOooo........oo 323 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 311 324 312 void DetectorConstruction::SetAbsorberMaterial 325 void DetectorConstruction::SetAbsorberMaterial(const G4String& materialChoice) 313 { 326 { 314 // search the material by its name 327 // search the material by its name 315 G4Material* pttoMaterial = G4NistManager::In << 328 G4Material* pttoMaterial = >> 329 G4NistManager::Instance()->FindOrBuildMaterial(materialChoice); 316 330 317 if (pttoMaterial && fAbsorberMaterial != ptt 331 if (pttoMaterial && fAbsorberMaterial != pttoMaterial) { 318 fAbsorberMaterial = pttoMaterial; << 332 fAbsorberMaterial = pttoMaterial; 319 if (fLogicAbsorber) { << 333 if(fLogicAbsorber) { fLogicAbsorber->SetMaterial(fAbsorberMaterial); } 320 fLogicAbsorber->SetMaterial(fAbsorberMat << 321 } << 322 G4RunManager::GetRunManager()->PhysicsHasB 334 G4RunManager::GetRunManager()->PhysicsHasBeenModified(); 323 } 335 } 324 } 336 } 325 337 326 //....oooOO0OOooo........oooOO0OOooo........oo 338 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 327 339 328 void DetectorConstruction::SetWorldMaterial(co 340 void DetectorConstruction::SetWorldMaterial(const G4String& materialChoice) 329 { 341 { 330 // search the material by its name 342 // search the material by its name 331 G4Material* pttoMaterial = G4NistManager::In << 343 G4Material* pttoMaterial = >> 344 G4NistManager::Instance()->FindOrBuildMaterial(materialChoice); 332 345 333 if (pttoMaterial && fWorldMaterial != pttoMa 346 if (pttoMaterial && fWorldMaterial != pttoMaterial) { 334 fWorldMaterial = pttoMaterial; << 347 fWorldMaterial = pttoMaterial; 335 if (fLogicWorld) { << 348 if(fLogicWorld) { fLogicWorld->SetMaterial(fWorldMaterial); } 336 fLogicWorld->SetMaterial(fWorldMaterial) << 337 } << 338 G4RunManager::GetRunManager()->PhysicsHasB 349 G4RunManager::GetRunManager()->PhysicsHasBeenModified(); 339 } 350 } 340 } 351 } 341 << 352 342 //....oooOO0OOooo........oooOO0OOooo........oo 353 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 343 354 344 void DetectorConstruction::SetAbsorberThicknes 355 void DetectorConstruction::SetAbsorberThickness(G4double val) 345 { 356 { 346 fAbsorberThickness = val; 357 fAbsorberThickness = val; 347 ComputeGeomParameters(); 358 ComputeGeomParameters(); 348 } 359 } 349 360 350 //....oooOO0OOooo........oooOO0OOooo........oo 361 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 351 362 352 void DetectorConstruction::SetAbsorberSizeYZ(G 363 void DetectorConstruction::SetAbsorberSizeYZ(G4double val) 353 { 364 { 354 fAbsorberSizeYZ = val; 365 fAbsorberSizeYZ = val; 355 ComputeGeomParameters(); 366 ComputeGeomParameters(); 356 } 367 } 357 368 358 //....oooOO0OOooo........oooOO0OOooo........oo 369 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 359 370 360 void DetectorConstruction::SetWorldSizeX(G4dou 371 void DetectorConstruction::SetWorldSizeX(G4double val) 361 { 372 { 362 fWorldSizeX = val; 373 fWorldSizeX = val; 363 ComputeGeomParameters(); 374 ComputeGeomParameters(); 364 } 375 } 365 376 366 //....oooOO0OOooo........oooOO0OOooo........oo 377 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 367 378 368 void DetectorConstruction::SetWorldSizeYZ(G4do 379 void DetectorConstruction::SetWorldSizeYZ(G4double val) 369 { 380 { 370 fWorldSizeYZ = val; 381 fWorldSizeYZ = val; 371 ComputeGeomParameters(); 382 ComputeGeomParameters(); 372 } 383 } 373 384 374 //....oooOO0OOooo........oooOO0OOooo........oo 385 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 375 386 376 void DetectorConstruction::SetAbsorberXpos(G4d 387 void DetectorConstruction::SetAbsorberXpos(G4double val) 377 { 388 { 378 fXposAbs = val; 389 fXposAbs = val; 379 ComputeGeomParameters(); 390 ComputeGeomParameters(); 380 } << 391 } 381 392 382 //....oooOO0OOooo........oooOO0OOooo........oo 393 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo..... 383 394 384 void DetectorConstruction::ConstructSDandField 395 void DetectorConstruction::ConstructSDandField() 385 { 396 { 386 if (fFieldMessenger.Get() == 0) { << 397 if ( fFieldMessenger.Get() == 0 ) { 387 // Create global magnetic field messenger. 398 // Create global magnetic field messenger. 388 // Uniform magnetic field is then created 399 // Uniform magnetic field is then created automatically if 389 // the field value is not zero. 400 // the field value is not zero. 390 G4ThreeVector fieldValue = G4ThreeVector() 401 G4ThreeVector fieldValue = G4ThreeVector(); 391 G4GlobalMagFieldMessenger* msg = new G4Glo << 402 G4GlobalMagFieldMessenger* msg = 392 // msg->SetVerboseLevel(1); << 403 new G4GlobalMagFieldMessenger(fieldValue); >> 404 //msg->SetVerboseLevel(1); 393 G4AutoDelete::Register(msg); 405 G4AutoDelete::Register(msg); 394 fFieldMessenger.Put(msg); << 406 fFieldMessenger.Put( msg ); 395 } 407 } 396 } 408 } 397 409 398 //....oooOO0OOooo........oooOO0OOooo........oo 410 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 399 411 400 void DetectorConstruction::ChangeGeometry() 412 void DetectorConstruction::ChangeGeometry() 401 { 413 { 402 fSolidWorld->SetXHalfLength(fWorldSizeX * 0. << 414 fSolidWorld->SetXHalfLength(fWorldSizeX*0.5); 403 fSolidWorld->SetYHalfLength(fWorldSizeYZ * 0 << 415 fSolidWorld->SetYHalfLength(fWorldSizeYZ*0.5); 404 fSolidWorld->SetZHalfLength(fWorldSizeYZ * 0 << 416 fSolidWorld->SetZHalfLength(fWorldSizeYZ*0.5); 405 << 417 406 fSolidAbsorber->SetXHalfLength(fAbsorberThic << 418 fSolidAbsorber->SetXHalfLength(fAbsorberThickness*0.5); 407 fSolidAbsorber->SetYHalfLength(fAbsorberSize << 419 fSolidAbsorber->SetYHalfLength(fAbsorberSizeYZ*0.5); 408 fSolidAbsorber->SetZHalfLength(fAbsorberSize << 420 fSolidAbsorber->SetZHalfLength(fAbsorberSizeYZ*0.5); 409 } 421 } 410 422 411 //....oooOO0OOooo........oooOO0OOooo........oo 423 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 424 412 425