Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 /// \file electromagnetic/TestEm5/src/Detector 26 /// \file electromagnetic/TestEm5/src/DetectorConstruction.cc 27 /// \brief Implementation of the DetectorConst 27 /// \brief Implementation of the DetectorConstruction class 28 // 28 // 29 // 29 // 30 //....oooOO0OOooo........oooOO0OOooo........oo 30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 31 //....oooOO0OOooo........oooOO0OOooo........oo 31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 32 32 33 #include "DetectorConstruction.hh" 33 #include "DetectorConstruction.hh" 34 << 35 #include "DetectorMessenger.hh" 34 #include "DetectorMessenger.hh" 36 35 37 #include "G4AutoDelete.hh" << 36 #include "G4Material.hh" 38 #include "G4Box.hh" 37 #include "G4Box.hh" 39 #include "G4GeometryManager.hh" << 40 #include "G4GlobalMagFieldMessenger.hh" << 41 #include "G4LogicalVolume.hh" 38 #include "G4LogicalVolume.hh" 42 #include "G4LogicalVolumeStore.hh" << 43 #include "G4Material.hh" << 44 #include "G4NistManager.hh" << 45 #include "G4PVPlacement.hh" 39 #include "G4PVPlacement.hh" 46 #include "G4PhysicalConstants.hh" << 40 #include "G4UniformMagField.hh" >> 41 >> 42 #include "G4GeometryManager.hh" 47 #include "G4PhysicalVolumeStore.hh" 43 #include "G4PhysicalVolumeStore.hh" 48 #include "G4RunManager.hh" << 44 #include "G4LogicalVolumeStore.hh" 49 #include "G4SolidStore.hh" 45 #include "G4SolidStore.hh" 50 #include "G4SystemOfUnits.hh" << 46 51 #include "G4UniformMagField.hh" << 52 #include "G4UnitsTable.hh" 47 #include "G4UnitsTable.hh" >> 48 #include "G4NistManager.hh" >> 49 #include "G4RunManager.hh" >> 50 >> 51 #include "G4PhysicalConstants.hh" >> 52 #include "G4SystemOfUnits.hh" >> 53 >> 54 #include "G4GlobalMagFieldMessenger.hh" >> 55 #include "G4AutoDelete.hh" 53 56 54 //....oooOO0OOooo........oooOO0OOooo........oo 57 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 55 58 56 DetectorConstruction::DetectorConstruction() 59 DetectorConstruction::DetectorConstruction() >> 60 : G4VUserDetectorConstruction(), >> 61 fAbsorberMaterial(nullptr),fWorldMaterial(nullptr),fDefaultWorld(true), >> 62 fSolidWorld(nullptr),fLogicWorld(nullptr),fPhysiWorld(nullptr), >> 63 fSolidAbsorber(nullptr),fLogicAbsorber(nullptr),fPhysiAbsorber(nullptr), >> 64 fDetectorMessenger(nullptr) 57 { 65 { 58 // default parameter values of the calorimet 66 // default parameter values of the calorimeter 59 fAbsorberThickness = 1. * cm; << 67 fAbsorberThickness = 1.*cm; 60 fAbsorberSizeYZ = 2. * cm; << 68 fAbsorberSizeYZ = 2.*cm; 61 fXposAbs = 0. * cm; << 69 fXposAbs = 0.*cm; 62 ComputeGeomParameters(); 70 ComputeGeomParameters(); 63 << 71 64 // materials << 72 // materials 65 DefineMaterials(); 73 DefineMaterials(); 66 SetWorldMaterial("G4_Galactic"); << 74 SetWorldMaterial ("G4_Galactic"); 67 SetAbsorberMaterial("G4_Si"); 75 SetAbsorberMaterial("G4_Si"); 68 << 76 69 // create commands for interactive definitio << 77 // create commands for interactive definition of the calorimeter 70 fDetectorMessenger = new DetectorMessenger(t 78 fDetectorMessenger = new DetectorMessenger(this); 71 } 79 } 72 80 73 //....oooOO0OOooo........oooOO0OOooo........oo 81 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 74 82 75 DetectorConstruction::~DetectorConstruction() 83 DetectorConstruction::~DetectorConstruction() 76 { << 84 { 77 delete fDetectorMessenger; 85 delete fDetectorMessenger; 78 } 86 } 79 87 80 //....oooOO0OOooo........oooOO0OOooo........oo 88 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 81 89 82 void DetectorConstruction::DefineMaterials() 90 void DetectorConstruction::DefineMaterials() 83 { << 91 { 84 // This function illustrates the possible wa << 92 //This function illustrates the possible ways to define materials 85 << 93 86 G4String symbol; // a=mass of a mole; << 94 G4String symbol; //a=mass of a mole; 87 G4double a, z, density; // z=mean number of << 95 G4double a, z, density; //z=mean number of protons; 88 96 89 G4int ncomponents, natoms; 97 G4int ncomponents, natoms; 90 G4double fractionmass; 98 G4double fractionmass; 91 G4double temperature, pressure; 99 G4double temperature, pressure; 92 << 100 93 // 101 // 94 // define Elements 102 // define Elements 95 // 103 // 96 104 97 G4Element* H = new G4Element("Hydrogen", sym << 105 G4Element* H = new G4Element("Hydrogen",symbol="H", z= 1, a= 1.01*g/mole); 98 G4Element* C = new G4Element("Carbon", symbo << 106 G4Element* C = new G4Element("Carbon", symbol="C", z= 6, a= 12.01*g/mole); 99 G4Element* N = new G4Element("Nitrogen", sym << 107 G4Element* N = new G4Element("Nitrogen",symbol="N", z= 7, a= 14.01*g/mole); 100 G4Element* O = new G4Element("Oxygen", symbo << 108 G4Element* O = new G4Element("Oxygen", symbol="O", z= 8, a= 16.00*g/mole); 101 G4Element* Na = new G4Element("Sodium", symb << 109 G4Element* Na = new G4Element("Sodium", symbol="Na", z=11, a= 22.99*g/mole); 102 G4Element* Ar = new G4Element("Argon", symbo << 110 G4Element* Ar = new G4Element("Argon", symbol="Ar", z=18, a= 39.95*g/mole); 103 G4Element* I = new G4Element("Iodine", symbo << 111 G4Element* I = new G4Element("Iodine", symbol="I" , z=53, a= 126.90*g/mole); 104 G4Element* Xe = new G4Element("Xenon", symbo << 112 G4Element* Xe = new G4Element("Xenon", symbol="Xe", z=54, a= 131.29*g/mole); 105 113 106 // 114 // 107 // define simple materials 115 // define simple materials 108 // 116 // 109 117 110 new G4Material("H2Liq", z = 1, a = 1.01 * g << 118 new G4Material("H2Liq" , z= 1, a= 1.01*g/mole, density= 70.8*mg/cm3); 111 new G4Material("Beryllium", z = 4, a = 9.01 << 119 new G4Material("Beryllium", z= 4, a= 9.01*g/mole, density= 1.848*g/cm3); 112 new G4Material("Aluminium", z = 13, a = 26.9 << 120 new G4Material("Aluminium", z=13, a=26.98*g/mole, density= 2.700*g/cm3); 113 new G4Material("Silicon", z = 14, a = 28.09 << 121 new G4Material("Silicon" , z=14, a=28.09*g/mole, density= 2.330*g/cm3); 114 << 122 115 G4Material* lAr = new G4Material("liquidArgo << 123 G4Material* lAr = 116 lAr->AddElement(Ar, natoms = 1); << 124 new G4Material("liquidArgon", density= 1.390*g/cm3, ncomponents=1); 117 << 125 lAr->AddElement(Ar, natoms=1); 118 new G4Material("Iron", z = 26, a = 55.85 * g << 126 119 new G4Material("Copper", z = 29, a = 63.55 * << 127 new G4Material("Iron", z=26, a= 55.85*g/mole, density= 7.870*g/cm3); 120 new G4Material("Germanium", z = 32, a = 72.6 << 128 new G4Material("Copper", z=29, a= 63.55*g/mole, density= 8.960*g/cm3); 121 new G4Material("Silver", z = 47, a = 107.87 << 129 new G4Material("Germanium",z=32, a= 72.61*g/mole, density= 5.323*g/cm3); 122 new G4Material("Tungsten", z = 74, a = 183.8 << 130 new G4Material("Silver", z=47, a=107.87*g/mole, density= 10.50*g/cm3); 123 new G4Material("Gold", z = 79, a = 196.97 * << 131 new G4Material("Tungsten", z=74, a=183.85*g/mole, density= 19.30*g/cm3); 124 new G4Material("Lead", z = 82, a = 207.19 * << 132 new G4Material("Gold", z=79, a=196.97*g/mole, density= 19.32*g/cm3); >> 133 new G4Material("Lead", z=82, a=207.19*g/mole, density= 11.35*g/cm3); 125 134 126 // 135 // 127 // define a material from elements. case 1 136 // define a material from elements. case 1: chemical molecule 128 // 137 // 129 138 130 G4Material* H2O = new G4Material("Water", de << 139 G4Material* H2O = new G4Material("Water",density= 1.000*g/cm3,ncomponents=2); 131 H2O->AddElement(H, natoms = 2); << 140 H2O->AddElement(H, natoms=2); 132 H2O->AddElement(O, natoms = 1); << 141 H2O->AddElement(O, natoms=1); 133 H2O->GetIonisation()->SetMeanExcitationEnerg << 142 H2O->GetIonisation()->SetMeanExcitationEnergy(78*eV); 134 << 143 135 G4Material* CH = new G4Material("Plastic", d << 144 G4Material* CH = new G4Material("Plastic",density= 1.04*g/cm3,ncomponents=2); 136 CH->AddElement(C, natoms = 1); << 145 CH->AddElement(C, natoms=1); 137 CH->AddElement(H, natoms = 1); << 146 CH->AddElement(H, natoms=1); 138 << 147 139 G4Material* NaI = new G4Material("NaI", dens << 148 G4Material* NaI = new G4Material("NaI", density= 3.67*g/cm3, ncomponents=2); 140 NaI->AddElement(Na, natoms = 1); << 149 NaI->AddElement(Na, natoms=1); 141 NaI->AddElement(I, natoms = 1); << 150 NaI->AddElement(I , natoms=1); 142 NaI->GetIonisation()->SetMeanExcitationEnerg << 151 NaI->GetIonisation()->SetMeanExcitationEnergy(452*eV); 143 152 144 // 153 // 145 // define a material from elements. case 2 154 // define a material from elements. case 2: mixture by fractional mass 146 // 155 // 147 156 148 G4Material* Air = new G4Material("Air", dens << 157 G4Material* Air = new G4Material("Air", density= 1.290*mg/cm3, ncomponents=2); 149 Air->AddElement(N, fractionmass = 0.7); << 158 Air->AddElement(N, fractionmass=0.7); 150 Air->AddElement(O, fractionmass = 0.3); << 159 Air->AddElement(O, fractionmass=0.3); 151 << 160 152 G4Material* Air20 = new G4Material("Air20", << 161 G4Material* Air20 = 153 kStateGas << 162 new G4Material("Air20", density= 1.205*mg/cm3, ncomponents=2, 154 Air20->AddElement(N, fractionmass = 0.7); << 163 kStateGas, 293.*kelvin, 1.*atmosphere); 155 Air20->AddElement(O, fractionmass = 0.3); << 164 Air20->AddElement(N, fractionmass=0.7); 156 << 165 Air20->AddElement(O, fractionmass=0.3); 157 // Graphite << 166 158 // << 167 //Graphite 159 G4Material* Graphite = new G4Material("Graph << 168 // 160 Graphite->AddElement(C, fractionmass = 1.); << 169 G4Material* Graphite = 161 << 170 new G4Material("Graphite", density= 1.7*g/cm3, ncomponents=1); 162 // Havar << 171 Graphite->AddElement(C, fractionmass=1.); 163 // << 172 164 G4Element* Cr = new G4Element("Chrome", "Cr" << 173 //Havar 165 G4Element* Fe = new G4Element("Iron", "Fe", << 174 // 166 G4Element* Co = new G4Element("Cobalt", "Co" << 175 G4Element* Cr = new G4Element("Chrome", "Cr", z=24, a= 51.996*g/mole); 167 G4Element* Ni = new G4Element("Nickel", "Ni" << 176 G4Element* Fe = new G4Element("Iron" , "Fe", z=26, a= 55.845*g/mole); 168 G4Element* W = new G4Element("Tungsten", "W" << 177 G4Element* Co = new G4Element("Cobalt", "Co", z=27, a= 58.933*g/mole); 169 << 178 G4Element* Ni = new G4Element("Nickel", "Ni", z=28, a= 58.693*g/mole); 170 G4Material* Havar = new G4Material("Havar", << 179 G4Element* W = new G4Element("Tungsten","W", z=74, a= 183.850*g/mole); 171 Havar->AddElement(Cr, fractionmass = 0.1785) << 180 172 Havar->AddElement(Fe, fractionmass = 0.1822) << 181 G4Material* Havar = 173 Havar->AddElement(Co, fractionmass = 0.4452) << 182 new G4Material("Havar", density= 8.3*g/cm3, ncomponents=5); 174 Havar->AddElement(Ni, fractionmass = 0.1310) << 183 Havar->AddElement(Cr, fractionmass=0.1785); 175 Havar->AddElement(W, fractionmass = 0.0631); << 184 Havar->AddElement(Fe, fractionmass=0.1822); >> 185 Havar->AddElement(Co, fractionmass=0.4452); >> 186 Havar->AddElement(Ni, fractionmass=0.1310); >> 187 Havar->AddElement(W , fractionmass=0.0631); 176 188 177 // 189 // 178 // examples of gas 190 // examples of gas 179 // << 191 // 180 new G4Material("ArgonGas", z = 18, a = 39.94 << 192 new G4Material("ArgonGas", z=18, a=39.948*g/mole, density= 1.782*mg/cm3, 181 273.15 * kelvin, 1 * atmosphe << 193 kStateGas, 273.15*kelvin, 1*atmosphere); >> 194 >> 195 new G4Material("XenonGas", z=54, a=131.29*g/mole, density= 5.458*mg/cm3, >> 196 kStateGas, 293.15*kelvin, 1*atmosphere); >> 197 >> 198 G4Material* CO2 = >> 199 new G4Material("CarbonicGas", density= 1.977*mg/cm3, ncomponents=2); >> 200 CO2->AddElement(C, natoms=1); >> 201 CO2->AddElement(O, natoms=2); >> 202 >> 203 G4Material* ArCO2 = >> 204 new G4Material("ArgonCO2", density= 1.8223*mg/cm3, ncomponents=2); >> 205 ArCO2->AddElement (Ar, fractionmass=0.7844); >> 206 ArCO2->AddMaterial(CO2, fractionmass=0.2156); 182 207 183 new G4Material("XenonGas", z = 54, a = 131.2 << 208 //another way to define mixture of gas per volume 184 293.15 * kelvin, 1 * atmosphe << 185 << 186 G4Material* CO2 = new G4Material("CarbonicGa << 187 CO2->AddElement(C, natoms = 1); << 188 CO2->AddElement(O, natoms = 2); << 189 << 190 G4Material* ArCO2 = new G4Material("ArgonCO2 << 191 ArCO2->AddElement(Ar, fractionmass = 0.7844) << 192 ArCO2->AddMaterial(CO2, fractionmass = 0.215 << 193 << 194 // another way to define mixture of gas per << 195 G4Material* NewArCO2 = 209 G4Material* NewArCO2 = 196 new G4Material("NewArgonCO2", density = 1. << 210 new G4Material("NewArgonCO2", density= 1.8223*mg/cm3, ncomponents=3); 197 NewArCO2->AddElement(Ar, natoms = 8); << 211 NewArCO2->AddElement (Ar, natoms=8); 198 NewArCO2->AddElement(C, natoms = 2); << 212 NewArCO2->AddElement (C, natoms=2); 199 NewArCO2->AddElement(O, natoms = 4); << 213 NewArCO2->AddElement (O, natoms=4); 200 << 214 201 G4Material* ArCH4 = new G4Material("ArgonCH4 << 215 G4Material* ArCH4 = 202 ArCH4->AddElement(Ar, natoms = 93); << 216 new G4Material("ArgonCH4", density= 1.709*mg/cm3, ncomponents=3); 203 ArCH4->AddElement(C, natoms = 7); << 217 ArCH4->AddElement (Ar, natoms=93); 204 ArCH4->AddElement(H, natoms = 28); << 218 ArCH4->AddElement (C, natoms=7); 205 << 219 ArCH4->AddElement (H, natoms=28); 206 G4Material* XeCH = new G4Material("XenonMeth << 220 207 ncomponent << 221 G4Material* XeCH = 208 XeCH->AddElement(Xe, natoms = 875); << 222 new G4Material("XenonMethanePropane", density= 4.9196*mg/cm3, ncomponents=3, 209 XeCH->AddElement(C, natoms = 225); << 223 kStateGas, 293.15*kelvin, 1*atmosphere); 210 XeCH->AddElement(H, natoms = 700); << 224 XeCH->AddElement (Xe, natoms=875); 211 << 225 XeCH->AddElement (C, natoms=225); 212 G4Material* steam = new G4Material("WaterSte << 226 XeCH->AddElement (H, natoms=700); 213 steam->AddMaterial(H2O, fractionmass = 1.); << 227 214 steam->GetIonisation()->SetMeanExcitationEne << 228 G4Material* steam = >> 229 new G4Material("WaterSteam", density= 1.0*mg/cm3, ncomponents=1); >> 230 steam->AddMaterial(H2O, fractionmass=1.); >> 231 steam->GetIonisation()->SetMeanExcitationEnergy(71.6*eV); 215 232 216 G4Material* rock1 = new G4Material("Standard << 233 G4Material* rock1 = new G4Material("StandardRock", >> 234 2.65*CLHEP::g/CLHEP::cm3, 1, kStateSolid); 217 rock1->AddElement(Na, 1); 235 rock1->AddElement(Na, 1); 218 236 219 // 237 // 220 // example of vacuum 238 // example of vacuum 221 // 239 // 222 density = universe_mean_density; // from Ph << 240 density = universe_mean_density; //from PhysicalConstants.h 223 pressure = 3.e-18 * pascal; << 241 pressure = 3.e-18*pascal; 224 temperature = 2.73 * kelvin; << 242 temperature = 2.73*kelvin; 225 new G4Material("Galactic", z = 1, a = 1.01 * << 243 new G4Material("Galactic", z=1, a=1.01*g/mole,density, >> 244 kStateGas,temperature,pressure); 226 } 245 } 227 246 228 //....oooOO0OOooo........oooOO0OOooo........oo 247 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 229 248 230 void DetectorConstruction::ComputeGeomParamete 249 void DetectorConstruction::ComputeGeomParameters() 231 { 250 { 232 // Compute derived parameters of the calorim 251 // Compute derived parameters of the calorimeter 233 fXstartAbs = fXposAbs - 0.5 * fAbsorberThick << 252 fXstartAbs = fXposAbs-0.5*fAbsorberThickness; 234 fXendAbs = fXposAbs + 0.5 * fAbsorberThickne << 253 fXendAbs = fXposAbs+0.5*fAbsorberThickness; 235 254 236 G4double xmax = std::max(std::abs(fXstartAbs 255 G4double xmax = std::max(std::abs(fXstartAbs), std::abs(fXendAbs)); 237 fWorldSizeX = 2.4 * xmax; << 256 238 fWorldSizeYZ = 1.2 * fAbsorberSizeYZ; << 257 // change world size by the flag or if the absorber is large 239 if (nullptr != fPhysiWorld) { << 258 if (fDefaultWorld || 2*xmax >= fWorldSizeX || 240 ChangeGeometry(); << 259 fAbsorberSizeYZ >= fWorldSizeYZ) 241 } << 260 { >> 261 fWorldSizeX = 3*xmax; >> 262 fWorldSizeYZ= 1.2*fAbsorberSizeYZ; >> 263 } 242 } 264 } 243 265 244 //....oooOO0OOooo........oooOO0OOooo........oo 266 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 245 << 267 246 G4VPhysicalVolume* DetectorConstruction::Const 268 G4VPhysicalVolume* DetectorConstruction::Construct() 247 { << 269 { 248 if (nullptr != fPhysiWorld) { << 270 if(fPhysiWorld) { return fPhysiWorld; } 249 return fPhysiWorld; << 250 } << 251 // World 271 // World 252 // 272 // 253 fSolidWorld = new G4Box("World", // its nam << 273 fSolidWorld = new G4Box("World", //its name 254 fWorldSizeX / 2, fWo << 274 fWorldSizeX/2,fWorldSizeYZ/2,fWorldSizeYZ/2); //its size 255 << 275 256 fLogicWorld = new G4LogicalVolume(fSolidWorl << 276 fLogicWorld = new G4LogicalVolume(fSolidWorld, //its solid 257 fWorldMate << 277 fWorldMaterial, //its material 258 "World"); << 278 "World"); //its name 259 << 279 260 fPhysiWorld = new G4PVPlacement(0, // no ro << 280 fPhysiWorld = new G4PVPlacement(0, //no rotation 261 G4ThreeVecto << 281 G4ThreeVector(0.,0.,0.), //at (0,0,0) 262 fLogicWorld, << 282 fLogicWorld, //its logical volume 263 "World", // << 283 "World", //its name 264 0, // its m << 284 0, //its mother volume 265 false, // n << 285 false, //no boolean operation 266 0); // copy << 286 0); //copy number 267 << 287 268 // Absorber 288 // Absorber 269 // << 289 // 270 fSolidAbsorber = << 290 fSolidAbsorber = new G4Box("Absorber", 271 new G4Box("Absorber", fAbsorberThickness / << 291 fAbsorberThickness/2,fAbsorberSizeYZ/2,fAbsorberSizeYZ/2); 272 << 292 273 fLogicAbsorber = new G4LogicalVolume(fSolidA << 293 fLogicAbsorber = new G4LogicalVolume(fSolidAbsorber, //its solid 274 fAbsorb << 294 fAbsorberMaterial, //its material 275 "Absorb << 295 "Absorber"); //its name 276 << 296 277 fPhysiAbsorber = new G4PVPlacement(0, // no << 297 fPhysiAbsorber = new G4PVPlacement(0, //no rotation 278 G4ThreeVe << 298 G4ThreeVector(fXposAbs,0.,0.), //its position 279 fLogicAbs << 299 fLogicAbsorber, //its logical volume 280 "Absorber << 300 "Absorber", //its name 281 fLogicWor << 301 fLogicWorld, //its mother 282 false, / << 302 false, //no boulean operat 283 0); // c << 303 0); //copy number 284 << 304 285 PrintGeomParameters(); << 305 PrintGeomParameters(); 286 << 306 287 // always return the physical World << 307 //always return the physical World 288 // 308 // 289 return fPhysiWorld; 309 return fPhysiWorld; 290 } 310 } 291 311 292 //....oooOO0OOooo........oooOO0OOooo........oo 312 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 293 313 294 void DetectorConstruction::PrintGeomParameters 314 void DetectorConstruction::PrintGeomParameters() 295 { 315 { 296 G4cout << "\n" << fWorldMaterial << G4endl; << 316 G4cout << "\n" << fWorldMaterial << G4endl; 297 G4cout << "\n" << fAbsorberMaterial << G4end 317 G4cout << "\n" << fAbsorberMaterial << G4endl; 298 << 318 299 G4cout << "\n The WORLD is made of " << G << 319 G4cout << "\n The WORLD is made of " << G4BestUnit(fWorldSizeX,"Length") 300 << fWorldMaterial->GetName(); << 320 << " of " << fWorldMaterial->GetName(); 301 G4cout << ". The transverse size (YZ) of the << 321 G4cout << ". The transverse size (YZ) of the world is " 302 << G4endl; << 322 << G4BestUnit(fWorldSizeYZ,"Length") << G4endl; 303 G4cout << " The ABSORBER is made of " << G4B << 323 G4cout << " The ABSORBER is made of " 304 << fAbsorberMaterial->GetName(); << 324 <<G4BestUnit(fAbsorberThickness,"Length") 305 G4cout << ". The transverse size (YZ) is " < << 325 << " of " << fAbsorberMaterial->GetName(); 306 G4cout << " X position of the middle of the << 326 G4cout << ". The transverse size (YZ) is " >> 327 << G4BestUnit(fAbsorberSizeYZ,"Length") << G4endl; >> 328 G4cout << " X position of the middle of the absorber " >> 329 << G4BestUnit(fXposAbs,"Length"); 307 G4cout << G4endl; 330 G4cout << G4endl; 308 } 331 } 309 332 310 //....oooOO0OOooo........oooOO0OOooo........oo 333 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 311 334 312 void DetectorConstruction::SetAbsorberMaterial 335 void DetectorConstruction::SetAbsorberMaterial(const G4String& materialChoice) 313 { 336 { 314 // search the material by its name 337 // search the material by its name 315 G4Material* pttoMaterial = G4NistManager::In << 338 G4Material* pttoMaterial = >> 339 G4NistManager::Instance()->FindOrBuildMaterial(materialChoice); 316 340 317 if (pttoMaterial && fAbsorberMaterial != ptt 341 if (pttoMaterial && fAbsorberMaterial != pttoMaterial) { 318 fAbsorberMaterial = pttoMaterial; << 342 fAbsorberMaterial = pttoMaterial; 319 if (fLogicAbsorber) { << 343 if(fLogicAbsorber) { fLogicAbsorber->SetMaterial(fAbsorberMaterial); } 320 fLogicAbsorber->SetMaterial(fAbsorberMat << 321 } << 322 G4RunManager::GetRunManager()->PhysicsHasB 344 G4RunManager::GetRunManager()->PhysicsHasBeenModified(); 323 } 345 } 324 } 346 } 325 347 326 //....oooOO0OOooo........oooOO0OOooo........oo 348 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 327 349 328 void DetectorConstruction::SetWorldMaterial(co 350 void DetectorConstruction::SetWorldMaterial(const G4String& materialChoice) 329 { 351 { 330 // search the material by its name 352 // search the material by its name 331 G4Material* pttoMaterial = G4NistManager::In << 353 G4Material* pttoMaterial = >> 354 G4NistManager::Instance()->FindOrBuildMaterial(materialChoice); 332 355 333 if (pttoMaterial && fWorldMaterial != pttoMa 356 if (pttoMaterial && fWorldMaterial != pttoMaterial) { 334 fWorldMaterial = pttoMaterial; << 357 fWorldMaterial = pttoMaterial; 335 if (fLogicWorld) { << 358 if(fLogicWorld) { fLogicWorld->SetMaterial(fWorldMaterial); } 336 fLogicWorld->SetMaterial(fWorldMaterial) << 337 } << 338 G4RunManager::GetRunManager()->PhysicsHasB 359 G4RunManager::GetRunManager()->PhysicsHasBeenModified(); 339 } 360 } 340 } 361 } 341 << 362 342 //....oooOO0OOooo........oooOO0OOooo........oo 363 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 343 364 344 void DetectorConstruction::SetAbsorberThicknes 365 void DetectorConstruction::SetAbsorberThickness(G4double val) 345 { 366 { 346 fAbsorberThickness = val; 367 fAbsorberThickness = val; 347 ComputeGeomParameters(); 368 ComputeGeomParameters(); >> 369 if(fPhysiWorld) { ChangeGeometry(); } 348 } 370 } 349 371 350 //....oooOO0OOooo........oooOO0OOooo........oo 372 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 351 373 352 void DetectorConstruction::SetAbsorberSizeYZ(G 374 void DetectorConstruction::SetAbsorberSizeYZ(G4double val) 353 { 375 { 354 fAbsorberSizeYZ = val; 376 fAbsorberSizeYZ = val; 355 ComputeGeomParameters(); 377 ComputeGeomParameters(); >> 378 if(fPhysiWorld) { ChangeGeometry(); } 356 } 379 } 357 380 358 //....oooOO0OOooo........oooOO0OOooo........oo 381 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 359 382 360 void DetectorConstruction::SetWorldSizeX(G4dou 383 void DetectorConstruction::SetWorldSizeX(G4double val) 361 { 384 { 362 fWorldSizeX = val; 385 fWorldSizeX = val; >> 386 fDefaultWorld = false; 363 ComputeGeomParameters(); 387 ComputeGeomParameters(); >> 388 if(fPhysiWorld) { ChangeGeometry(); } 364 } 389 } 365 390 366 //....oooOO0OOooo........oooOO0OOooo........oo 391 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 367 392 368 void DetectorConstruction::SetWorldSizeYZ(G4do 393 void DetectorConstruction::SetWorldSizeYZ(G4double val) 369 { 394 { 370 fWorldSizeYZ = val; 395 fWorldSizeYZ = val; >> 396 fDefaultWorld = false; 371 ComputeGeomParameters(); 397 ComputeGeomParameters(); >> 398 if(fPhysiWorld) { ChangeGeometry(); } 372 } 399 } 373 400 374 //....oooOO0OOooo........oooOO0OOooo........oo 401 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 375 402 376 void DetectorConstruction::SetAbsorberXpos(G4d 403 void DetectorConstruction::SetAbsorberXpos(G4double val) 377 { 404 { 378 fXposAbs = val; << 405 if(!fPhysiWorld) { fXposAbs = val; } 379 ComputeGeomParameters(); << 406 } 380 } << 381 407 382 //....oooOO0OOooo........oooOO0OOooo........oo 408 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo..... 383 409 384 void DetectorConstruction::ConstructSDandField 410 void DetectorConstruction::ConstructSDandField() 385 { 411 { 386 if (fFieldMessenger.Get() == 0) { << 412 if ( fFieldMessenger.Get() == 0 ) { 387 // Create global magnetic field messenger. 413 // Create global magnetic field messenger. 388 // Uniform magnetic field is then created 414 // Uniform magnetic field is then created automatically if 389 // the field value is not zero. 415 // the field value is not zero. 390 G4ThreeVector fieldValue = G4ThreeVector() 416 G4ThreeVector fieldValue = G4ThreeVector(); 391 G4GlobalMagFieldMessenger* msg = new G4Glo << 417 G4GlobalMagFieldMessenger* msg = 392 // msg->SetVerboseLevel(1); << 418 new G4GlobalMagFieldMessenger(fieldValue); >> 419 //msg->SetVerboseLevel(1); 393 G4AutoDelete::Register(msg); 420 G4AutoDelete::Register(msg); 394 fFieldMessenger.Put(msg); << 421 fFieldMessenger.Put( msg ); 395 } 422 } 396 } 423 } 397 424 398 //....oooOO0OOooo........oooOO0OOooo........oo 425 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 399 426 400 void DetectorConstruction::ChangeGeometry() 427 void DetectorConstruction::ChangeGeometry() 401 { 428 { 402 fSolidWorld->SetXHalfLength(fWorldSizeX * 0. << 429 fSolidWorld->SetXHalfLength(fWorldSizeX*0.5); 403 fSolidWorld->SetYHalfLength(fWorldSizeYZ * 0 << 430 fSolidWorld->SetYHalfLength(fWorldSizeYZ*0.5); 404 fSolidWorld->SetZHalfLength(fWorldSizeYZ * 0 << 431 fSolidWorld->SetZHalfLength(fWorldSizeYZ*0.5); 405 << 432 406 fSolidAbsorber->SetXHalfLength(fAbsorberThic << 433 fSolidAbsorber->SetXHalfLength(fAbsorberThickness*0.5); 407 fSolidAbsorber->SetYHalfLength(fAbsorberSize << 434 fSolidAbsorber->SetYHalfLength(fAbsorberSizeYZ*0.5); 408 fSolidAbsorber->SetZHalfLength(fAbsorberSize << 435 fSolidAbsorber->SetZHalfLength(fAbsorberSizeYZ*0.5); 409 } 436 } 410 437 411 //....oooOO0OOooo........oooOO0OOooo........oo 438 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 439 412 440