Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 /// \file electromagnetic/TestEm3/src/Run.cc 26 /// \file electromagnetic/TestEm3/src/Run.cc 27 /// \brief Implementation of the Run class 27 /// \brief Implementation of the Run class 28 // 28 // 29 // << 29 // 30 //....oooOO0OOooo........oooOO0OOooo........oo 30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 31 //....oooOO0OOooo........oooOO0OOooo........oo 31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 32 32 33 #include "Run.hh" 33 #include "Run.hh" 34 << 35 #include "DetectorConstruction.hh" 34 #include "DetectorConstruction.hh" 36 #include "EmAcceptance.hh" << 37 #include "HistoManager.hh" << 38 #include "PrimaryGeneratorAction.hh" 35 #include "PrimaryGeneratorAction.hh" >> 36 #include "HistoManager.hh" >> 37 #include "EmAcceptance.hh" 39 38 40 #include "G4Electron.hh" << 41 #include "G4Gamma.hh" << 42 #include "G4ParticleDefinition.hh" << 43 #include "G4ParticleTable.hh" 39 #include "G4ParticleTable.hh" 44 #include "G4Positron.hh" << 40 #include "G4ParticleDefinition.hh" 45 #include "G4SystemOfUnits.hh" << 46 #include "G4Track.hh" 41 #include "G4Track.hh" >> 42 #include "G4Gamma.hh" >> 43 #include "G4Electron.hh" >> 44 #include "G4Positron.hh" >> 45 47 #include "G4UnitsTable.hh" 46 #include "G4UnitsTable.hh" >> 47 #include "G4SystemOfUnits.hh" 48 48 49 #include <iomanip> 49 #include <iomanip> 50 50 51 //....oooOO0OOooo........oooOO0OOooo........oo 51 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 52 52 53 Run::Run(DetectorConstruction* det) : fDetecto << 53 Run::Run(DetectorConstruction* det) >> 54 : G4Run(), >> 55 fDetector(det), >> 56 fParticle(nullptr), fEkin(0.), >> 57 fChargedStep(0), fNeutralStep(0), >> 58 fN_gamma(0), fN_elec(0), fN_pos(0), >> 59 fApplyLimit(false) 54 { 60 { 55 // initialize cumulative quantities << 61 //initialize cumulative quantities 56 // 62 // 57 for (G4int k = 0; k < kMaxAbsor; k++) { << 63 for (G4int k=0; k<kMaxAbsor; k++) { 58 fSumEAbs[k] = fSum2EAbs[k] = fSumLAbs[k] = << 64 fSumEAbs[k] = fSum2EAbs[k] = fSumLAbs[k] = fSum2LAbs[k] = 0.; 59 fEnergyDeposit[k].clear(); 65 fEnergyDeposit[k].clear(); 60 fEdeptrue[k] = fRmstrue[k] = 1.; 66 fEdeptrue[k] = fRmstrue[k] = 1.; 61 fLimittrue[k] = DBL_MAX; << 67 fLimittrue[k] = DBL_MAX; 62 } 68 } 63 << 69 64 fEdepTot = fEdepTot2 = 0.; << 70 //initialize Eflow 65 fEleakTot = fEleakTot2 = 0.; << 66 fEtotal = fEtotal2 = 0.; << 67 << 68 // initialize Eflow << 69 // 71 // 70 G4int nbPlanes = (fDetector->GetNbOfLayers() << 72 G4int nbPlanes = (fDetector->GetNbOfLayers())*(fDetector->GetNbOfAbsor()) + 2; 71 fEnergyFlow.resize(nbPlanes); 73 fEnergyFlow.resize(nbPlanes); 72 fLateralEleak.resize(nbPlanes); 74 fLateralEleak.resize(nbPlanes); 73 for (G4int k = 0; k < nbPlanes; k++) { << 75 for (G4int k=0; k<nbPlanes; k++) {fEnergyFlow[k] = fLateralEleak[k] = 0.; } 74 fEnergyFlow[k] = fLateralEleak[k] = 0.; << 75 } << 76 } 76 } 77 77 78 //....oooOO0OOooo........oooOO0OOooo........oo 78 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 79 79 >> 80 Run::~Run() >> 81 { } >> 82 >> 83 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 84 80 void Run::SetPrimary(G4ParticleDefinition* par 85 void Run::SetPrimary(G4ParticleDefinition* particle, G4double energy) 81 { << 86 { 82 fParticle = particle; 87 fParticle = particle; 83 fEkin = energy; 88 fEkin = energy; 84 } 89 } 85 90 86 //....oooOO0OOooo........oooOO0OOooo........oo 91 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 87 92 88 void Run::FillPerEvent(G4int kAbs, G4double EA 93 void Run::FillPerEvent(G4int kAbs, G4double EAbs, G4double LAbs) 89 { 94 { 90 // accumulate statistic with restriction << 95 //accumulate statistic with restriction 91 // 96 // 92 if (fApplyLimit) fEnergyDeposit[kAbs].push_b << 97 if(fApplyLimit) fEnergyDeposit[kAbs].push_back(EAbs); 93 fSumEAbs[kAbs] += EAbs; << 98 fSumEAbs[kAbs] += EAbs; fSum2EAbs[kAbs] += EAbs*EAbs; 94 fSum2EAbs[kAbs] += EAbs * EAbs; << 99 fSumLAbs[kAbs] += LAbs; fSum2LAbs[kAbs] += LAbs*LAbs; 95 fSumLAbs[kAbs] += LAbs; << 96 fSum2LAbs[kAbs] += LAbs * LAbs; << 97 } << 98 << 99 //....oooOO0OOooo........oooOO0OOooo........oo << 100 << 101 void Run::SumEnergies(G4double edeptot, G4doub << 102 { << 103 fEdepTot += edeptot; << 104 fEdepTot2 += edeptot * edeptot; << 105 fEleakTot += eleak; << 106 fEleakTot2 += eleak * eleak; << 107 << 108 G4double etotal = edeptot + eleak; << 109 fEtotal += etotal; << 110 fEtotal2 += etotal * etotal; << 111 } 100 } 112 101 113 //....oooOO0OOooo........oooOO0OOooo........oo 102 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 114 103 115 void Run::SumEnergyFlow(G4int plane, G4double 104 void Run::SumEnergyFlow(G4int plane, G4double Eflow) 116 { 105 { 117 fEnergyFlow[plane] += Eflow; 106 fEnergyFlow[plane] += Eflow; 118 } 107 } 119 108 120 //....oooOO0OOooo........oooOO0OOooo........oo 109 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 121 << 110 122 void Run::SumLateralEleak(G4int cell, G4double 111 void Run::SumLateralEleak(G4int cell, G4double Eflow) 123 { 112 { 124 fLateralEleak[cell] += Eflow; 113 fLateralEleak[cell] += Eflow; 125 } 114 } 126 115 127 //....oooOO0OOooo........oooOO0OOooo........oo 116 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 128 << 117 129 void Run::AddChargedStep() << 118 void Run::AddChargedStep() 130 { 119 { 131 fChargedStep += 1.0; << 120 fChargedStep += 1.0; 132 } 121 } 133 122 134 //....oooOO0OOooo........oooOO0OOooo........oo 123 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 135 << 124 136 void Run::AddNeutralStep() << 125 void Run::AddNeutralStep() 137 { 126 { 138 fNeutralStep += 1.0; << 127 fNeutralStep += 1.0; 139 } 128 } 140 << 129 141 //....oooOO0OOooo........oooOO0OOooo........oo 130 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 142 131 143 void Run::AddSecondaryTrack(const G4Track* tra 132 void Run::AddSecondaryTrack(const G4Track* track) 144 { 133 { 145 const G4ParticleDefinition* d = track->GetDe 134 const G4ParticleDefinition* d = track->GetDefinition(); 146 if (d == G4Gamma::Gamma()) { << 135 if(d == G4Gamma::Gamma()) { ++fN_gamma; } 147 ++fN_gamma; << 136 else if (d == G4Electron::Electron()) { ++fN_elec; } 148 } << 137 else if (d == G4Positron::Positron()) { ++fN_pos; } 149 else if (d == G4Electron::Electron()) { << 150 ++fN_elec; << 151 } << 152 else if (d == G4Positron::Positron()) { << 153 ++fN_pos; << 154 } << 155 } 138 } 156 << 139 157 //....oooOO0OOooo........oooOO0OOooo........oo 140 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 158 141 159 void Run::Merge(const G4Run* run) 142 void Run::Merge(const G4Run* run) 160 { 143 { 161 const Run* localRun = static_cast<const Run* 144 const Run* localRun = static_cast<const Run*>(run); 162 145 163 // pass information about primary particle 146 // pass information about primary particle 164 fParticle = localRun->fParticle; 147 fParticle = localRun->fParticle; 165 fEkin = localRun->fEkin; << 148 fEkin = localRun->fEkin; 166 149 167 // accumulate sums 150 // accumulate sums 168 // 151 // 169 for (G4int k = 0; k < kMaxAbsor; k++) { << 152 for (G4int k=0; k<kMaxAbsor; k++) { 170 fSumEAbs[k] += localRun->fSumEAbs[k]; << 153 fSumEAbs[k] += localRun->fSumEAbs[k]; 171 fSum2EAbs[k] += localRun->fSum2EAbs[k]; << 154 fSum2EAbs[k] += localRun->fSum2EAbs[k]; 172 fSumLAbs[k] += localRun->fSumLAbs[k]; << 155 fSumLAbs[k] += localRun->fSumLAbs[k]; 173 fSum2LAbs[k] += localRun->fSum2LAbs[k]; 156 fSum2LAbs[k] += localRun->fSum2LAbs[k]; 174 } 157 } 175 << 158 176 fEdepTot += localRun->fEdepTot; << 159 G4int nbPlanes = (fDetector->GetNbOfLayers())*(fDetector->GetNbOfAbsor()) + 2; 177 fEdepTot2 += localRun->fEdepTot2; << 160 for (G4int k=0; k<nbPlanes; k++) { 178 << 161 fEnergyFlow[k] += localRun->fEnergyFlow[k]; 179 fEleakTot += localRun->fEleakTot; << 180 fEleakTot2 += localRun->fEleakTot2; << 181 << 182 fEtotal += localRun->fEtotal; << 183 fEtotal2 += localRun->fEtotal2; << 184 << 185 G4int nbPlanes = (fDetector->GetNbOfLayers() << 186 for (G4int k = 0; k < nbPlanes; k++) { << 187 fEnergyFlow[k] += localRun->fEnergyFlow[k] << 188 fLateralEleak[k] += localRun->fLateralElea 162 fLateralEleak[k] += localRun->fLateralEleak[k]; 189 } 163 } 190 << 164 191 for (G4int k=0; k<kMaxAbsor; k++) { << 165 192 fEnergyDeposit[k].insert(fEnergyDeposit[k] << 166 fChargedStep += localRun->fChargedStep; 193 localRun->fEnergyDeposit[k].begin(), local << 194 } << 195 << 196 fChargedStep += localRun->fChargedStep; << 197 fNeutralStep += localRun->fNeutralStep; 167 fNeutralStep += localRun->fNeutralStep; 198 << 168 199 fN_gamma += localRun->fN_gamma; << 169 fN_gamma += localRun->fN_gamma; 200 fN_elec += localRun->fN_elec; << 170 fN_elec += localRun->fN_elec; 201 fN_pos += localRun->fN_pos; << 171 fN_pos += localRun->fN_pos; 202 << 172 203 fApplyLimit = localRun->fApplyLimit; 173 fApplyLimit = localRun->fApplyLimit; 204 << 174 205 for (G4int k = 0; k < kMaxAbsor; k++) { << 175 for (G4int k=0; k<kMaxAbsor; k++) { 206 fEdeptrue[k] = localRun->fEdeptrue[k]; << 176 fEdeptrue[k] = localRun->fEdeptrue[k]; 207 fRmstrue[k] = localRun->fRmstrue[k]; << 177 fRmstrue[k] = localRun->fRmstrue[k]; 208 fLimittrue[k] = localRun->fLimittrue[k]; << 178 fLimittrue[k] = localRun->fLimittrue[k]; 209 } << 179 } 210 << 180 211 G4Run::Merge(run); << 181 G4Run::Merge(run); 212 } << 182 } 213 183 214 //....oooOO0OOooo........oooOO0OOooo........oo 184 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 215 185 216 void Run::EndOfRun() 186 void Run::EndOfRun() 217 { 187 { 218 G4int nEvt = numberOfEvent; 188 G4int nEvt = numberOfEvent; 219 G4double norm = G4double(nEvt); << 189 G4double norm = G4double(nEvt); 220 if (norm > 0) norm = 1. / norm; << 190 if(norm > 0) norm = 1./norm; 221 G4double qnorm = std::sqrt(norm); 191 G4double qnorm = std::sqrt(norm); 222 192 223 fChargedStep *= norm; 193 fChargedStep *= norm; 224 fNeutralStep *= norm; 194 fNeutralStep *= norm; 225 195 226 // compute and print statistic << 196 //compute and print statistic 227 // 197 // 228 G4double beamEnergy = fEkin; 198 G4double beamEnergy = fEkin; 229 G4double sqbeam = std::sqrt(beamEnergy / GeV << 199 G4double sqbeam = std::sqrt(beamEnergy/GeV); 230 200 231 G4double MeanEAbs, MeanEAbs2, rmsEAbs, resol << 201 G4double MeanEAbs,MeanEAbs2,rmsEAbs,resolution,rmsres; 232 G4double MeanLAbs, MeanLAbs2, rmsLAbs; << 202 G4double MeanLAbs,MeanLAbs2,rmsLAbs; 233 203 234 std::ios::fmtflags mode = G4cout.flags(); 204 std::ios::fmtflags mode = G4cout.flags(); 235 G4int prec = G4cout.precision(2); << 205 G4int prec = G4cout.precision(2); 236 G4cout << "\n------------------------------- 206 G4cout << "\n------------------------------------------------------------\n"; 237 G4cout << std::setw(14) << "material" << std << 207 G4cout << std::setw(14) << "material" 238 << "sqrt(E0(GeV))*rmsE/Emean" << std: << 208 << std::setw(17) << "Edep RMS" 239 << 209 << std::setw(33) << "sqrt(E0(GeV))*rmsE/Emean" 240 for (G4int k = 1; k <= fDetector->GetNbOfAbs << 210 << std::setw(23) << "total tracklen \n \n"; 241 MeanEAbs = fSumEAbs[k] * norm; << 211 242 MeanEAbs2 = fSum2EAbs[k] * norm; << 212 for (G4int k=1; k<=fDetector->GetNbOfAbsor(); k++) 243 rmsEAbs = std::sqrt(std::abs(MeanEAbs2 - M << 213 { 244 // G4cout << "k= " << k << " RMS= " << r << 214 MeanEAbs = fSumEAbs[k]*norm; 245 // << " fApplyLimit: " << fApplyLimi << 215 MeanEAbs2 = fSum2EAbs[k]*norm; 246 if (fApplyLimit) { << 216 rmsEAbs = std::sqrt(std::abs(MeanEAbs2 - MeanEAbs*MeanEAbs)); 247 G4int nn = 0; << 217 //G4cout << "k= " << k << " RMS= " << rmsEAbs 248 G4double sume = 0.0; << 218 // << " fApplyLimit: " << fApplyLimit << G4endl; 249 G4double sume2 = 0.0; << 219 if(fApplyLimit) { 250 // compute trancated means << 220 G4int nn = 0; 251 G4double lim = rmsEAbs * 2.5; << 221 G4double sume = 0.0; 252 for (G4int i = 0; i < nEvt; i++) { << 222 G4double sume2 = 0.0; 253 G4double e = (fEnergyDeposit[k])[i]; << 223 // compute trancated means 254 if (std::abs(e - MeanEAbs) < lim) { << 224 G4double lim = rmsEAbs * 2.5; 255 sume += e; << 225 for(G4int i=0; i<nEvt; i++) { 256 sume2 += e * e; << 226 G4double e = (fEnergyDeposit[k])[i]; 257 nn++; << 227 if(std::abs(e - MeanEAbs) < lim) { >> 228 sume += e; >> 229 sume2 += e*e; >> 230 nn++; >> 231 } 258 } 232 } >> 233 G4double norm1 = G4double(nn); >> 234 if(norm1 > 0.0) norm1 = 1.0/norm1; >> 235 MeanEAbs = sume*norm1; >> 236 MeanEAbs2 = sume2*norm1; >> 237 rmsEAbs = std::sqrt(std::abs(MeanEAbs2 - MeanEAbs*MeanEAbs)); 259 } 238 } 260 G4double norm1 = G4double(nn); << 261 if (norm1 > 0.0) norm1 = 1.0 / norm1; << 262 MeanEAbs = sume * norm1; << 263 MeanEAbs2 = sume2 * norm1; << 264 rmsEAbs = std::sqrt(std::abs(MeanEAbs2 - << 265 } << 266 << 267 resolution = (MeanEAbs > 0.) ? 100. * sqbe << 268 rmsres = resolution * qnorm; << 269 << 270 // Save mean and RMS << 271 fSumEAbs[k] = MeanEAbs; << 272 fSum2EAbs[k] = rmsEAbs; << 273 << 274 MeanLAbs = fSumLAbs[k] * norm; << 275 MeanLAbs2 = fSum2LAbs[k] * norm; << 276 rmsLAbs = std::sqrt(std::abs(MeanLAbs2 - M << 277 << 278 // print << 279 // << 280 G4cout << std::setw(14) << fDetector->GetA << 281 << std::setprecision(5) << std::set << 282 << std::setprecision(4) << std::set << 283 << resolution << " +- " << std::set << 284 << std::setw(10) << G4BestUnit(Mean << 285 << G4BestUnit(rmsLAbs, "Length") << << 286 } << 287 239 288 // total energy deposited << 240 resolution= 100.*sqbeam*rmsEAbs/MeanEAbs; 289 // << 241 rmsres = resolution*qnorm; 290 fEdepTot *= norm; << 291 fEdepTot2 *= norm; << 292 G4double rmsEdep = std::sqrt(std::abs(fEdepT << 293 << 294 G4cout << "\n Total energy deposited = " << << 295 << " +- " << G4BestUnit(rmsEdep, "Ene << 296 << 297 // Energy leakage << 298 // << 299 fEleakTot *= norm; << 300 fEleakTot2 *= norm; << 301 G4double rmsEleak = std::sqrt(std::abs(fElea << 302 << 303 G4cout << " Energy leakage = " << G4BestUnit << 304 << G4BestUnit(rmsEleak, "Energy") << << 305 242 306 // total energy << 243 // Save mean and RMS 307 // << 244 fSumEAbs[k] = MeanEAbs; 308 fEtotal *= norm; << 245 fSum2EAbs[k] = rmsEAbs; 309 fEtotal2 *= norm; << 246 310 G4double rmsEtotal = std::sqrt(std::abs(fEto << 247 MeanLAbs = fSumLAbs[k]*norm; 311 << 248 MeanLAbs2 = fSum2LAbs[k]*norm; 312 G4cout << " Total energy : Edep + Eleak = " << 249 rmsLAbs = std::sqrt(std::abs(MeanLAbs2 - MeanLAbs*MeanLAbs)); 313 << G4BestUnit(rmsEtotal, "Energy") << << 250 314 << 251 //print 315 G4cout << "--------------------------------- << 252 // >> 253 G4cout >> 254 << std::setw(14) << fDetector->GetAbsorMaterial(k)->GetName() << ": " >> 255 << std::setprecision(5) >> 256 << std::setw(6) << G4BestUnit(MeanEAbs,"Energy") << " : " >> 257 << std::setprecision(4) >> 258 << std::setw(5) << G4BestUnit( rmsEAbs,"Energy") >> 259 << std::setw(10) << resolution << " +- " >> 260 << std::setw(5) << rmsres << " %" >> 261 << std::setprecision(3) >> 262 << std::setw(10) << G4BestUnit(MeanLAbs,"Length") << " +- " >> 263 << std::setw(4) << G4BestUnit( rmsLAbs,"Length") >> 264 << G4endl; >> 265 } >> 266 G4cout << "\n------------------------------------------------------------\n"; 316 267 317 G4cout << " Beam particle " << fParticle->Ge << 268 G4cout << " Beam particle " 318 << " E = " << G4BestUnit(beamEnergy, << 269 << fParticle->GetParticleName() 319 G4cout << " Mean number of gamma " << << 270 << " E = " << G4BestUnit(beamEnergy,"Energy") << G4endl; 320 G4cout << " Mean number of e- " << << 271 G4cout << " Mean number of gamma " << (G4double)fN_gamma*norm << G4endl; 321 G4cout << " Mean number of e+ " << << 272 G4cout << " Mean number of e- " << (G4double)fN_elec*norm << G4endl; 322 G4cout << std::setprecision(6) << " Mean num << 273 G4cout << " Mean number of e+ " << (G4double)fN_pos*norm << G4endl; >> 274 G4cout << std::setprecision(6) >> 275 << " Mean number of charged steps " << fChargedStep << G4endl; 323 G4cout << " Mean number of neutral steps " 276 G4cout << " Mean number of neutral steps " << fNeutralStep << G4endl; 324 G4cout << "--------------------------------- 277 G4cout << "------------------------------------------------------------\n"; 325 << 278 326 // Energy flow << 279 //Energy flow 327 // 280 // 328 G4AnalysisManager* analysis = G4AnalysisMana 281 G4AnalysisManager* analysis = G4AnalysisManager::Instance(); 329 G4int Idmax = (fDetector->GetNbOfLayers()) * << 282 G4int Idmax = (fDetector->GetNbOfLayers())*(fDetector->GetNbOfAbsor()); 330 for (G4int Id = 1; Id <= Idmax + 1; Id++) { << 283 for (G4int Id=1; Id<=Idmax+1; Id++) { 331 analysis->FillH1(2 * kMaxAbsor + 1, (G4dou << 284 analysis->FillH1(2*kMaxAbsor+1, (G4double)Id, fEnergyFlow[Id]); 332 analysis->FillH1(2 * kMaxAbsor + 2, (G4dou << 285 analysis->FillH1(2*kMaxAbsor+2, (G4double)Id, fLateralEleak[Id]); 333 } 286 } 334 << 287 335 // Energy deposit from energy flow balance << 288 //Energy deposit from energy flow balance 336 // 289 // 337 G4double EdepTot[kMaxAbsor]; 290 G4double EdepTot[kMaxAbsor]; 338 for (G4int k = 0; k < kMaxAbsor; k++) << 291 for (G4int k=0; k<kMaxAbsor; k++) EdepTot[k] = 0.; 339 EdepTot[k] = 0.; << 292 340 << 341 G4int nbOfAbsor = fDetector->GetNbOfAbsor(); 293 G4int nbOfAbsor = fDetector->GetNbOfAbsor(); 342 for (G4int Id = 1; Id <= Idmax; Id++) { << 294 for (G4int Id=1; Id<=Idmax; Id++) { 343 G4int iAbsor = Id % nbOfAbsor; << 295 G4int iAbsor = Id%nbOfAbsor; if (iAbsor==0) iAbsor = nbOfAbsor; 344 if (iAbsor == 0) iAbsor = nbOfAbsor; << 296 EdepTot[iAbsor] += (fEnergyFlow[Id]-fEnergyFlow[Id+1]-fLateralEleak[Id]); 345 EdepTot[iAbsor] += (fEnergyFlow[Id] - fEne << 297 } 346 } << 298 347 << 299 G4cout << std::setprecision(3) 348 G4cout << std::setprecision(3) << "\n Energy << 300 << "\n Energy deposition from Energy flow balance : \n" 349 << std::setw(10) << " material \t To 301 << std::setw(10) << " material \t Total Edep \n \n"; 350 G4cout.precision(6); 302 G4cout.precision(6); 351 << 303 352 for (G4int k = 1; k <= nbOfAbsor; k++) { << 304 for (G4int k=1; k<=nbOfAbsor; k++) { 353 EdepTot[k] *= norm; << 305 EdepTot [k] *= norm; 354 G4cout << std::setw(10) << fDetector->GetA 306 G4cout << std::setw(10) << fDetector->GetAbsorMaterial(k)->GetName() << ":" 355 << "\t " << G4BestUnit(EdepTot[k], << 307 << "\t " << G4BestUnit(EdepTot [k],"Energy") << "\n"; 356 } 308 } 357 << 309 358 G4cout << "\n------------------------------- << 310 G4cout << "\n------------------------------------------------------------\n" >> 311 << G4endl; 359 312 360 // Acceptance 313 // Acceptance 361 EmAcceptance acc; 314 EmAcceptance acc; 362 G4bool isStarted = false; 315 G4bool isStarted = false; 363 for (G4int j = 1; j <= fDetector->GetNbOfAbs << 316 for (G4int j=1; j<=fDetector->GetNbOfAbsor(); j++) { 364 if (fLimittrue[j] < DBL_MAX) { 317 if (fLimittrue[j] < DBL_MAX) { 365 if (!isStarted) { 318 if (!isStarted) { 366 acc.BeginOfAcceptance("Sampling Calori << 319 acc.BeginOfAcceptance("Sampling Calorimeter",nEvt); 367 isStarted = true; 320 isStarted = true; 368 } 321 } 369 MeanEAbs = fSumEAbs[j]; 322 MeanEAbs = fSumEAbs[j]; 370 rmsEAbs = fSum2EAbs[j]; << 323 rmsEAbs = fSum2EAbs[j]; 371 G4String mat = fDetector->GetAbsorMateri 324 G4String mat = fDetector->GetAbsorMaterial(j)->GetName(); 372 acc.EmAcceptanceGauss("Edep" + mat, nEvt << 325 acc.EmAcceptanceGauss("Edep"+mat, nEvt, MeanEAbs, 373 acc.EmAcceptanceGauss("Erms" + mat, nEvt << 326 fEdeptrue[j], fRmstrue[j], fLimittrue[j]); 374 2.0 * fLimittrue[j << 327 acc.EmAcceptanceGauss("Erms"+mat, nEvt, rmsEAbs, >> 328 fRmstrue[j], fRmstrue[j], 2.0*fLimittrue[j]); 375 } 329 } 376 } 330 } 377 if (isStarted) acc.EndOfAcceptance(); << 331 if(isStarted) acc.EndOfAcceptance(); 378 332 379 // normalize histograms << 333 //normalize histograms 380 // 334 // 381 for (G4int ih = kMaxAbsor + 1; ih < kMaxHist << 335 for (G4int ih = kMaxAbsor+1; ih < kMaxHisto; ih++) { 382 analysis->ScaleH1(ih, norm / MeV); << 336 analysis->ScaleH1(ih,norm/MeV); 383 } 337 } 384 << 338 385 G4cout.setf(mode, std::ios::floatfield); << 339 G4cout.setf(mode,std::ios::floatfield); 386 G4cout.precision(prec); 340 G4cout.precision(prec); 387 } 341 } 388 342 389 //....oooOO0OOooo........oooOO0OOooo........oo 343 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 390 344 391 void Run::SetEdepAndRMS(G4int i, G4double edep 345 void Run::SetEdepAndRMS(G4int i, G4double edep, G4double rms, G4double lim) 392 { 346 { 393 if (i >= 0 && i < kMaxAbsor) { << 347 if (i>=0 && i<kMaxAbsor) { 394 fEdeptrue[i] = edep; << 348 fEdeptrue [i] = edep; 395 fRmstrue[i] = rms; << 349 fRmstrue [i] = rms; 396 fLimittrue[i] = lim; 350 fLimittrue[i] = lim; 397 } 351 } 398 } 352 } 399 353 400 //....oooOO0OOooo........oooOO0OOooo........oo 354 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 401 355 402 void Run::SetApplyLimit(G4bool val) 356 void Run::SetApplyLimit(G4bool val) 403 { 357 { 404 fApplyLimit = val; 358 fApplyLimit = val; 405 } 359 } 406 360 407 //....oooOO0OOooo........oooOO0OOooo........oo 361 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 408 362