Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 /// \file electromagnetic/TestEm2/src/Detector << 26 // 27 /// \brief Implementation of the DetectorConst << 27 // $Id: DetectorConstruction.cc,v 1.12 2006/10/20 16:03:40 maire Exp $ 28 // << 28 // GEANT4 tag $Name: geant4-09-02-patch-03 $ >> 29 29 //....oooOO0OOooo........oooOO0OOooo........oo 30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 30 //....oooOO0OOooo........oooOO0OOooo........oo 31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 31 32 32 #include "DetectorConstruction.hh" 33 #include "DetectorConstruction.hh" 33 << 34 #include "DetectorMessenger.hh" 34 #include "DetectorMessenger.hh" 35 35 36 #include "G4AutoDelete.hh" << 36 #include "G4Tubs.hh" 37 #include "G4GeometryManager.hh" << 38 #include "G4GlobalMagFieldMessenger.hh" << 39 #include "G4LogicalVolume.hh" 37 #include "G4LogicalVolume.hh" 40 #include "G4LogicalVolumeStore.hh" << 41 #include "G4NistManager.hh" << 42 #include "G4PVPlacement.hh" 38 #include "G4PVPlacement.hh" >> 39 #include "G4UniformMagField.hh" >> 40 >> 41 #include "G4GeometryManager.hh" 43 #include "G4PhysicalVolumeStore.hh" 42 #include "G4PhysicalVolumeStore.hh" 44 #include "G4RunManager.hh" << 43 #include "G4LogicalVolumeStore.hh" 45 #include "G4SolidStore.hh" 44 #include "G4SolidStore.hh" 46 #include "G4SystemOfUnits.hh" << 45 47 #include "G4Tubs.hh" << 48 #include "G4UnitsTable.hh" 46 #include "G4UnitsTable.hh" 49 47 50 //....oooOO0OOooo........oooOO0OOooo........oo 48 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 51 49 52 DetectorConstruction::DetectorConstruction() 50 DetectorConstruction::DetectorConstruction() >> 51 :nLtot(40),nRtot(50),dLradl(0.5),dRradl(0.1), >> 52 dLlength(0.),dRlength(0.), >> 53 myMaterial(0),magField(0), >> 54 EcalLength(0.),EcalRadius(0.), >> 55 solidEcal(0),logicEcal(0),physiEcal(0) 53 { 56 { 54 DefineMaterials(); 57 DefineMaterials(); 55 SetMaterial("G4_PbWO4"); << 58 SetMaterial("PbWO4"); 56 fDetectorMessenger = new DetectorMessenger(t << 59 detectorMessenger = new DetectorMessenger(this); 57 } 60 } 58 61 59 //....oooOO0OOooo........oooOO0OOooo........oo 62 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 60 63 61 DetectorConstruction::~DetectorConstruction() 64 DetectorConstruction::~DetectorConstruction() >> 65 { delete detectorMessenger;} >> 66 >> 67 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 68 >> 69 G4VPhysicalVolume* DetectorConstruction::Construct() 62 { 70 { 63 delete fDetectorMessenger; << 71 return ConstructVolumes(); 64 } 72 } 65 73 66 //....oooOO0OOooo........oooOO0OOooo........oo 74 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 67 75 68 void DetectorConstruction::DefineMaterials() 76 void DetectorConstruction::DefineMaterials() 69 { 77 { 70 // 78 // 71 // define few Elements by hand << 79 // define few Elements 72 // 80 // 73 G4double a, z; 81 G4double a, z; 74 << 82 75 G4Element* H = new G4Element("Hydrogen", "H" << 83 G4Element* H = new G4Element("Hydrogen", "H", z= 1., a= 1.01*g/mole); 76 G4Element* O = new G4Element("Oxygen", "O", << 84 G4Element* N = new G4Element("Nitrogen", "N", z= 7., a= 14.01*g/mole); 77 G4Element* Ge = new G4Element("Germanium", " << 85 G4Element* O = new G4Element("Oxygen" , "O", z= 8., a= 16.00*g/mole); 78 G4Element* Bi = new G4Element("Bismuth", "Bi << 86 G4Element* Ge = new G4Element("Germanium", "Ge",z=32., a= 72.59*g/mole); >> 87 G4Element* W = new G4Element("Tungsten", "W", z=74., a= 183.84*g/mole); >> 88 G4Element* Pb = new G4Element("Lead", "Pb",z=82., a= 207.19*g/mole); >> 89 G4Element* Bi = new G4Element("Bismuth", "Bi",z=83., a= 208.98*g/mole); 79 90 80 // 91 // 81 // define materials 92 // define materials 82 // 93 // 83 G4double density; 94 G4double density; 84 G4int ncomponents, natoms; << 95 G4double fractionmass; G4int ncomponents, natoms; 85 96 86 // water with ionisation potential 78 eV << 97 G4Material* Air = 87 G4Material* H2O = new G4Material("Water", de << 98 new G4Material("Air", density= 1.29*mg/cm3, ncomponents=2); 88 H2O->AddElement(H, natoms = 2); << 99 Air->AddElement(N, fractionmass=0.7); 89 H2O->AddElement(O, natoms = 1); << 100 Air->AddElement(O, fractionmass=0.3); 90 H2O->GetIonisation()->SetMeanExcitationEnerg << 91 << 92 // pure materails << 93 new G4Material("liquidArgon", z = 18., a = 3 << 94 new G4Material("Aluminium", z = 13., a = 26. << 95 new G4Material("Iron", z = 26., a = 55.85 * << 96 new G4Material("Copper", z = 29., a = 63.55 << 97 new G4Material("Tungsten", z = 74., a = 183. << 98 new G4Material("Lead", z = 82., a = 207.19 * << 99 new G4Material("Uranium", z = 92., a = 238.0 << 100 << 101 // compound material << 102 G4Material* BGO = new G4Material("BGO", dens << 103 BGO->AddElement(O, natoms = 12); << 104 BGO->AddElement(Ge, natoms = 3); << 105 BGO->AddElement(Bi, natoms = 4); << 106 << 107 ////G4cout << *(G4Material::GetMaterialTable << 108 } << 109 101 110 //....oooOO0OOooo........oooOO0OOooo........oo << 102 G4Material* H2O = >> 103 new G4Material("Water", density= 1.00*g/cm3, ncomponents=2); >> 104 H2O->AddElement(H, natoms=2); >> 105 H2O->AddElement(O, natoms=1); >> 106 H2O->GetIonisation()->SetMeanExcitationEnergy(75.0*eV); 111 107 112 void DetectorConstruction::UpdateParameters() << 108 new G4Material("liquidArgon", z=18., a= 39.95*g/mole, density= 1.390*g/cm3); 113 { << 109 114 G4double Radl = fMaterial->GetRadlen(); << 110 new G4Material("Aluminium", z=13., a= 26.98*g/mole, density= 2.7*g/cm3); 115 fDLlength = fDLradl * Radl; << 111 116 fDRlength = fDRradl * Radl; << 112 new G4Material("Iron", z=26., a= 55.85*g/mole, density= 7.87*g/cm3); 117 fEcalLength = fNLtot * fDLlength; << 113 118 fEcalRadius = fNRtot * fDRlength; << 114 new G4Material("Copper" , z=29., a= 63.55*g/mole, density= 8.960*g/cm3); 119 if (fSolidEcal) { << 115 120 fSolidEcal->SetOuterRadius(fEcalRadius); << 116 new G4Material("Lead", z=82., a=207.19*g/mole, density=11.35*g/cm3); 121 fSolidEcal->SetZHalfLength(0.5 * fEcalLeng << 117 122 } << 118 new G4Material("Uranium" , z=92., a=238.03*g/mole, density= 18.95*g/cm3); >> 119 >> 120 G4Material* BGO = >> 121 new G4Material("BGO", density= 7.10*g/cm3, ncomponents=3); >> 122 BGO->AddElement(O , natoms=12); >> 123 BGO->AddElement(Ge, natoms= 3); >> 124 BGO->AddElement(Bi, natoms= 4); >> 125 >> 126 G4Material* PbWO = >> 127 new G4Material("PbWO4", density= 8.28*g/cm3, ncomponents=3); >> 128 PbWO->AddElement(O , natoms=4); >> 129 PbWO->AddElement(Pb, natoms=1); >> 130 PbWO->AddElement(W , natoms=1); >> 131 >> 132 G4cout << *(G4Material::GetMaterialTable()) << G4endl; 123 } 133 } 124 134 125 //....oooOO0OOooo........oooOO0OOooo........oo 135 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 126 136 127 G4VPhysicalVolume* DetectorConstruction::Const << 137 G4VPhysicalVolume* DetectorConstruction::ConstructVolumes() 128 { 138 { 129 UpdateParameters(); << 139 G4double Radl = myMaterial->GetRadlen(); >> 140 >> 141 dLlength = dLradl*Radl; dRlength = dRradl*Radl; >> 142 EcalLength = nLtot*dLlength; EcalRadius = nRtot*dRlength; >> 143 >> 144 // Cleanup old geometry >> 145 G4GeometryManager::GetInstance()->OpenGeometry(); >> 146 G4PhysicalVolumeStore::GetInstance()->Clean(); >> 147 G4LogicalVolumeStore::GetInstance()->Clean(); >> 148 G4SolidStore::GetInstance()->Clean(); >> 149 130 // 150 // 131 // Ecal 151 // Ecal 132 // 152 // 133 if (!fPhysiEcal) { << 153 solidEcal = new G4Tubs("Ecal",0.,EcalRadius,0.5*EcalLength,0.,360*deg); 134 fSolidEcal = new G4Tubs("Ecal", 0., fEcalR << 154 logicEcal = new G4LogicalVolume( solidEcal,myMaterial,"Ecal",0,0,0); 135 fLogicEcal = new G4LogicalVolume(fSolidEca << 155 physiEcal = new G4PVPlacement(0,G4ThreeVector(), 136 fPhysiEcal = new G4PVPlacement(0, G4ThreeV << 156 logicEcal,"Ecal",0,false,0); 137 } << 157 138 G4cout << "\n Absorber is " << G4BestUnit(fE << 158 G4cout << "Absorber is " << G4BestUnit(EcalLength,"Length") 139 << " R= " << fEcalRadius / cm << " c << 159 << " of " << myMaterial->GetName() << G4endl; 140 << G4endl; << 160 G4cout << myMaterial << G4endl; 141 G4cout << fMaterial << G4endl; << 161 142 // 162 // 143 // always return the physical World << 163 //always return the physical World 144 // 164 // 145 return fPhysiEcal; << 165 return physiEcal; 146 } 166 } 147 167 148 //....oooOO0OOooo........oooOO0OOooo........oo 168 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 149 169 150 void DetectorConstruction::SetMaterial(const G 170 void DetectorConstruction::SetMaterial(const G4String& materialChoice) 151 { 171 { 152 // search the material by its name 172 // search the material by its name 153 G4Material* pttoMaterial = G4NistManager::In << 173 G4Material* pttoMaterial = G4Material::GetMaterial(materialChoice); 154 << 174 if (pttoMaterial) myMaterial = pttoMaterial; 155 if (pttoMaterial && fMaterial != pttoMateria << 156 fMaterial = pttoMaterial; << 157 if (fLogicEcal) { << 158 fLogicEcal->SetMaterial(fMaterial); << 159 } << 160 G4RunManager::GetRunManager()->PhysicsHasB << 161 } << 162 } 175 } 163 176 164 //....oooOO0OOooo........oooOO0OOooo........oo 177 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 165 178 166 void DetectorConstruction::SetLBining(G4ThreeV 179 void DetectorConstruction::SetLBining(G4ThreeVector Value) 167 { 180 { 168 fNLtot = (G4int)Value(0); << 181 nLtot = (G4int)Value(0); 169 if (fNLtot > kMaxBin) { << 182 if (nLtot > MaxBin) { 170 G4cout << "\n ---> warning from SetLBining << 183 G4cout << "\n ---> warning from SetLBining: " 171 << G4endl; << 184 << nLtot << " truncated to " << MaxBin << G4endl; 172 fNLtot = kMaxBin; << 185 nLtot = MaxBin; 173 } << 186 } 174 fDLradl = Value(1); << 187 dLradl = Value(1); 175 UpdateParameters(); << 176 } 188 } 177 189 178 //....oooOO0OOooo........oooOO0OOooo........oo 190 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 179 191 180 void DetectorConstruction::SetRBining(G4ThreeV 192 void DetectorConstruction::SetRBining(G4ThreeVector Value) 181 { 193 { 182 fNRtot = (G4int)Value(0); << 194 nRtot = (G4int)Value(0); 183 if (fNRtot > kMaxBin) { << 195 if (nRtot > MaxBin) { 184 G4cout << "\n ---> warning from SetRBining << 196 G4cout << "\n ---> warning from SetRBining: " 185 << G4endl; << 197 << nRtot << " truncated to " << MaxBin << G4endl; 186 fNRtot = kMaxBin; << 198 nRtot = MaxBin; 187 } << 199 } 188 fDRradl = Value(1); << 200 dRradl = Value(1); 189 UpdateParameters(); << 190 } 201 } 191 202 192 //....oooOO0OOooo........oooOO0OOooo........oo 203 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 193 204 194 void DetectorConstruction::ConstructSDandField << 205 #include "G4FieldManager.hh" >> 206 #include "G4TransportationManager.hh" >> 207 >> 208 void DetectorConstruction::SetMagField(G4double fieldValue) 195 { 209 { 196 if (fFieldMessenger.Get() == nullptr) { << 210 //apply a global uniform magnetic field along Z axis 197 // Create global magnetic field messenger. << 211 G4FieldManager* fieldMgr 198 // Uniform magnetic field is then created << 212 = G4TransportationManager::GetTransportationManager()->GetFieldManager(); 199 // the field value is not zero. << 213 200 G4ThreeVector fieldValue = G4ThreeVector() << 214 if(magField) delete magField; //delete the existing magn field 201 G4GlobalMagFieldMessenger* msg = new G4Glo << 215 202 // msg->SetVerboseLevel(1); << 216 if(fieldValue!=0.) // create a new one if non nul 203 G4AutoDelete::Register(msg); << 217 { magField = new G4UniformMagField(G4ThreeVector(0.,0.,fieldValue)); 204 fFieldMessenger.Put(msg); << 218 fieldMgr->SetDetectorField(magField); >> 219 fieldMgr->CreateChordFinder(magField); >> 220 } else { >> 221 magField = 0; >> 222 fieldMgr->SetDetectorField(magField); 205 } 223 } >> 224 } >> 225 >> 226 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 227 >> 228 #include "G4RunManager.hh" >> 229 >> 230 void DetectorConstruction::UpdateGeometry() >> 231 { >> 232 G4RunManager::GetRunManager()->DefineWorldVolume(ConstructVolumes()); 206 } 233 } 207 234 208 //....oooOO0OOooo........oooOO0OOooo........oo 235 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 209 236