Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 /// \file electromagnetic/TestEm2/src/Detector 26 /// \file electromagnetic/TestEm2/src/DetectorConstruction.cc 27 /// \brief Implementation of the DetectorConst 27 /// \brief Implementation of the DetectorConstruction class 28 // 28 // 29 //....oooOO0OOooo........oooOO0OOooo........oo 29 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 30 //....oooOO0OOooo........oooOO0OOooo........oo 30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 31 31 32 #include "DetectorConstruction.hh" 32 #include "DetectorConstruction.hh" 33 << 34 #include "DetectorMessenger.hh" 33 #include "DetectorMessenger.hh" 35 34 36 #include "G4AutoDelete.hh" << 35 #include "G4Tubs.hh" 37 #include "G4GeometryManager.hh" << 38 #include "G4GlobalMagFieldMessenger.hh" << 39 #include "G4LogicalVolume.hh" 36 #include "G4LogicalVolume.hh" 40 #include "G4LogicalVolumeStore.hh" << 41 #include "G4NistManager.hh" << 42 #include "G4PVPlacement.hh" 37 #include "G4PVPlacement.hh" >> 38 >> 39 #include "G4GeometryManager.hh" 43 #include "G4PhysicalVolumeStore.hh" 40 #include "G4PhysicalVolumeStore.hh" 44 #include "G4RunManager.hh" << 41 #include "G4LogicalVolumeStore.hh" 45 #include "G4SolidStore.hh" 42 #include "G4SolidStore.hh" >> 43 >> 44 #include "G4GlobalMagFieldMessenger.hh" >> 45 >> 46 #include "G4NistManager.hh" >> 47 #include "G4RunManager.hh" >> 48 46 #include "G4SystemOfUnits.hh" 49 #include "G4SystemOfUnits.hh" 47 #include "G4Tubs.hh" << 48 #include "G4UnitsTable.hh" 50 #include "G4UnitsTable.hh" 49 51 >> 52 #include "G4AutoDelete.hh" >> 53 50 //....oooOO0OOooo........oooOO0OOooo........oo 54 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 51 55 52 DetectorConstruction::DetectorConstruction() 56 DetectorConstruction::DetectorConstruction() 53 { 57 { 54 DefineMaterials(); 58 DefineMaterials(); 55 SetMaterial("G4_PbWO4"); 59 SetMaterial("G4_PbWO4"); 56 fDetectorMessenger = new DetectorMessenger(t 60 fDetectorMessenger = new DetectorMessenger(this); 57 } 61 } 58 62 59 //....oooOO0OOooo........oooOO0OOooo........oo 63 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 60 64 61 DetectorConstruction::~DetectorConstruction() 65 DetectorConstruction::~DetectorConstruction() 62 { << 66 { 63 delete fDetectorMessenger; 67 delete fDetectorMessenger; 64 } 68 } 65 69 66 //....oooOO0OOooo........oooOO0OOooo........oo 70 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 67 71 68 void DetectorConstruction::DefineMaterials() 72 void DetectorConstruction::DefineMaterials() 69 { 73 { 70 // 74 // 71 // define few Elements by hand 75 // define few Elements by hand 72 // 76 // 73 G4double a, z; 77 G4double a, z; 74 << 78 75 G4Element* H = new G4Element("Hydrogen", "H" << 79 G4Element* H = new G4Element("Hydrogen", "H", z= 1., a= 1.01*g/mole); 76 G4Element* O = new G4Element("Oxygen", "O", << 80 G4Element* O = new G4Element("Oxygen" , "O", z= 8., a= 16.00*g/mole); 77 G4Element* Ge = new G4Element("Germanium", " << 81 G4Element* Ge = new G4Element("Germanium", "Ge",z=32., a= 72.59*g/mole); 78 G4Element* Bi = new G4Element("Bismuth", "Bi << 82 G4Element* Bi = new G4Element("Bismuth", "Bi",z=83., a= 208.98*g/mole); 79 83 80 // 84 // 81 // define materials 85 // define materials 82 // 86 // 83 G4double density; 87 G4double density; 84 G4int ncomponents, natoms; 88 G4int ncomponents, natoms; 85 89 86 // water with ionisation potential 78 eV 90 // water with ionisation potential 78 eV 87 G4Material* H2O = new G4Material("Water", de << 91 G4Material* H2O = 88 H2O->AddElement(H, natoms = 2); << 92 new G4Material("Water", density= 1.00*g/cm3, ncomponents=2); 89 H2O->AddElement(O, natoms = 1); << 93 H2O->AddElement(H, natoms=2); 90 H2O->GetIonisation()->SetMeanExcitationEnerg << 94 H2O->AddElement(O, natoms=1); >> 95 H2O->GetIonisation()->SetMeanExcitationEnergy(78.0*eV); 91 96 92 // pure materails 97 // pure materails 93 new G4Material("liquidArgon", z = 18., a = 3 << 98 new G4Material("liquidArgon", z=18., a= 39.95*g/mole, density= 1.390*g/cm3); 94 new G4Material("Aluminium", z = 13., a = 26. << 99 new G4Material("Aluminium", z=13., a= 26.98*g/mole, density= 2.7*g/cm3); 95 new G4Material("Iron", z = 26., a = 55.85 * << 100 new G4Material("Iron", z=26., a= 55.85*g/mole, density= 7.87*g/cm3); 96 new G4Material("Copper", z = 29., a = 63.55 << 101 new G4Material("Copper", z=29., a= 63.55*g/mole, density= 8.960*g/cm3); 97 new G4Material("Tungsten", z = 74., a = 183. << 102 new G4Material("Tungsten", z=74., a=183.84*g/mole, density=19.35*g/cm3); 98 new G4Material("Lead", z = 82., a = 207.19 * << 103 new G4Material("Lead", z=82., a=207.19*g/mole, density=11.35*g/cm3); 99 new G4Material("Uranium", z = 92., a = 238.0 << 104 new G4Material("Uranium" , z=92., a=238.03*g/mole, density= 18.95*g/cm3); 100 105 101 // compound material 106 // compound material 102 G4Material* BGO = new G4Material("BGO", dens << 107 G4Material* BGO = 103 BGO->AddElement(O, natoms = 12); << 108 new G4Material("BGO", density= 7.10*g/cm3, ncomponents=3); 104 BGO->AddElement(Ge, natoms = 3); << 109 BGO->AddElement(O , natoms=12); 105 BGO->AddElement(Bi, natoms = 4); << 110 BGO->AddElement(Ge, natoms= 3); >> 111 BGO->AddElement(Bi, natoms= 4); 106 112 107 ////G4cout << *(G4Material::GetMaterialTable 113 ////G4cout << *(G4Material::GetMaterialTable()) << G4endl; 108 } 114 } 109 115 110 //....oooOO0OOooo........oooOO0OOooo........oo 116 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 111 117 112 void DetectorConstruction::UpdateParameters() 118 void DetectorConstruction::UpdateParameters() 113 { 119 { 114 G4double Radl = fMaterial->GetRadlen(); 120 G4double Radl = fMaterial->GetRadlen(); 115 fDLlength = fDLradl * Radl; << 121 fDLlength = fDLradl*Radl; fDRlength = fDRradl*Radl; 116 fDRlength = fDRradl * Radl; << 122 fEcalLength = fNLtot*fDLlength; fEcalRadius = fNRtot*fDRlength; 117 fEcalLength = fNLtot * fDLlength; << 123 if(fSolidEcal) { 118 fEcalRadius = fNRtot * fDRlength; << 119 if (fSolidEcal) { << 120 fSolidEcal->SetOuterRadius(fEcalRadius); 124 fSolidEcal->SetOuterRadius(fEcalRadius); 121 fSolidEcal->SetZHalfLength(0.5 * fEcalLeng << 125 fSolidEcal->SetZHalfLength(0.5*fEcalLength); 122 } 126 } 123 } 127 } 124 128 125 //....oooOO0OOooo........oooOO0OOooo........oo 129 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 126 130 127 G4VPhysicalVolume* DetectorConstruction::Const 131 G4VPhysicalVolume* DetectorConstruction::Construct() 128 { 132 { 129 UpdateParameters(); 133 UpdateParameters(); 130 // 134 // 131 // Ecal 135 // Ecal 132 // 136 // 133 if (!fPhysiEcal) { << 137 if(!fPhysiEcal) { 134 fSolidEcal = new G4Tubs("Ecal", 0., fEcalR << 138 fSolidEcal = new G4Tubs("Ecal",0.,fEcalRadius,0.5*fEcalLength,0.,360*deg); 135 fLogicEcal = new G4LogicalVolume(fSolidEca << 139 fLogicEcal = new G4LogicalVolume( fSolidEcal,fMaterial,"Ecal",0,0,0); 136 fPhysiEcal = new G4PVPlacement(0, G4ThreeV << 140 fPhysiEcal = new G4PVPlacement(0,G4ThreeVector(), >> 141 fLogicEcal,"Ecal",0,false,0); 137 } 142 } 138 G4cout << "\n Absorber is " << G4BestUnit(fE << 143 G4cout << "\n Absorber is " << G4BestUnit(fEcalLength,"Length") 139 << " R= " << fEcalRadius / cm << " c << 144 << " of " << fMaterial->GetName() 140 << G4endl; << 145 << " R= " << fEcalRadius/cm << " cm \n" << G4endl; 141 G4cout << fMaterial << G4endl; << 146 G4cout << fMaterial << G4endl; 142 // 147 // 143 // always return the physical World << 148 //always return the physical World 144 // 149 // 145 return fPhysiEcal; 150 return fPhysiEcal; 146 } 151 } 147 152 148 //....oooOO0OOooo........oooOO0OOooo........oo 153 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 149 154 150 void DetectorConstruction::SetMaterial(const G 155 void DetectorConstruction::SetMaterial(const G4String& materialChoice) 151 { 156 { 152 // search the material by its name 157 // search the material by its name 153 G4Material* pttoMaterial = G4NistManager::In << 158 G4Material* pttoMaterial = >> 159 G4NistManager::Instance()->FindOrBuildMaterial(materialChoice); 154 160 155 if (pttoMaterial && fMaterial != pttoMateria << 161 if(pttoMaterial && fMaterial != pttoMaterial) { 156 fMaterial = pttoMaterial; 162 fMaterial = pttoMaterial; 157 if (fLogicEcal) { << 163 if(fLogicEcal) { fLogicEcal->SetMaterial(fMaterial); } 158 fLogicEcal->SetMaterial(fMaterial); << 159 } << 160 G4RunManager::GetRunManager()->PhysicsHasB 164 G4RunManager::GetRunManager()->PhysicsHasBeenModified(); 161 } 165 } 162 } 166 } 163 167 164 //....oooOO0OOooo........oooOO0OOooo........oo 168 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 165 169 166 void DetectorConstruction::SetLBining(G4ThreeV 170 void DetectorConstruction::SetLBining(G4ThreeVector Value) 167 { 171 { 168 fNLtot = (G4int)Value(0); 172 fNLtot = (G4int)Value(0); 169 if (fNLtot > kMaxBin) { 173 if (fNLtot > kMaxBin) { 170 G4cout << "\n ---> warning from SetLBining << 174 G4cout << "\n ---> warning from SetLBining: " 171 << G4endl; << 175 << fNLtot << " truncated to " << kMaxBin << G4endl; 172 fNLtot = kMaxBin; 176 fNLtot = kMaxBin; 173 } << 177 } 174 fDLradl = Value(1); 178 fDLradl = Value(1); 175 UpdateParameters(); 179 UpdateParameters(); 176 } 180 } 177 181 178 //....oooOO0OOooo........oooOO0OOooo........oo 182 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 179 183 180 void DetectorConstruction::SetRBining(G4ThreeV 184 void DetectorConstruction::SetRBining(G4ThreeVector Value) 181 { 185 { 182 fNRtot = (G4int)Value(0); 186 fNRtot = (G4int)Value(0); 183 if (fNRtot > kMaxBin) { 187 if (fNRtot > kMaxBin) { 184 G4cout << "\n ---> warning from SetRBining << 188 G4cout << "\n ---> warning from SetRBining: " 185 << G4endl; << 189 << fNRtot << " truncated to " << kMaxBin << G4endl; 186 fNRtot = kMaxBin; 190 fNRtot = kMaxBin; 187 } << 191 } 188 fDRradl = Value(1); 192 fDRradl = Value(1); 189 UpdateParameters(); 193 UpdateParameters(); 190 } 194 } 191 195 192 //....oooOO0OOooo........oooOO0OOooo........oo 196 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 193 197 194 void DetectorConstruction::ConstructSDandField 198 void DetectorConstruction::ConstructSDandField() 195 { 199 { 196 if (fFieldMessenger.Get() == nullptr) { << 200 if ( fFieldMessenger.Get() == nullptr ) { 197 // Create global magnetic field messenger. 201 // Create global magnetic field messenger. 198 // Uniform magnetic field is then created 202 // Uniform magnetic field is then created automatically if 199 // the field value is not zero. 203 // the field value is not zero. 200 G4ThreeVector fieldValue = G4ThreeVector() 204 G4ThreeVector fieldValue = G4ThreeVector(); 201 G4GlobalMagFieldMessenger* msg = new G4Glo << 205 G4GlobalMagFieldMessenger* msg = 202 // msg->SetVerboseLevel(1); << 206 new G4GlobalMagFieldMessenger(fieldValue); >> 207 //msg->SetVerboseLevel(1); 203 G4AutoDelete::Register(msg); 208 G4AutoDelete::Register(msg); 204 fFieldMessenger.Put(msg); << 209 fFieldMessenger.Put( msg ); 205 } 210 } 206 } 211 } 207 212 208 //....oooOO0OOooo........oooOO0OOooo........oo 213 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 209 214