Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 /// \file electromagnetic/TestEm2/src/Detector 26 /// \file electromagnetic/TestEm2/src/DetectorConstruction.cc 27 /// \brief Implementation of the DetectorConst 27 /// \brief Implementation of the DetectorConstruction class 28 // 28 // >> 29 // >> 30 // $Id: DetectorConstruction.cc 98761 2016-08-09 14:07:11Z gcosmo $ >> 31 29 //....oooOO0OOooo........oooOO0OOooo........oo 32 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 30 //....oooOO0OOooo........oooOO0OOooo........oo 33 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 31 34 32 #include "DetectorConstruction.hh" 35 #include "DetectorConstruction.hh" 33 << 34 #include "DetectorMessenger.hh" 36 #include "DetectorMessenger.hh" 35 37 36 #include "G4AutoDelete.hh" << 38 #include "G4Tubs.hh" 37 #include "G4GeometryManager.hh" << 38 #include "G4GlobalMagFieldMessenger.hh" << 39 #include "G4LogicalVolume.hh" 39 #include "G4LogicalVolume.hh" 40 #include "G4LogicalVolumeStore.hh" << 41 #include "G4NistManager.hh" << 42 #include "G4PVPlacement.hh" 40 #include "G4PVPlacement.hh" >> 41 >> 42 #include "G4GeometryManager.hh" 43 #include "G4PhysicalVolumeStore.hh" 43 #include "G4PhysicalVolumeStore.hh" 44 #include "G4RunManager.hh" << 44 #include "G4LogicalVolumeStore.hh" 45 #include "G4SolidStore.hh" 45 #include "G4SolidStore.hh" >> 46 >> 47 #include "G4GlobalMagFieldMessenger.hh" >> 48 >> 49 #include "G4NistManager.hh" >> 50 #include "G4RunManager.hh" >> 51 46 #include "G4SystemOfUnits.hh" 52 #include "G4SystemOfUnits.hh" 47 #include "G4Tubs.hh" << 48 #include "G4UnitsTable.hh" 53 #include "G4UnitsTable.hh" 49 54 >> 55 #include "G4AutoDelete.hh" 50 //....oooOO0OOooo........oooOO0OOooo........oo 56 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 51 57 52 DetectorConstruction::DetectorConstruction() 58 DetectorConstruction::DetectorConstruction() >> 59 :G4VUserDetectorConstruction(), >> 60 fNLtot(40),fNRtot(50),fDLradl(0.5),fDRradl(0.1), >> 61 fDLlength(0.),fDRlength(0.), >> 62 fMaterial(0), >> 63 fEcalLength(0.),fEcalRadius(0.), >> 64 fSolidEcal(0),fLogicEcal(0),fPhysiEcal(0), >> 65 fDetectorMessenger(0) 53 { 66 { 54 DefineMaterials(); 67 DefineMaterials(); 55 SetMaterial("G4_PbWO4"); 68 SetMaterial("G4_PbWO4"); 56 fDetectorMessenger = new DetectorMessenger(t 69 fDetectorMessenger = new DetectorMessenger(this); 57 } 70 } 58 71 59 //....oooOO0OOooo........oooOO0OOooo........oo 72 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 60 73 61 DetectorConstruction::~DetectorConstruction() 74 DetectorConstruction::~DetectorConstruction() >> 75 { delete fDetectorMessenger;} >> 76 >> 77 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 78 >> 79 G4VPhysicalVolume* DetectorConstruction::Construct() 62 { 80 { 63 delete fDetectorMessenger; << 81 return ConstructVolumes(); 64 } 82 } 65 83 66 //....oooOO0OOooo........oooOO0OOooo........oo 84 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 67 85 68 void DetectorConstruction::DefineMaterials() 86 void DetectorConstruction::DefineMaterials() 69 { 87 { 70 // 88 // 71 // define few Elements by hand 89 // define few Elements by hand 72 // 90 // 73 G4double a, z; 91 G4double a, z; 74 << 92 75 G4Element* H = new G4Element("Hydrogen", "H" << 93 G4Element* H = new G4Element("Hydrogen", "H", z= 1., a= 1.01*g/mole); 76 G4Element* O = new G4Element("Oxygen", "O", << 94 G4Element* O = new G4Element("Oxygen" , "O", z= 8., a= 16.00*g/mole); 77 G4Element* Ge = new G4Element("Germanium", " << 95 G4Element* Ge = new G4Element("Germanium", "Ge",z=32., a= 72.59*g/mole); 78 G4Element* Bi = new G4Element("Bismuth", "Bi << 96 G4Element* Bi = new G4Element("Bismuth", "Bi",z=83., a= 208.98*g/mole); 79 97 80 // 98 // 81 // define materials 99 // define materials 82 // 100 // 83 G4double density; 101 G4double density; 84 G4int ncomponents, natoms; 102 G4int ncomponents, natoms; 85 103 86 // water with ionisation potential 78 eV 104 // water with ionisation potential 78 eV 87 G4Material* H2O = new G4Material("Water", de << 105 G4Material* H2O = 88 H2O->AddElement(H, natoms = 2); << 106 new G4Material("Water", density= 1.00*g/cm3, ncomponents=2); 89 H2O->AddElement(O, natoms = 1); << 107 H2O->AddElement(H, natoms=2); 90 H2O->GetIonisation()->SetMeanExcitationEnerg << 108 H2O->AddElement(O, natoms=1); >> 109 H2O->GetIonisation()->SetMeanExcitationEnergy(78.0*eV); 91 110 92 // pure materails 111 // pure materails 93 new G4Material("liquidArgon", z = 18., a = 3 << 112 new G4Material("liquidArgon", z=18., a= 39.95*g/mole, density= 1.390*g/cm3); 94 new G4Material("Aluminium", z = 13., a = 26. << 113 new G4Material("Aluminium", z=13., a= 26.98*g/mole, density= 2.7*g/cm3); 95 new G4Material("Iron", z = 26., a = 55.85 * << 114 new G4Material("Iron", z=26., a= 55.85*g/mole, density= 7.87*g/cm3); 96 new G4Material("Copper", z = 29., a = 63.55 << 115 new G4Material("Copper", z=29., a= 63.55*g/mole, density= 8.960*g/cm3); 97 new G4Material("Tungsten", z = 74., a = 183. << 116 new G4Material("Tungsten", z=74., a=183.84*g/mole, density=19.35*g/cm3); 98 new G4Material("Lead", z = 82., a = 207.19 * << 117 new G4Material("Lead", z=82., a=207.19*g/mole, density=11.35*g/cm3); 99 new G4Material("Uranium", z = 92., a = 238.0 << 118 new G4Material("Uranium" , z=92., a=238.03*g/mole, density= 18.95*g/cm3); 100 119 101 // compound material 120 // compound material 102 G4Material* BGO = new G4Material("BGO", dens << 121 G4Material* BGO = 103 BGO->AddElement(O, natoms = 12); << 122 new G4Material("BGO", density= 7.10*g/cm3, ncomponents=3); 104 BGO->AddElement(Ge, natoms = 3); << 123 BGO->AddElement(O , natoms=12); 105 BGO->AddElement(Bi, natoms = 4); << 124 BGO->AddElement(Ge, natoms= 3); 106 << 125 BGO->AddElement(Bi, natoms= 4); 107 ////G4cout << *(G4Material::GetMaterialTable << 108 } 126 } 109 127 110 //....oooOO0OOooo........oooOO0OOooo........oo 128 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 111 129 112 void DetectorConstruction::UpdateParameters() << 130 G4VPhysicalVolume* DetectorConstruction::ConstructVolumes() 113 { 131 { 114 G4double Radl = fMaterial->GetRadlen(); 132 G4double Radl = fMaterial->GetRadlen(); 115 fDLlength = fDLradl * Radl; << 116 fDRlength = fDRradl * Radl; << 117 fEcalLength = fNLtot * fDLlength; << 118 fEcalRadius = fNRtot * fDRlength; << 119 if (fSolidEcal) { << 120 fSolidEcal->SetOuterRadius(fEcalRadius); << 121 fSolidEcal->SetZHalfLength(0.5 * fEcalLeng << 122 } << 123 } << 124 133 125 //....oooOO0OOooo........oooOO0OOooo........oo << 134 fDLlength = fDLradl*Radl; fDRlength = fDRradl*Radl; >> 135 fEcalLength = fNLtot*fDLlength; fEcalRadius = fNRtot*fDRlength; >> 136 >> 137 // Cleanup old geometry >> 138 G4GeometryManager::GetInstance()->OpenGeometry(); >> 139 G4PhysicalVolumeStore::GetInstance()->Clean(); >> 140 G4LogicalVolumeStore::GetInstance()->Clean(); >> 141 G4SolidStore::GetInstance()->Clean(); 126 142 127 G4VPhysicalVolume* DetectorConstruction::Const << 128 { << 129 UpdateParameters(); << 130 // 143 // 131 // Ecal 144 // Ecal 132 // 145 // 133 if (!fPhysiEcal) { << 146 fSolidEcal = new G4Tubs("Ecal",0.,fEcalRadius,0.5*fEcalLength,0.,360*deg); 134 fSolidEcal = new G4Tubs("Ecal", 0., fEcalR << 147 fLogicEcal = new G4LogicalVolume( fSolidEcal,fMaterial,"Ecal",0,0,0); 135 fLogicEcal = new G4LogicalVolume(fSolidEca << 148 fPhysiEcal = new G4PVPlacement(0,G4ThreeVector(), 136 fPhysiEcal = new G4PVPlacement(0, G4ThreeV << 149 fLogicEcal,"Ecal",0,false,0); 137 } << 150 138 G4cout << "\n Absorber is " << G4BestUnit(fE << 151 G4cout << *(G4Material::GetMaterialTable()) << G4endl; 139 << " R= " << fEcalRadius / cm << " c << 152 140 << G4endl; << 153 G4cout << "Absorber is " << G4BestUnit(fEcalLength,"Length") 141 G4cout << fMaterial << G4endl; << 154 << " of " << fMaterial->GetName() << G4endl; 142 // 155 // 143 // always return the physical World << 156 //always return the physical World 144 // 157 // 145 return fPhysiEcal; 158 return fPhysiEcal; 146 } 159 } 147 160 148 //....oooOO0OOooo........oooOO0OOooo........oo 161 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 149 162 150 void DetectorConstruction::SetMaterial(const G 163 void DetectorConstruction::SetMaterial(const G4String& materialChoice) 151 { 164 { 152 // search the material by its name 165 // search the material by its name 153 G4Material* pttoMaterial = G4NistManager::In << 166 G4Material* pttoMaterial = >> 167 G4NistManager::Instance()->FindOrBuildMaterial(materialChoice); 154 168 155 if (pttoMaterial && fMaterial != pttoMateria << 169 if(pttoMaterial && fMaterial != pttoMaterial) { 156 fMaterial = pttoMaterial; 170 fMaterial = pttoMaterial; 157 if (fLogicEcal) { << 171 if(fLogicEcal) { fLogicEcal->SetMaterial(fMaterial); } 158 fLogicEcal->SetMaterial(fMaterial); << 159 } << 160 G4RunManager::GetRunManager()->PhysicsHasB 172 G4RunManager::GetRunManager()->PhysicsHasBeenModified(); 161 } 173 } 162 } 174 } 163 175 164 //....oooOO0OOooo........oooOO0OOooo........oo 176 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 165 177 166 void DetectorConstruction::SetLBining(G4ThreeV 178 void DetectorConstruction::SetLBining(G4ThreeVector Value) 167 { 179 { 168 fNLtot = (G4int)Value(0); 180 fNLtot = (G4int)Value(0); 169 if (fNLtot > kMaxBin) { 181 if (fNLtot > kMaxBin) { 170 G4cout << "\n ---> warning from SetLBining << 182 G4cout << "\n ---> warning from SetLBining: " 171 << G4endl; << 183 << fNLtot << " truncated to " << kMaxBin << G4endl; 172 fNLtot = kMaxBin; 184 fNLtot = kMaxBin; 173 } << 185 } 174 fDLradl = Value(1); 186 fDLradl = Value(1); 175 UpdateParameters(); << 187 G4RunManager::GetRunManager()->ReinitializeGeometry(); 176 } 188 } 177 189 178 //....oooOO0OOooo........oooOO0OOooo........oo 190 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 179 191 180 void DetectorConstruction::SetRBining(G4ThreeV 192 void DetectorConstruction::SetRBining(G4ThreeVector Value) 181 { 193 { 182 fNRtot = (G4int)Value(0); 194 fNRtot = (G4int)Value(0); 183 if (fNRtot > kMaxBin) { 195 if (fNRtot > kMaxBin) { 184 G4cout << "\n ---> warning from SetRBining << 196 G4cout << "\n ---> warning from SetRBining: " 185 << G4endl; << 197 << fNRtot << " truncated to " << kMaxBin << G4endl; 186 fNRtot = kMaxBin; 198 fNRtot = kMaxBin; 187 } << 199 } 188 fDRradl = Value(1); 200 fDRradl = Value(1); 189 UpdateParameters(); << 201 G4RunManager::GetRunManager()->ReinitializeGeometry(); 190 } 202 } 191 203 192 //....oooOO0OOooo........oooOO0OOooo........oo 204 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 193 205 194 void DetectorConstruction::ConstructSDandField 206 void DetectorConstruction::ConstructSDandField() 195 { 207 { 196 if (fFieldMessenger.Get() == nullptr) { << 208 if ( fFieldMessenger.Get() == 0 ) { 197 // Create global magnetic field messenger. << 209 // Create global magnetic field messenger. 198 // Uniform magnetic field is then created << 210 // Uniform magnetic field is then created automatically if 199 // the field value is not zero. << 211 // the field value is not zero. 200 G4ThreeVector fieldValue = G4ThreeVector() << 212 G4ThreeVector fieldValue = G4ThreeVector(); 201 G4GlobalMagFieldMessenger* msg = new G4Glo << 213 G4GlobalMagFieldMessenger* msg = 202 // msg->SetVerboseLevel(1); << 214 new G4GlobalMagFieldMessenger(fieldValue); 203 G4AutoDelete::Register(msg); << 215 //msg->SetVerboseLevel(1); 204 fFieldMessenger.Put(msg); << 216 G4AutoDelete::Register(msg); 205 } << 217 fFieldMessenger.Put( msg ); 206 } << 207 218 >> 219 } >> 220 } 208 //....oooOO0OOooo........oooOO0OOooo........oo 221 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 209 222