Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 /// \file electromagnetic/TestEm1/src/Detector << 26 27 /// \brief Implementation of the DetectorConst << 28 // 27 // >> 28 // $Id: DetectorConstruction.cc,v 1.8 2007/11/12 15:48:58 maire Exp $ >> 29 // GEANT4 tag $Name: geant4-09-01-patch-01 $ 29 // 30 // >> 31 // 30 32 31 //....oooOO0OOooo........oooOO0OOooo........oo 33 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 32 //....oooOO0OOooo........oooOO0OOooo........oo 34 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 33 35 34 #include "DetectorConstruction.hh" 36 #include "DetectorConstruction.hh" 35 << 36 #include "DetectorMessenger.hh" 37 #include "DetectorMessenger.hh" 37 38 38 #include "G4AutoDelete.hh" << 39 #include "G4Material.hh" 39 #include "G4Box.hh" 40 #include "G4Box.hh" 40 #include "G4GeometryManager.hh" << 41 #include "G4GlobalMagFieldMessenger.hh" << 42 #include "G4LogicalVolume.hh" 41 #include "G4LogicalVolume.hh" 43 #include "G4LogicalVolumeStore.hh" << 44 #include "G4Material.hh" << 45 #include "G4NistManager.hh" << 46 #include "G4PVPlacement.hh" 42 #include "G4PVPlacement.hh" 47 #include "G4PhysicalConstants.hh" << 43 #include "G4UniformMagField.hh" >> 44 >> 45 #include "G4GeometryManager.hh" 48 #include "G4PhysicalVolumeStore.hh" 46 #include "G4PhysicalVolumeStore.hh" 49 #include "G4RunManager.hh" << 47 #include "G4LogicalVolumeStore.hh" 50 #include "G4SolidStore.hh" 48 #include "G4SolidStore.hh" 51 #include "G4SystemOfUnits.hh" << 49 52 #include "G4UnitsTable.hh" 50 #include "G4UnitsTable.hh" 53 51 54 //....oooOO0OOooo........oooOO0OOooo........oo 52 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 55 53 56 DetectorConstruction::DetectorConstruction() 54 DetectorConstruction::DetectorConstruction() >> 55 :pBox(0), lBox(0), aMaterial(0), magField(0) 57 { 56 { 58 fBoxSize = 10 * m; << 57 BoxSize = 10*m; 59 DefineMaterials(); 58 DefineMaterials(); 60 SetMaterial("G4_Al"); << 59 SetMaterial("Aluminium"); 61 fDetectorMessenger = new DetectorMessenger(t << 60 detectorMessenger = new DetectorMessenger(this); 62 } 61 } 63 62 64 //....oooOO0OOooo........oooOO0OOooo........oo 63 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 65 64 66 DetectorConstruction::~DetectorConstruction() 65 DetectorConstruction::~DetectorConstruction() >> 66 { delete detectorMessenger;} >> 67 >> 68 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 69 >> 70 G4VPhysicalVolume* DetectorConstruction::Construct() 67 { 71 { 68 delete fDetectorMessenger; << 72 return ConstructVolumes(); 69 } 73 } 70 74 71 //....oooOO0OOooo........oooOO0OOooo........oo 75 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 72 76 73 void DetectorConstruction::DefineMaterials() 77 void DetectorConstruction::DefineMaterials() 74 { 78 { 75 // 79 // 76 // define Elements 80 // define Elements 77 // 81 // 78 G4double z, a; << 82 G4double z,a; 79 << 83 80 G4Element* H = new G4Element("Hydrogen", "H" << 84 G4Element* H = new G4Element("Hydrogen" ,"H" , z= 1., a= 1.01*g/mole); 81 G4Element* C = new G4Element("Hydrogen", "C" << 85 G4Element* C = new G4Element("Hydrogen" ,"C" , z= 6., a= 12.00*g/mole); 82 G4Element* N = new G4Element("Nitrogen", "N" << 86 G4Element* N = new G4Element("Nitrogen" ,"N" , z= 7., a= 14.01*g/mole); 83 G4Element* O = new G4Element("Oxygen", "O", << 87 G4Element* O = new G4Element("Oxygen" ,"O" , z= 8., a= 16.00*g/mole); 84 G4Element* Ge = new G4Element("Germanium", " << 88 G4Element* Ge = new G4Element("Germanium","Ge", z=32., a= 72.59*g/mole); 85 G4Element* Bi = new G4Element("Bismuth", "Bi << 89 G4Element* Bi = new G4Element("Bismuth" ,"Bi", z=83., a= 208.98*g/mole); 86 << 90 87 // 91 // 88 // define materials 92 // define materials 89 // 93 // 90 G4double density; 94 G4double density; 91 G4int ncomponents, natoms; 95 G4int ncomponents, natoms; 92 G4double fractionmass; << 96 G4double fractionmass; 93 << 97 94 G4Material* Air = new G4Material("Air", dens << 98 G4Material* Air = 95 Air->AddElement(N, fractionmass = 70. * perC << 99 new G4Material("Air", density= 1.290*mg/cm3, ncomponents=2); 96 Air->AddElement(O, fractionmass = 30. * perC << 100 Air->AddElement(N, fractionmass=70.*perCent); 97 << 101 Air->AddElement(O, fractionmass=30.*perCent); 98 G4Material* H2l = new G4Material("H2liquid", << 99 H2l->AddElement(H, fractionmass = 1.); << 100 << 101 G4Material* H2O = new G4Material("Water", de << 102 H2O->AddElement(H, natoms = 2); << 103 H2O->AddElement(O, natoms = 1); << 104 /// H2O->SetChemicalFormula("H_2O"); << 105 H2O->GetIonisation()->SetMeanExcitationEnerg << 106 << 107 density = 0.001 * mg / cm3; << 108 G4Material* CO2 = new G4Material("CO2", dens << 109 CO2->AddElement(C, natoms = 1); << 110 CO2->AddElement(O, natoms = 2); << 111 << 112 G4Isotope* d = new G4Isotope("d", 1, 2, 0.0, << 113 G4Element* D = new G4Element("Heavy-Hydrogen << 114 D->AddIsotope(d, 1.0); << 115 G4Material* D2 = new G4Material("D2_gas", de << 116 D2->AddElement(D, natoms = 2); << 117 << 118 new G4Material("liquidArgon", z = 18., a = 3 << 119 << 120 new G4Material("Aluminium", z = 13., a = 26. << 121 102 122 new G4Material("Silicon", z = 14., a = 28.09 << 103 G4Material* H2l = >> 104 new G4Material("H2liquid", density= 70.8*mg/cm3, ncomponents=1); >> 105 H2l->AddElement(H, fractionmass=1.); 123 106 124 new G4Material("Chromium", z = 24., a = 51.9 << 107 G4Material* H2O = >> 108 new G4Material("Water", density= 1.000*g/cm3, ncomponents=2); >> 109 H2O->AddElement(H, natoms=2); >> 110 H2O->AddElement(O, natoms=1); >> 111 ///H2O->SetChemicalFormula("H_2O"); >> 112 H2O->GetIonisation()->SetMeanExcitationEnergy(75.0*eV); 125 113 126 new G4Material("Germanium", z = 32., a = 72. << 114 density = 0.001*mg/cm3; >> 115 G4Material* CO2 = new G4Material("CO2", density, ncomponents=2); >> 116 CO2->AddElement(C, natoms=1); >> 117 CO2->AddElement(O, natoms=2); >> 118 >> 119 new G4Material("D2_gas", z=2., a= 2.0141*g/mole, density= 0.036*mg/cm3); 127 120 128 G4Material* BGO = new G4Material("BGO", dens << 121 new G4Material("liquidArgon", z=18., a= 39.95*g/mole, density= 1.390*g/cm3); 129 BGO->AddElement(O, natoms = 12); << 130 BGO->AddElement(Ge, natoms = 3); << 131 BGO->AddElement(Bi, natoms = 4); << 132 122 133 new G4Material("Iron", z = 26., a = 55.85 * << 123 new G4Material("Aluminium" , z=13., a= 26.98*g/mole, density= 2.700*g/cm3); 134 124 135 new G4Material("Tungsten", z = 74., a = 183. << 125 new G4Material("Silicon" , z=14., a= 28.09*g/mole, density= 2.330*g/cm3); 136 126 137 new G4Material("Gold", z = 79., a = 196.97 * << 127 new G4Material("Germanium" , z=32., a= 72.61*g/mole, density= 5.323*g/cm3); >> 128 >> 129 G4Material* BGO = >> 130 new G4Material("BGO", density= 7.10*g/cm3, ncomponents=3); >> 131 BGO->AddElement(O , natoms=12); >> 132 BGO->AddElement(Ge, natoms= 3); >> 133 BGO->AddElement(Bi, natoms= 4); 138 134 139 new G4Material("Lead", z = 82., a = 207.19 * << 135 new G4Material("Iron" , z=26., a= 55.85*g/mole, density= 7.870*g/cm3); 140 136 141 new G4Material("Uranium", z = 92., a = 238.0 << 137 new G4Material("Tungsten" , z=74., a=183.85*g/mole, density= 19.30*g/cm3); 142 138 143 G4Material* argonGas = << 139 new G4Material("Lead" , z=82., a=207.19*g/mole, density= 11.35*g/cm3); 144 new G4Material("ArgonGas", z = 18, a = 39. << 145 273.15 * kelvin, 1 * atmosp << 146 140 147 G4Material* butane = new G4Material("Isobuta << 141 new G4Material("Uranium" , z=92., a=238.03*g/mole, density= 18.95*g/cm3); 148 kStateGa << 149 butane->AddElement(C, natoms = 4); << 150 butane->AddElement(H, natoms = 10); << 151 142 152 G4Material* ArButane = new G4Material("Argon << 153 kState << 154 ArButane->AddMaterial(argonGas, fractionmass << 155 ArButane->AddMaterial(butane, fractionmass = << 156 143 157 // example of vacuum << 144 G4cout << *(G4Material::GetMaterialTable()) << G4endl; 158 // << 159 density = universe_mean_density; // from Ph << 160 new G4Material("Galactic", z = 1., a = 1.008 << 161 3.e-18 * pascal); << 162 << 163 // use Nist << 164 // << 165 G4NistManager* man = G4NistManager::Instance << 166 << 167 G4bool isotopes = false; << 168 /// G4Element* O = man->FindOrBuildElement( << 169 G4Element* Si = man->FindOrBuildElement("Si" << 170 G4Element* Lu = man->FindOrBuildElement("Lu" << 171 << 172 G4Material* LSO = new G4Material("Lu2SiO5", << 173 LSO->AddElement(Lu, 2); << 174 LSO->AddElement(Si, 1); << 175 LSO->AddElement(O, 5); << 176 << 177 /// G4cout << *(G4Material::GetMaterialTable << 178 } 145 } 179 146 180 //....oooOO0OOooo........oooOO0OOooo........oo 147 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 181 148 182 G4VPhysicalVolume* DetectorConstruction::Const << 149 G4VPhysicalVolume* DetectorConstruction::ConstructVolumes() 183 { 150 { 184 if (fPBox) { << 151 // Cleanup old geometry 185 return fPBox; << 152 G4GeometryManager::GetInstance()->OpenGeometry(); 186 } << 153 G4PhysicalVolumeStore::GetInstance()->Clean(); 187 fBox = new G4Box("Container", // its name << 154 G4LogicalVolumeStore::GetInstance()->Clean(); 188 fBoxSize / 2, fBoxSize / 2, << 155 G4SolidStore::GetInstance()->Clean(); 189 << 190 fLBox = new G4LogicalVolume(fBox, // its sh << 191 fMaterial, // i << 192 fMaterial->GetNa << 193 << 194 fPBox = new G4PVPlacement(0, // no rotation << 195 G4ThreeVector(), << 196 fLBox, // its log << 197 fMaterial->GetName << 198 0, // its mother << 199 false, // no bool << 200 0); // copy numbe << 201 156 202 PrintParameters(); << 157 G4Box* >> 158 sBox = new G4Box("Container", //its name >> 159 BoxSize/2,BoxSize/2,BoxSize/2); //its dimensions >> 160 >> 161 lBox = new G4LogicalVolume(sBox, //its shape >> 162 aMaterial, //its material >> 163 aMaterial->GetName()); //its name 203 164 204 // always return the root volume << 165 pBox = new G4PVPlacement(0, //no rotation >> 166 G4ThreeVector(), //at (0,0,0) >> 167 lBox, //its logical volume >> 168 aMaterial->GetName(), //its name >> 169 0, //its mother volume >> 170 false, //no boolean operation >> 171 0); //copy number >> 172 >> 173 PrintParameters(); >> 174 >> 175 //always return the root volume 205 // 176 // 206 return fPBox; << 177 return pBox; 207 } 178 } 208 179 209 //....oooOO0OOooo........oooOO0OOooo........oo 180 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 210 181 211 void DetectorConstruction::PrintParameters() 182 void DetectorConstruction::PrintParameters() 212 { 183 { 213 G4cout << "\n The Box is " << G4BestUnit(fBo << 184 G4cout << "\n The Box is " << G4BestUnit(BoxSize,"Length") 214 << G4endl; << 185 << " of " << aMaterial->GetName() << G4endl; 215 G4cout << fMaterial << G4endl; << 216 } 186 } 217 187 218 //....oooOO0OOooo........oooOO0OOooo........oo 188 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 219 189 220 void DetectorConstruction::SetMaterial(const G << 190 void DetectorConstruction::SetMaterial(G4String materialChoice) 221 { 191 { 222 // search the material by its name 192 // search the material by its name 223 G4Material* pttoMaterial = G4NistManager::In << 193 G4Material* pttoMaterial = G4Material::GetMaterial(materialChoice); 224 << 194 if (pttoMaterial) aMaterial = pttoMaterial; 225 if (pttoMaterial) { << 226 fMaterial = pttoMaterial; << 227 if (fLBox) { << 228 fLBox->SetMaterial(fMaterial); << 229 } << 230 } << 231 else { << 232 G4cout << "\n--> warning from DetectorCons << 233 << " not found" << G4endl; << 234 } << 235 G4RunManager::GetRunManager()->PhysicsHasBee << 236 } 195 } 237 196 238 //....oooOO0OOooo........oooOO0OOooo........oo 197 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 239 198 240 void DetectorConstruction::SetSize(G4double va 199 void DetectorConstruction::SetSize(G4double value) 241 { 200 { 242 fBoxSize = value; << 201 BoxSize = value; 243 if (fBox) { << 202 } 244 fBox->SetXHalfLength(fBoxSize / 2); << 203 245 fBox->SetYHalfLength(fBoxSize / 2); << 204 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 246 fBox->SetZHalfLength(fBoxSize / 2); << 205 247 } << 206 #include "G4FieldManager.hh" >> 207 #include "G4TransportationManager.hh" >> 208 >> 209 void DetectorConstruction::SetMagField(G4double fieldValue) >> 210 { >> 211 //apply a global uniform magnetic field along Z axis >> 212 G4FieldManager* fieldMgr >> 213 = G4TransportationManager::GetTransportationManager()->GetFieldManager(); >> 214 >> 215 if (magField) delete magField; //delete the existing magn field >> 216 >> 217 if (fieldValue!=0.) // create a new one if non nul >> 218 { >> 219 magField = new G4UniformMagField(G4ThreeVector(0.,0.,fieldValue)); >> 220 fieldMgr->SetDetectorField(magField); >> 221 fieldMgr->CreateChordFinder(magField); >> 222 } >> 223 else >> 224 { >> 225 magField = 0; >> 226 fieldMgr->SetDetectorField(magField); >> 227 } 248 } 228 } 249 229 250 //....oooOO0OOooo........oooOO0OOooo........oo 230 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 251 231 252 void DetectorConstruction::ConstructSDandField << 232 #include "G4RunManager.hh" 253 { << 233 254 if (fFieldMessenger.Get() == 0) { << 234 void DetectorConstruction::UpdateGeometry() 255 // Create global magnetic field messenger. << 235 { 256 // Uniform magnetic field is then created << 236 G4RunManager::GetRunManager()->DefineWorldVolume(ConstructVolumes()); 257 // the field value is not zero. << 258 G4ThreeVector fieldValue = G4ThreeVector() << 259 G4GlobalMagFieldMessenger* msg = new G4Glo << 260 // msg->SetVerboseLevel(1); << 261 G4AutoDelete::Register(msg); << 262 fFieldMessenger.Put(msg); << 263 } << 264 } 237 } 265 238 266 //....oooOO0OOooo........oooOO0OOooo........oo 239 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 267 240