Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 /// \file electromagnetic/TestEm1/src/Detector << 23 27 /// \brief Implementation of the DetectorConst << 28 // 24 // >> 25 // $Id: DetectorConstruction.cc,v 1.5 2005/06/01 10:20:12 maire Exp $ >> 26 // GEANT4 tag $Name: geant4-08-00 $ 29 // 27 // >> 28 // 30 29 31 //....oooOO0OOooo........oooOO0OOooo........oo 30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 32 //....oooOO0OOooo........oooOO0OOooo........oo 31 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 33 32 34 #include "DetectorConstruction.hh" 33 #include "DetectorConstruction.hh" 35 << 36 #include "DetectorMessenger.hh" 34 #include "DetectorMessenger.hh" 37 35 38 #include "G4AutoDelete.hh" << 36 #include "G4Material.hh" 39 #include "G4Box.hh" 37 #include "G4Box.hh" 40 #include "G4GeometryManager.hh" << 41 #include "G4GlobalMagFieldMessenger.hh" << 42 #include "G4LogicalVolume.hh" 38 #include "G4LogicalVolume.hh" 43 #include "G4LogicalVolumeStore.hh" << 44 #include "G4Material.hh" << 45 #include "G4NistManager.hh" << 46 #include "G4PVPlacement.hh" 39 #include "G4PVPlacement.hh" 47 #include "G4PhysicalConstants.hh" << 40 #include "G4UniformMagField.hh" >> 41 >> 42 #include "G4GeometryManager.hh" 48 #include "G4PhysicalVolumeStore.hh" 43 #include "G4PhysicalVolumeStore.hh" 49 #include "G4RunManager.hh" << 44 #include "G4LogicalVolumeStore.hh" 50 #include "G4SolidStore.hh" 45 #include "G4SolidStore.hh" 51 #include "G4SystemOfUnits.hh" << 46 52 #include "G4UnitsTable.hh" 47 #include "G4UnitsTable.hh" 53 48 54 //....oooOO0OOooo........oooOO0OOooo........oo 49 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 55 50 56 DetectorConstruction::DetectorConstruction() 51 DetectorConstruction::DetectorConstruction() >> 52 :pBox(0), lBox(0), aMaterial(0), magField(0) 57 { 53 { 58 fBoxSize = 10 * m; << 54 BoxSize = 10*m; 59 DefineMaterials(); 55 DefineMaterials(); 60 SetMaterial("G4_Al"); << 56 SetMaterial("Aluminium"); 61 fDetectorMessenger = new DetectorMessenger(t << 57 detectorMessenger = new DetectorMessenger(this); 62 } 58 } 63 59 64 //....oooOO0OOooo........oooOO0OOooo........oo 60 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 65 61 66 DetectorConstruction::~DetectorConstruction() 62 DetectorConstruction::~DetectorConstruction() >> 63 { delete detectorMessenger;} >> 64 >> 65 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 66 >> 67 G4VPhysicalVolume* DetectorConstruction::Construct() 67 { 68 { 68 delete fDetectorMessenger; << 69 return ConstructVolumes(); 69 } 70 } 70 71 71 //....oooOO0OOooo........oooOO0OOooo........oo 72 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 72 73 73 void DetectorConstruction::DefineMaterials() 74 void DetectorConstruction::DefineMaterials() 74 { 75 { 75 // 76 // 76 // define Elements 77 // define Elements 77 // 78 // 78 G4double z, a; << 79 G4double z,a; 79 << 80 80 G4Element* H = new G4Element("Hydrogen", "H" << 81 G4Element* H = new G4Element("Hydrogen" ,"H" , z= 1., a= 1.01*g/mole); 81 G4Element* C = new G4Element("Hydrogen", "C" << 82 G4Element* N = new G4Element("Nitrogen" ,"N" , z= 7., a= 14.01*g/mole); 82 G4Element* N = new G4Element("Nitrogen", "N" << 83 G4Element* O = new G4Element("Oxygen" ,"O" , z= 8., a= 16.00*g/mole); 83 G4Element* O = new G4Element("Oxygen", "O", << 84 G4Element* Ge = new G4Element("Germanium","Ge", z=32., a= 72.59*g/mole); 84 G4Element* Ge = new G4Element("Germanium", " << 85 G4Element* Bi = new G4Element("Bismuth" ,"Bi", z=83., a= 208.98*g/mole); 85 G4Element* Bi = new G4Element("Bismuth", "Bi << 86 86 << 87 // 87 // 88 // define materials 88 // define materials 89 // 89 // 90 G4double density; 90 G4double density; 91 G4int ncomponents, natoms; 91 G4int ncomponents, natoms; 92 G4double fractionmass; << 92 G4double fractionmass; 93 << 93 94 G4Material* Air = new G4Material("Air", dens << 94 G4Material* Air = 95 Air->AddElement(N, fractionmass = 70. * perC << 95 new G4Material("Air", density= 1.290*mg/cm3, ncomponents=2); 96 Air->AddElement(O, fractionmass = 30. * perC << 96 Air->AddElement(N, fractionmass=70.*perCent); 97 << 97 Air->AddElement(O, fractionmass=30.*perCent); 98 G4Material* H2l = new G4Material("H2liquid", << 99 H2l->AddElement(H, fractionmass = 1.); << 100 << 101 G4Material* H2O = new G4Material("Water", de << 102 H2O->AddElement(H, natoms = 2); << 103 H2O->AddElement(O, natoms = 1); << 104 /// H2O->SetChemicalFormula("H_2O"); << 105 H2O->GetIonisation()->SetMeanExcitationEnerg << 106 << 107 density = 0.001 * mg / cm3; << 108 G4Material* CO2 = new G4Material("CO2", dens << 109 CO2->AddElement(C, natoms = 1); << 110 CO2->AddElement(O, natoms = 2); << 111 << 112 G4Isotope* d = new G4Isotope("d", 1, 2, 0.0, << 113 G4Element* D = new G4Element("Heavy-Hydrogen << 114 D->AddIsotope(d, 1.0); << 115 G4Material* D2 = new G4Material("D2_gas", de << 116 D2->AddElement(D, natoms = 2); << 117 << 118 new G4Material("liquidArgon", z = 18., a = 3 << 119 << 120 new G4Material("Aluminium", z = 13., a = 26. << 121 98 122 new G4Material("Silicon", z = 14., a = 28.09 << 99 G4Material* H2l = >> 100 new G4Material("H2liquid", density= 70.8*mg/cm3, ncomponents=1); >> 101 H2l->AddElement(H, fractionmass=1.); 123 102 124 new G4Material("Chromium", z = 24., a = 51.9 << 103 G4Material* H2O = >> 104 new G4Material("Water", density= 1.000*g/cm3, ncomponents=2); >> 105 H2O->AddElement(H, natoms=2); >> 106 H2O->AddElement(O, natoms=1); >> 107 ///H2O->SetChemicalFormula("H_2O"); >> 108 H2O->GetIonisation()->SetMeanExcitationEnergy(75.0*eV); 125 109 126 new G4Material("Germanium", z = 32., a = 72. << 110 new G4Material("liquidArgon", z=18., a= 39.95*g/mole, density= 1.390*g/cm3); 127 111 128 G4Material* BGO = new G4Material("BGO", dens << 112 new G4Material("Aluminium" , z=13., a= 26.98*g/mole, density= 2.700*g/cm3); 129 BGO->AddElement(O, natoms = 12); << 130 BGO->AddElement(Ge, natoms = 3); << 131 BGO->AddElement(Bi, natoms = 4); << 132 113 133 new G4Material("Iron", z = 26., a = 55.85 * << 114 new G4Material("Silicon" , z=14., a= 28.09*g/mole, density= 2.330*g/cm3); 134 115 135 new G4Material("Tungsten", z = 74., a = 183. << 116 new G4Material("Germanium" , z=32., a= 72.61*g/mole, density= 5.323*g/cm3); >> 117 >> 118 G4Material* BGO = >> 119 new G4Material("BGO", density= 7.10*g/cm3, ncomponents=3); >> 120 BGO->AddElement(O , natoms=12); >> 121 BGO->AddElement(Ge, natoms= 3); >> 122 BGO->AddElement(Bi, natoms= 4); 136 123 137 new G4Material("Gold", z = 79., a = 196.97 * << 124 new G4Material("Iron" , z=26., a= 55.85*g/mole, density= 7.870*g/cm3); 138 125 139 new G4Material("Lead", z = 82., a = 207.19 * << 126 new G4Material("Tungsten" , z=74., a=183.85*g/mole, density= 19.30*g/cm3); 140 127 141 new G4Material("Uranium", z = 92., a = 238.0 << 128 new G4Material("Lead" , z=82., a=207.19*g/mole, density= 11.35*g/cm3); 142 129 143 G4Material* argonGas = << 130 new G4Material("Uranium" , z=92., a=238.03*g/mole, density= 18.95*g/cm3); 144 new G4Material("ArgonGas", z = 18, a = 39. << 145 273.15 * kelvin, 1 * atmosp << 146 131 147 G4Material* butane = new G4Material("Isobuta << 148 kStateGa << 149 butane->AddElement(C, natoms = 4); << 150 butane->AddElement(H, natoms = 10); << 151 132 152 G4Material* ArButane = new G4Material("Argon << 133 G4cout << *(G4Material::GetMaterialTable()) << G4endl; 153 kState << 154 ArButane->AddMaterial(argonGas, fractionmass << 155 ArButane->AddMaterial(butane, fractionmass = << 156 << 157 // example of vacuum << 158 // << 159 density = universe_mean_density; // from Ph << 160 new G4Material("Galactic", z = 1., a = 1.008 << 161 3.e-18 * pascal); << 162 << 163 // use Nist << 164 // << 165 G4NistManager* man = G4NistManager::Instance << 166 << 167 G4bool isotopes = false; << 168 /// G4Element* O = man->FindOrBuildElement( << 169 G4Element* Si = man->FindOrBuildElement("Si" << 170 G4Element* Lu = man->FindOrBuildElement("Lu" << 171 << 172 G4Material* LSO = new G4Material("Lu2SiO5", << 173 LSO->AddElement(Lu, 2); << 174 LSO->AddElement(Si, 1); << 175 LSO->AddElement(O, 5); << 176 << 177 /// G4cout << *(G4Material::GetMaterialTable << 178 } 134 } 179 135 180 //....oooOO0OOooo........oooOO0OOooo........oo 136 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 181 137 182 G4VPhysicalVolume* DetectorConstruction::Const << 138 G4VPhysicalVolume* DetectorConstruction::ConstructVolumes() 183 { 139 { 184 if (fPBox) { << 140 // Cleanup old geometry 185 return fPBox; << 141 G4GeometryManager::GetInstance()->OpenGeometry(); 186 } << 142 G4PhysicalVolumeStore::GetInstance()->Clean(); 187 fBox = new G4Box("Container", // its name << 143 G4LogicalVolumeStore::GetInstance()->Clean(); 188 fBoxSize / 2, fBoxSize / 2, << 144 G4SolidStore::GetInstance()->Clean(); 189 << 190 fLBox = new G4LogicalVolume(fBox, // its sh << 191 fMaterial, // i << 192 fMaterial->GetNa << 193 << 194 fPBox = new G4PVPlacement(0, // no rotation << 195 G4ThreeVector(), << 196 fLBox, // its log << 197 fMaterial->GetName << 198 0, // its mother << 199 false, // no bool << 200 0); // copy numbe << 201 145 202 PrintParameters(); << 146 G4Box* >> 147 sBox = new G4Box("Container", //its name >> 148 BoxSize/2,BoxSize/2,BoxSize/2); //its dimensions >> 149 >> 150 lBox = new G4LogicalVolume(sBox, //its shape >> 151 aMaterial, //its material >> 152 aMaterial->GetName()); //its name 203 153 204 // always return the root volume << 154 pBox = new G4PVPlacement(0, //no rotation >> 155 G4ThreeVector(), //at (0,0,0) >> 156 lBox, //its logical volume >> 157 aMaterial->GetName(), //its name >> 158 0, //its mother volume >> 159 false, //no boolean operation >> 160 0); //copy number >> 161 >> 162 PrintParameters(); >> 163 >> 164 //always return the root volume 205 // 165 // 206 return fPBox; << 166 return pBox; 207 } 167 } 208 168 209 //....oooOO0OOooo........oooOO0OOooo........oo 169 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 210 170 211 void DetectorConstruction::PrintParameters() 171 void DetectorConstruction::PrintParameters() 212 { 172 { 213 G4cout << "\n The Box is " << G4BestUnit(fBo << 173 G4cout << "\n The Box is " << G4BestUnit(BoxSize,"Length") 214 << G4endl; << 174 << " of " << aMaterial->GetName() << G4endl; 215 G4cout << fMaterial << G4endl; << 216 } 175 } 217 176 218 //....oooOO0OOooo........oooOO0OOooo........oo 177 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 219 178 220 void DetectorConstruction::SetMaterial(const G << 179 void DetectorConstruction::SetMaterial(G4String materialChoice) 221 { 180 { 222 // search the material by its name 181 // search the material by its name 223 G4Material* pttoMaterial = G4NistManager::In << 182 G4Material* pttoMaterial = G4Material::GetMaterial(materialChoice); 224 << 183 if (pttoMaterial) aMaterial = pttoMaterial; 225 if (pttoMaterial) { << 226 fMaterial = pttoMaterial; << 227 if (fLBox) { << 228 fLBox->SetMaterial(fMaterial); << 229 } << 230 } << 231 else { << 232 G4cout << "\n--> warning from DetectorCons << 233 << " not found" << G4endl; << 234 } << 235 G4RunManager::GetRunManager()->PhysicsHasBee << 236 } 184 } 237 185 238 //....oooOO0OOooo........oooOO0OOooo........oo 186 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 239 187 240 void DetectorConstruction::SetSize(G4double va 188 void DetectorConstruction::SetSize(G4double value) 241 { 189 { 242 fBoxSize = value; << 190 BoxSize = value; 243 if (fBox) { << 244 fBox->SetXHalfLength(fBoxSize / 2); << 245 fBox->SetYHalfLength(fBoxSize / 2); << 246 fBox->SetZHalfLength(fBoxSize / 2); << 247 } << 248 } 191 } 249 192 250 //....oooOO0OOooo........oooOO0OOooo........oo 193 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 251 194 252 void DetectorConstruction::ConstructSDandField << 195 #include "G4FieldManager.hh" >> 196 #include "G4TransportationManager.hh" >> 197 >> 198 void DetectorConstruction::SetMagField(G4double fieldValue) >> 199 { >> 200 //apply a global uniform magnetic field along Z axis >> 201 G4FieldManager* fieldMgr >> 202 = G4TransportationManager::GetTransportationManager()->GetFieldManager(); >> 203 >> 204 if (magField) delete magField; //delete the existing magn field >> 205 >> 206 if (fieldValue!=0.) // create a new one if non nul >> 207 { >> 208 magField = new G4UniformMagField(G4ThreeVector(0.,0.,fieldValue)); >> 209 fieldMgr->SetDetectorField(magField); >> 210 fieldMgr->CreateChordFinder(magField); >> 211 } >> 212 else >> 213 { >> 214 magField = 0; >> 215 fieldMgr->SetDetectorField(magField); >> 216 } >> 217 } >> 218 >> 219 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 220 >> 221 #include "G4RunManager.hh" >> 222 >> 223 void DetectorConstruction::UpdateGeometry() 253 { 224 { 254 if (fFieldMessenger.Get() == 0) { << 225 G4RunManager::GetRunManager()->DefineWorldVolume(ConstructVolumes()); 255 // Create global magnetic field messenger. << 256 // Uniform magnetic field is then created << 257 // the field value is not zero. << 258 G4ThreeVector fieldValue = G4ThreeVector() << 259 G4GlobalMagFieldMessenger* msg = new G4Glo << 260 // msg->SetVerboseLevel(1); << 261 G4AutoDelete::Register(msg); << 262 fFieldMessenger.Put(msg); << 263 } << 264 } 226 } 265 227 266 //....oooOO0OOooo........oooOO0OOooo........oo 228 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 267 229