Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 /// \file electromagnetic/TestEm1/src/Detector 26 /// \file electromagnetic/TestEm1/src/DetectorConstruction.cc 27 /// \brief Implementation of the DetectorConst 27 /// \brief Implementation of the DetectorConstruction class 28 // 28 // 29 // << 29 // $Id: DetectorConstruction.cc 84815 2014-10-21 12:19:02Z gcosmo $ >> 30 // 30 31 31 //....oooOO0OOooo........oooOO0OOooo........oo 32 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 32 //....oooOO0OOooo........oooOO0OOooo........oo 33 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 33 34 34 #include "DetectorConstruction.hh" 35 #include "DetectorConstruction.hh" 35 << 36 #include "DetectorMessenger.hh" 36 #include "DetectorMessenger.hh" 37 37 38 #include "G4AutoDelete.hh" << 39 #include "G4Box.hh" << 40 #include "G4GeometryManager.hh" << 41 #include "G4GlobalMagFieldMessenger.hh" << 42 #include "G4LogicalVolume.hh" << 43 #include "G4LogicalVolumeStore.hh" << 44 #include "G4Material.hh" 38 #include "G4Material.hh" 45 #include "G4NistManager.hh" 39 #include "G4NistManager.hh" >> 40 #include "G4Box.hh" >> 41 #include "G4LogicalVolume.hh" 46 #include "G4PVPlacement.hh" 42 #include "G4PVPlacement.hh" 47 #include "G4PhysicalConstants.hh" << 48 #include "G4PhysicalVolumeStore.hh" << 49 #include "G4RunManager.hh" 43 #include "G4RunManager.hh" >> 44 >> 45 #include "G4GeometryManager.hh" >> 46 #include "G4PhysicalVolumeStore.hh" >> 47 #include "G4LogicalVolumeStore.hh" 50 #include "G4SolidStore.hh" 48 #include "G4SolidStore.hh" 51 #include "G4SystemOfUnits.hh" << 49 52 #include "G4UnitsTable.hh" 50 #include "G4UnitsTable.hh" >> 51 #include "G4SystemOfUnits.hh" 53 52 54 //....oooOO0OOooo........oooOO0OOooo........oo 53 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 55 54 56 DetectorConstruction::DetectorConstruction() 55 DetectorConstruction::DetectorConstruction() >> 56 :G4VUserDetectorConstruction(),fPBox(0), fLBox(0), fMaterial(0) 57 { 57 { 58 fBoxSize = 10 * m; << 58 fBoxSize = 10*m; 59 DefineMaterials(); 59 DefineMaterials(); 60 SetMaterial("G4_Al"); << 60 SetMaterial("Aluminium"); 61 fDetectorMessenger = new DetectorMessenger(t 61 fDetectorMessenger = new DetectorMessenger(this); 62 } 62 } 63 63 64 //....oooOO0OOooo........oooOO0OOooo........oo 64 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 65 65 66 DetectorConstruction::~DetectorConstruction() 66 DetectorConstruction::~DetectorConstruction() >> 67 { delete fDetectorMessenger;} >> 68 >> 69 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... >> 70 >> 71 G4VPhysicalVolume* DetectorConstruction::Construct() 67 { 72 { 68 delete fDetectorMessenger; << 73 return ConstructVolumes(); 69 } 74 } 70 75 71 //....oooOO0OOooo........oooOO0OOooo........oo 76 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 72 77 73 void DetectorConstruction::DefineMaterials() 78 void DetectorConstruction::DefineMaterials() 74 { 79 { 75 // 80 // 76 // define Elements 81 // define Elements 77 // 82 // 78 G4double z, a; << 83 G4double z,a; 79 << 84 80 G4Element* H = new G4Element("Hydrogen", "H" << 85 G4Element* H = new G4Element("Hydrogen" ,"H" , z= 1., a= 1.01*g/mole); 81 G4Element* C = new G4Element("Hydrogen", "C" << 86 G4Element* C = new G4Element("Hydrogen" ,"C" , z= 6., a= 12.00*g/mole); 82 G4Element* N = new G4Element("Nitrogen", "N" << 87 G4Element* N = new G4Element("Nitrogen" ,"N" , z= 7., a= 14.01*g/mole); 83 G4Element* O = new G4Element("Oxygen", "O", << 88 G4Element* O = new G4Element("Oxygen" ,"O" , z= 8., a= 16.00*g/mole); 84 G4Element* Ge = new G4Element("Germanium", " << 89 G4Element* Ge = new G4Element("Germanium","Ge", z=32., a= 72.59*g/mole); 85 G4Element* Bi = new G4Element("Bismuth", "Bi << 90 G4Element* Bi = new G4Element("Bismuth" ,"Bi", z=83., a= 208.98*g/mole); 86 << 91 87 // 92 // 88 // define materials 93 // define materials 89 // 94 // 90 G4double density; 95 G4double density; 91 G4int ncomponents, natoms; 96 G4int ncomponents, natoms; 92 G4double fractionmass; << 97 G4double fractionmass; 93 << 98 94 G4Material* Air = new G4Material("Air", dens << 99 G4Material* Air = 95 Air->AddElement(N, fractionmass = 70. * perC << 100 new G4Material("Air", density= 1.290*mg/cm3, ncomponents=2); 96 Air->AddElement(O, fractionmass = 30. * perC << 101 Air->AddElement(N, fractionmass=70.*perCent); 97 << 102 Air->AddElement(O, fractionmass=30.*perCent); 98 G4Material* H2l = new G4Material("H2liquid", << 103 99 H2l->AddElement(H, fractionmass = 1.); << 104 G4Material* H2l = 100 << 105 new G4Material("H2liquid", density= 70.8*mg/cm3, ncomponents=1); 101 G4Material* H2O = new G4Material("Water", de << 106 H2l->AddElement(H, fractionmass=1.); 102 H2O->AddElement(H, natoms = 2); << 107 103 H2O->AddElement(O, natoms = 1); << 108 G4Material* H2O = 104 /// H2O->SetChemicalFormula("H_2O"); << 109 new G4Material("Water", density= 1.000*g/cm3, ncomponents=2); 105 H2O->GetIonisation()->SetMeanExcitationEnerg << 110 H2O->AddElement(H, natoms=2); 106 << 111 H2O->AddElement(O, natoms=1); 107 density = 0.001 * mg / cm3; << 112 ///H2O->SetChemicalFormula("H_2O"); 108 G4Material* CO2 = new G4Material("CO2", dens << 113 H2O->GetIonisation()->SetMeanExcitationEnergy(78.0*eV); 109 CO2->AddElement(C, natoms = 1); << 114 110 CO2->AddElement(O, natoms = 2); << 115 density = 0.001*mg/cm3; >> 116 G4Material* CO2 = new G4Material("CO2", density, ncomponents=2); >> 117 CO2->AddElement(C, natoms=1); >> 118 CO2->AddElement(O, natoms=2); 111 119 112 G4Isotope* d = new G4Isotope("d", 1, 2, 0.0, 120 G4Isotope* d = new G4Isotope("d", 1, 2, 0.0, 0); 113 G4Element* D = new G4Element("Heavy-Hydrogen << 121 G4Element* D = new G4Element("Heavy-Hydrogen" ,"D", ncomponents=1); 114 D->AddIsotope(d, 1.0); 122 D->AddIsotope(d, 1.0); 115 G4Material* D2 = new G4Material("D2_gas", de << 123 G4Material* D2 = 116 D2->AddElement(D, natoms = 2); << 124 new G4Material("D2_gas", density= 0.036*mg/cm3, ncomponents=1); 117 << 125 D2->AddElement(D, natoms=2); 118 new G4Material("liquidArgon", z = 18., a = 3 << 126 119 << 127 new G4Material("liquidArgon", z=18., a= 39.95*g/mole, density= 1.390*g/cm3); 120 new G4Material("Aluminium", z = 13., a = 26. << 128 121 << 129 new G4Material("Aluminium" , z=13., a= 26.98*g/mole, density= 2.700*g/cm3); 122 new G4Material("Silicon", z = 14., a = 28.09 << 130 123 << 131 new G4Material("Silicon" , z=14., a= 28.09*g/mole, density= 2.330*g/cm3); 124 new G4Material("Chromium", z = 24., a = 51.9 << 132 125 << 133 new G4Material("Chromium" , z=24., a= 51.99*g/mole, density= 7.140*g/cm3); 126 new G4Material("Germanium", z = 32., a = 72. << 134 127 << 135 new G4Material("Germanium" , z=32., a= 72.61*g/mole, density= 5.323*g/cm3); 128 G4Material* BGO = new G4Material("BGO", dens << 136 129 BGO->AddElement(O, natoms = 12); << 137 G4Material* BGO = 130 BGO->AddElement(Ge, natoms = 3); << 138 new G4Material("BGO", density= 7.10*g/cm3, ncomponents=3); 131 BGO->AddElement(Bi, natoms = 4); << 139 BGO->AddElement(O , natoms=12); 132 << 140 BGO->AddElement(Ge, natoms= 3); 133 new G4Material("Iron", z = 26., a = 55.85 * << 141 BGO->AddElement(Bi, natoms= 4); 134 << 142 135 new G4Material("Tungsten", z = 74., a = 183. << 143 new G4Material("Iron" , z=26., a= 55.85*g/mole, density= 7.870*g/cm3); 136 << 144 137 new G4Material("Gold", z = 79., a = 196.97 * << 145 new G4Material("Tungsten" , z=74., a=183.85*g/mole, density= 19.30*g/cm3); 138 << 146 139 new G4Material("Lead", z = 82., a = 207.19 * << 147 new G4Material("Gold" , z=79., a=196.97*g/mole, density= 19.32*g/cm3); 140 << 148 141 new G4Material("Uranium", z = 92., a = 238.0 << 149 new G4Material("Lead" , z=82., a=207.19*g/mole, density= 11.35*g/cm3); 142 << 150 143 G4Material* argonGas = << 151 new G4Material("Uranium" , z=92., a=238.03*g/mole, density= 18.95*g/cm3); 144 new G4Material("ArgonGas", z = 18, a = 39. << 152 145 273.15 * kelvin, 1 * atmosp << 153 146 << 154 G4Material* argonGas = 147 G4Material* butane = new G4Material("Isobuta << 155 new G4Material("ArgonGas", z=18, a=39.948*g/mole, density= 1.782*mg/cm3, 148 kStateGa << 156 kStateGas, 273.15*kelvin, 1*atmosphere); 149 butane->AddElement(C, natoms = 4); << 157 150 butane->AddElement(H, natoms = 10); << 158 G4Material* butane = 151 << 159 new G4Material("Isobutane",density= 2.42*mg/cm3, ncomponents=2, 152 G4Material* ArButane = new G4Material("Argon << 160 kStateGas,273.15*kelvin, 1*atmosphere); 153 kState << 161 butane->AddElement(C, natoms=4); 154 ArButane->AddMaterial(argonGas, fractionmass << 162 butane->AddElement(H, natoms=10); 155 ArButane->AddMaterial(butane, fractionmass = << 163 156 << 164 G4Material* ArButane = 157 // example of vacuum << 165 new G4Material("ArgonButane", density= 1.835*mg/cm3, ncomponents=2, 158 // << 166 kStateGas,273.15*kelvin,1.*atmosphere); 159 density = universe_mean_density; // from Ph << 167 ArButane->AddMaterial(argonGas, fractionmass=70*perCent); 160 new G4Material("Galactic", z = 1., a = 1.008 << 168 ArButane->AddMaterial(butane , fractionmass=30*perCent); 161 3.e-18 * pascal); << 169 162 << 170 G4NistManager* man = G4NistManager::Instance(); 163 // use Nist << 171 164 // << 172 G4bool isotopes = false; 165 G4NistManager* man = G4NistManager::Instance << 173 166 << 174 ///G4Element* O = man->FindOrBuildElement("O" , isotopes); 167 G4bool isotopes = false; << 175 G4Element* Si = man->FindOrBuildElement("Si", isotopes); 168 /// G4Element* O = man->FindOrBuildElement( << 176 G4Element* Lu = man->FindOrBuildElement("Lu", isotopes); 169 G4Element* Si = man->FindOrBuildElement("Si" << 177 170 G4Element* Lu = man->FindOrBuildElement("Lu" << 178 G4Material* LSO = new G4Material("Lu2SiO5", 7.4*g/cm3, 3); 171 << 179 LSO->AddElement(Lu, 2); 172 G4Material* LSO = new G4Material("Lu2SiO5", << 180 LSO->AddElement(Si, 1); 173 LSO->AddElement(Lu, 2); << 181 LSO->AddElement(O , 5); 174 LSO->AddElement(Si, 1); << 182 175 LSO->AddElement(O, 5); << 183 G4cout << *(G4Material::GetMaterialTable()) << G4endl; 176 << 184 } 177 /// G4cout << *(G4Material::GetMaterialTable << 185 178 } << 186 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 179 << 187 180 //....oooOO0OOooo........oooOO0OOooo........oo << 188 G4VPhysicalVolume* DetectorConstruction::ConstructVolumes() 181 << 189 { 182 G4VPhysicalVolume* DetectorConstruction::Const << 190 // Cleanup old geometry 183 { << 191 G4GeometryManager::GetInstance()->OpenGeometry(); 184 if (fPBox) { << 192 G4PhysicalVolumeStore::GetInstance()->Clean(); 185 return fPBox; << 193 G4LogicalVolumeStore::GetInstance()->Clean(); 186 } << 194 G4SolidStore::GetInstance()->Clean(); 187 fBox = new G4Box("Container", // its name << 195 188 fBoxSize / 2, fBoxSize / 2, << 196 G4Box* 189 << 197 sBox = new G4Box("Container", //its name 190 fLBox = new G4LogicalVolume(fBox, // its sh << 198 fBoxSize/2,fBoxSize/2,fBoxSize/2); //its dimensions 191 fMaterial, // i << 199 192 fMaterial->GetNa << 200 fLBox = new G4LogicalVolume(sBox, //its shape 193 << 201 fMaterial, //its material 194 fPBox = new G4PVPlacement(0, // no rotation << 202 fMaterial->GetName()); //its name 195 G4ThreeVector(), << 203 196 fLBox, // its log << 204 fPBox = new G4PVPlacement(0, //no rotation 197 fMaterial->GetName << 205 G4ThreeVector(), //at (0,0,0) 198 0, // its mother << 206 fLBox, //its logical volume 199 false, // no bool << 207 fMaterial->GetName(), //its name 200 0); // copy numbe << 208 0, //its mother volume 201 << 209 false, //no boolean operation >> 210 0); //copy number >> 211 202 PrintParameters(); 212 PrintParameters(); 203 << 213 204 // always return the root volume << 214 //always return the root volume 205 // 215 // 206 return fPBox; 216 return fPBox; 207 } 217 } 208 218 209 //....oooOO0OOooo........oooOO0OOooo........oo 219 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 210 220 211 void DetectorConstruction::PrintParameters() 221 void DetectorConstruction::PrintParameters() 212 { 222 { 213 G4cout << "\n The Box is " << G4BestUnit(fBo << 223 G4cout << "\n The Box is " << G4BestUnit(fBoxSize,"Length") 214 << G4endl; << 224 << " of " << fMaterial->GetName() << G4endl; 215 G4cout << fMaterial << G4endl; << 216 } 225 } 217 226 218 //....oooOO0OOooo........oooOO0OOooo........oo 227 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 219 228 220 void DetectorConstruction::SetMaterial(const G << 229 void DetectorConstruction::SetMaterial(G4String materialChoice) 221 { 230 { 222 // search the material by its name 231 // search the material by its name 223 G4Material* pttoMaterial = G4NistManager::In << 232 ////G4Material* pttoMaterial = G4Material::GetMaterial(materialChoice); 224 << 233 G4Material* pttoMaterial = >> 234 G4NistManager::Instance()->FindOrBuildMaterial(materialChoice); >> 235 225 if (pttoMaterial) { 236 if (pttoMaterial) { 226 fMaterial = pttoMaterial; << 237 fMaterial = pttoMaterial; 227 if (fLBox) { << 238 if ( fLBox ) fLBox->SetMaterial(fMaterial); 228 fLBox->SetMaterial(fMaterial); << 239 } else { 229 } << 240 G4cout << "\n--> warning from DetectorConstruction::SetMaterial : " 230 } << 241 << materialChoice << " not found" << G4endl; 231 else { << 232 G4cout << "\n--> warning from DetectorCons << 233 << " not found" << G4endl; << 234 } 242 } 235 G4RunManager::GetRunManager()->PhysicsHasBee 243 G4RunManager::GetRunManager()->PhysicsHasBeenModified(); 236 } 244 } 237 245 238 //....oooOO0OOooo........oooOO0OOooo........oo 246 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 239 247 240 void DetectorConstruction::SetSize(G4double va 248 void DetectorConstruction::SetSize(G4double value) 241 { 249 { 242 fBoxSize = value; 250 fBoxSize = value; 243 if (fBox) { << 251 G4RunManager::GetRunManager()->ReinitializeGeometry(); 244 fBox->SetXHalfLength(fBoxSize / 2); << 245 fBox->SetYHalfLength(fBoxSize / 2); << 246 fBox->SetZHalfLength(fBoxSize / 2); << 247 } << 248 } 252 } 249 253 250 //....oooOO0OOooo........oooOO0OOooo........oo 254 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 251 255 >> 256 >> 257 #include "G4GlobalMagFieldMessenger.hh" >> 258 #include "G4AutoDelete.hh" >> 259 252 void DetectorConstruction::ConstructSDandField 260 void DetectorConstruction::ConstructSDandField() 253 { 261 { 254 if (fFieldMessenger.Get() == 0) { << 262 if ( fFieldMessenger.Get() == 0 ) { 255 // Create global magnetic field messenger. << 263 // Create global magnetic field messenger. 256 // Uniform magnetic field is then created << 264 // Uniform magnetic field is then created automatically if 257 // the field value is not zero. << 265 // the field value is not zero. 258 G4ThreeVector fieldValue = G4ThreeVector() << 266 G4ThreeVector fieldValue = G4ThreeVector(); 259 G4GlobalMagFieldMessenger* msg = new G4Glo << 267 G4GlobalMagFieldMessenger* msg = 260 // msg->SetVerboseLevel(1); << 268 new G4GlobalMagFieldMessenger(fieldValue); 261 G4AutoDelete::Register(msg); << 269 //msg->SetVerboseLevel(1); 262 fFieldMessenger.Put(msg); << 270 G4AutoDelete::Register(msg); 263 } << 271 fFieldMessenger.Put( msg ); >> 272 >> 273 } 264 } 274 } 265 275 266 //....oooOO0OOooo........oooOO0OOooo........oo 276 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 267 277