Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 /// \file biasing/B01/src/B01DetectorConstruct << 27 /// \brief Implementation of the B01DetectorCo << 28 // << 29 // 26 // >> 27 // $Id: B01DetectorConstruction.cc,v 1.17 2006/06/29 16:34:15 gunter Exp $ >> 28 // GEANT4 tag $Name: geant4-08-03-patch-01 $ 30 // 29 // 31 30 >> 31 #include "G4Types.hh" >> 32 #include <sstream> >> 33 #include <set> >> 34 #include "globals.hh" >> 35 32 #include "B01DetectorConstruction.hh" 36 #include "B01DetectorConstruction.hh" 33 37 >> 38 #include "G4Material.hh" 34 #include "G4Box.hh" 39 #include "G4Box.hh" 35 #include "G4Colour.hh" << 40 #include "G4Tubs.hh" 36 #include "G4LogicalVolume.hh" 41 #include "G4LogicalVolume.hh" 37 #include "G4Material.hh" << 38 #include "G4PVPlacement.hh" << 39 #include "G4PhysicalConstants.hh" << 40 #include "G4SystemOfUnits.hh" << 41 #include "G4ThreeVector.hh" 42 #include "G4ThreeVector.hh" 42 #include "G4Tubs.hh" << 43 #include "G4PVPlacement.hh" 43 #include "G4Types.hh" << 44 #include "G4VisAttributes.hh" 44 #include "G4VisAttributes.hh" 45 #include "globals.hh" << 45 #include "G4Colour.hh" 46 << 47 #include <set> << 48 #include <sstream> << 49 << 50 // For Primitive Scorers << 51 #include "G4MultiFunctionalDetector.hh" << 52 #include "G4PSNofCollision.hh" << 53 #include "G4PSPopulation.hh" << 54 #include "G4PSTrackCounter.hh" << 55 #include "G4PSTrackLength.hh" << 56 #include "G4SDManager.hh" << 57 #include "G4SDParticleFilter.hh" << 58 46 59 // for importance biasing 47 // for importance biasing 60 #include "G4IStore.hh" 48 #include "G4IStore.hh" 61 49 62 // for weight window technique 50 // for weight window technique 63 #include "G4WeightWindowStore.hh" 51 #include "G4WeightWindowStore.hh" 64 52 65 //....oooOO0OOooo........oooOO0OOooo........oo << 53 B01DetectorConstruction::B01DetectorConstruction() : 66 << 54 fPhysicalVolumeVector() 67 B01DetectorConstruction::B01DetectorConstructi << 55 {;} 68 : G4VUserDetectorConstruction(), fLogicalVol << 69 { << 70 ; << 71 } << 72 << 73 //....oooOO0OOooo........oooOO0OOooo........oo << 74 56 75 B01DetectorConstruction::~B01DetectorConstruct 57 B01DetectorConstruction::~B01DetectorConstruction() 76 { << 58 {;} 77 fLogicalVolumeVector.clear(); << 78 fPhysicalVolumeVector.clear(); << 79 } << 80 << 81 //....oooOO0OOooo........oooOO0OOooo........oo << 82 59 83 G4VPhysicalVolume* B01DetectorConstruction::Co 60 G4VPhysicalVolume* B01DetectorConstruction::Construct() 84 { 61 { 85 G4double pos_x; 62 G4double pos_x; 86 G4double pos_y; 63 G4double pos_y; 87 G4double pos_z; << 64 G4double pos_z; 88 65 89 G4double density, pressure, temperature; 66 G4double density, pressure, temperature; 90 G4double A; 67 G4double A; 91 G4int Z; 68 G4int Z; 92 69 93 G4String name, symbol; 70 G4String name, symbol; 94 G4double z; 71 G4double z; 95 G4double fractionmass; 72 G4double fractionmass; 96 73 97 A = 1.01 * g / mole; << 74 A = 1.01*g/mole; 98 G4Element* elH = new G4Element(name = "Hydro << 75 G4Element* elH = new G4Element(name="Hydrogen",symbol="H" , Z= 1, A); 99 76 100 A = 12.01 * g / mole; << 77 A = 12.01*g/mole; 101 G4Element* elC = new G4Element(name = "Carbo << 78 G4Element* elC = new G4Element(name="Carbon" ,symbol="C" , Z = 6, A); 102 79 103 A = 16.00 * g / mole; << 80 A = 16.00*g/mole; 104 G4Element* elO = new G4Element(name = "Oxyge << 81 G4Element* elO = new G4Element(name="Oxygen" ,symbol="O" , Z= 8, A); 105 82 106 A = 22.99 * g / mole; << 83 A = 22.99*g/mole; 107 G4Element* elNa = new G4Element(name = "Natr << 84 G4Element* elNa = new G4Element(name="Natrium" ,symbol="Na" , Z=11 , A); 108 85 109 A = 200.59 * g / mole; << 86 A = 200.59*g/mole; 110 G4Element* elHg = new G4Element(name = "Hg", << 87 G4Element* elHg = new G4Element(name="Hg" ,symbol="Hg" , Z=80, A); 111 88 112 A = 26.98 * g / mole; << 89 A = 26.98*g/mole; 113 G4Element* elAl = new G4Element(name = "Alum << 90 G4Element* elAl = new G4Element(name="Aluminium" ,symbol="Al" , Z=13, A); 114 91 115 A = 28.09 * g / mole; << 92 A = 28.09*g/mole; 116 G4Element* elSi = new G4Element(name = "Sili << 93 G4Element* elSi = new G4Element(name="Silicon", symbol="Si", Z=14, A); 117 94 118 A = 39.1 * g / mole; << 95 A = 39.1*g/mole; 119 G4Element* elK = new G4Element(name = "K", s << 96 G4Element* elK = new G4Element(name="K" ,symbol="K" , Z=19 , A); 120 97 121 A = 69.72 * g / mole; << 98 A = 69.72*g/mole; 122 G4Element* elCa = new G4Element(name = "Calz << 99 G4Element* elCa = new G4Element(name="Calzium" ,symbol="Ca" , Z=31 , A); 123 100 124 A = 55.85 * g / mole; << 101 A = 55.85*g/mole; 125 G4Element* elFe = new G4Element(name = "Iron << 102 G4Element* elFe = new G4Element(name="Iron" ,symbol="Fe", Z=26, A); 126 103 127 density = universe_mean_density; // from Ph << 104 density = universe_mean_density; //from PhysicalConstants.h 128 pressure = 3.e-18 * pascal; << 105 pressure = 3.e-18*pascal; 129 temperature = 2.73 * kelvin; << 106 temperature = 2.73*kelvin; 130 G4Material* Galactic = new G4Material(name = << 107 G4Material *Galactic = 131 kState << 108 new G4Material(name="Galactic", z=1., A=1.01*g/mole, density, >> 109 kStateGas,temperature,pressure); 132 110 133 density = 2.03 * g / cm3; << 111 density = 2.03*g/cm3; 134 G4Material* Concrete = new G4Material("Concr 112 G4Material* Concrete = new G4Material("Concrete", density, 10); 135 Concrete->AddElement(elH, fractionmass = 0.0 << 113 Concrete->AddElement(elH , fractionmass= 0.01); 136 Concrete->AddElement(elO, fractionmass = 0.5 << 114 Concrete->AddElement(elO , fractionmass= 0.529); 137 Concrete->AddElement(elNa, fractionmass = 0. << 115 Concrete->AddElement(elNa , fractionmass= 0.016); 138 Concrete->AddElement(elHg, fractionmass = 0. << 116 Concrete->AddElement(elHg , fractionmass= 0.002); 139 Concrete->AddElement(elAl, fractionmass = 0. << 117 Concrete->AddElement(elAl , fractionmass= 0.034); 140 Concrete->AddElement(elSi, fractionmass = 0. << 118 Concrete->AddElement(elSi , fractionmass= 0.337); 141 Concrete->AddElement(elK, fractionmass = 0.0 << 119 Concrete->AddElement(elK , fractionmass= 0.013); 142 Concrete->AddElement(elCa, fractionmass = 0. << 120 Concrete->AddElement(elCa , fractionmass= 0.044); 143 Concrete->AddElement(elFe, fractionmass = 0. << 121 Concrete->AddElement(elFe , fractionmass= 0.014); 144 Concrete->AddElement(elC, fractionmass = 0.0 << 122 Concrete->AddElement(elC , fractionmass= 0.001); 145 123 146 ///////////////////////////// 124 ///////////////////////////// 147 // world cylinder volume 125 // world cylinder volume 148 //////////////////////////// 126 //////////////////////////// 149 127 150 // world solid 128 // world solid 151 129 152 G4double innerRadiusCylinder = 0 * cm; << 130 G4double innerRadiusCylinder = 0*cm; 153 G4double outerRadiusCylinder = 100 * cm; << 131 G4double outerRadiusCylinder = 100*cm; 154 G4double heightCylinder = 100 * cm; << 132 G4double hightCylinder = 100*cm; 155 G4double startAngleCylinder = 0 * deg; << 133 G4double startAngleCylinder = 0*deg; 156 G4double spanningAngleCylinder = 360 * deg; << 134 G4double spanningAngleCylinder = 360*deg; 157 << 135 158 G4Tubs* worldCylinder = new G4Tubs("worldCyl << 136 G4Tubs *worldCylinder = new G4Tubs("worldCylinder", 159 heightCyl << 137 innerRadiusCylinder, >> 138 outerRadiusCylinder, >> 139 hightCylinder, >> 140 startAngleCylinder, >> 141 spanningAngleCylinder); 160 142 161 // logical world 143 // logical world 162 144 163 G4LogicalVolume* worldCylinder_log = << 145 G4LogicalVolume *worldCylinder_log = 164 new G4LogicalVolume(worldCylinder, Galacti 146 new G4LogicalVolume(worldCylinder, Galactic, "worldCylinder_log"); 165 fLogicalVolumeVector.push_back(worldCylinder << 166 147 167 name = "shieldWorld"; 148 name = "shieldWorld"; 168 fWorldVolume = new G4PVPlacement(0, G4ThreeV << 149 G4VPhysicalVolume *pWorldVolume = new >> 150 G4PVPlacement(0, G4ThreeVector(0,0,0), worldCylinder_log, >> 151 name, 0, false, 0); 169 152 170 fPhysicalVolumeVector.push_back(fWorldVolume << 171 153 172 // creating 18 slabs of 10 cm thick concrete << 154 fPhysicalVolumeVector.push_back(pWorldVolume); 173 << 174 G4double innerRadiusShield = 0 * cm; << 175 G4double outerRadiusShield = 100 * cm; << 176 G4double heightShield = 5 * cm; << 177 G4double startAngleShield = 0 * deg; << 178 G4double spanningAngleShield = 360 * deg; << 179 155 180 G4Tubs* aShield = new G4Tubs("aShield", inne << 156 // creating 18 slabs of 10 cm thick concrete 181 startAngleShiel << 182 157 >> 158 G4double innerRadiusShield = 0*cm; >> 159 G4double outerRadiusShield = 100*cm; >> 160 G4double hightShield = 5*cm; >> 161 G4double startAngleShield = 0*deg; >> 162 G4double spanningAngleShield = 360*deg; >> 163 >> 164 G4Tubs *aShield = new G4Tubs("aShield", >> 165 innerRadiusShield, >> 166 outerRadiusShield, >> 167 hightShield, >> 168 startAngleShield, >> 169 spanningAngleShield); >> 170 183 // logical shield 171 // logical shield 184 172 185 G4LogicalVolume* aShield_log = new G4Logical << 173 G4LogicalVolume *aShield_log = 186 fLogicalVolumeVector.push_back(aShield_log); << 174 new G4LogicalVolume(aShield, Concrete, "aShield_log"); 187 175 188 G4VisAttributes* pShieldVis = new G4VisAttri << 176 G4VisAttributes* pShieldVis = new G4VisAttributes(G4Colour(0.0,0.0,1.0)); 189 pShieldVis->SetForceSolid(true); 177 pShieldVis->SetForceSolid(true); 190 aShield_log->SetVisAttributes(pShieldVis); 178 aShield_log->SetVisAttributes(pShieldVis); 191 179 192 // physical shields 180 // physical shields 193 181 194 G4int i; 182 G4int i; 195 G4double startz = -85 * cm; << 183 G4double startz = -85*cm; 196 for (i = 1; i <= 18; i++) { << 184 for (i=1; i<=18; i++) >> 185 { 197 name = GetCellName(i); 186 name = GetCellName(i); 198 pos_x = 0 * cm; << 187 G4double pos_x = 0*cm; 199 pos_y = 0 * cm; << 188 G4double pos_y = 0*cm; 200 pos_z = startz + (i - 1) * (2 * heightShie << 189 G4double pos_z = startz + (i-1) * (2*hightShield); 201 G4VPhysicalVolume* pvol = new G4PVPlacemen << 190 G4VPhysicalVolume *pvol = 202 << 191 new G4PVPlacement(0, >> 192 G4ThreeVector(pos_x, pos_y, pos_z), >> 193 aShield_log, >> 194 name, >> 195 worldCylinder_log, >> 196 false, >> 197 0); 203 fPhysicalVolumeVector.push_back(pvol); 198 fPhysicalVolumeVector.push_back(pvol); 204 } 199 } 205 200 206 // filling the rest of the world volume behi 201 // filling the rest of the world volume behind the concrete with 207 // another slab which should get the same im << 202 // another slab which should get the same importance value 208 // or lower weight bound as the last slab 203 // or lower weight bound as the last slab 209 // 204 // 210 innerRadiusShield = 0 * cm; << 205 innerRadiusShield = 0*cm; 211 outerRadiusShield = 100 * cm; << 206 outerRadiusShield = 100*cm; 212 heightShield = 5 * cm; << 207 hightShield = 5*cm; 213 startAngleShield = 0 * deg; << 208 startAngleShield = 0*deg; 214 spanningAngleShield = 360 * deg; << 209 spanningAngleShield = 360*deg; 215 << 210 216 G4Tubs* aRest = new G4Tubs("Rest", innerRadi << 211 G4Tubs *aRest = new G4Tubs("Rest", 217 startAngleShield, << 212 innerRadiusShield, 218 << 213 outerRadiusShield, 219 G4LogicalVolume* aRest_log = new G4LogicalVo << 214 hightShield, 220 fLogicalVolumeVector.push_back(aRest_log); << 215 startAngleShield, >> 216 spanningAngleShield); >> 217 >> 218 G4LogicalVolume *aRest_log = >> 219 new G4LogicalVolume(aRest, Galactic, "aRest_log"); 221 name = "rest"; 220 name = "rest"; 222 << 221 223 pos_x = 0 * cm; << 222 pos_x = 0*cm; 224 pos_y = 0 * cm; << 223 pos_y = 0*cm; 225 pos_z = 95 * cm; << 224 pos_z = 95*cm; 226 G4VPhysicalVolume* pvol_rest = new G4PVPlace << 225 G4VPhysicalVolume *pvol_rest = 227 << 226 new G4PVPlacement(0, 228 << 227 G4ThreeVector(pos_x, pos_y, pos_z), >> 228 aRest_log, >> 229 name, >> 230 worldCylinder_log, >> 231 false, >> 232 0); 229 233 230 fPhysicalVolumeVector.push_back(pvol_rest); 234 fPhysicalVolumeVector.push_back(pvol_rest); 231 << 235 return pWorldVolume; 232 SetSensitive(); << 233 return fWorldVolume; << 234 } 236 } 235 237 236 //....oooOO0OOooo........oooOO0OOooo........oo << 237 238 238 G4VIStore* B01DetectorConstruction::CreateImpo << 239 G4VIStore *B01DetectorConstruction::CreateImportanceStore() 239 { 240 { 240 G4cout << " B01DetectorConstruction:: Creati << 241 if (!fPhysicalVolumeVector.size()) 241 if (!fPhysicalVolumeVector.size()) { << 242 { 242 G4Exception("B01DetectorConstruction::Crea << 243 G4Exception("B01-DetectorConstruction: no physical volumes created yet!"); 243 RunMustBeAborted, "no physical << 244 } 244 } 245 245 246 fWorldVolume = fPhysicalVolumeVector[0]; << 246 G4VPhysicalVolume *pWorldVolume = fPhysicalVolumeVector[0]; 247 247 248 // creating and filling the importance store 248 // creating and filling the importance store 249 << 249 250 G4IStore* istore = G4IStore::GetInstance(); << 250 G4IStore *istore = new G4IStore(*pWorldVolume); 251 251 252 G4int n = 0; 252 G4int n = 0; 253 G4double imp = 1; << 253 G4double imp =1; 254 istore->AddImportanceGeometryCell(1, *fWorld << 254 istore->AddImportanceGeometryCell(1, *pWorldVolume); 255 for (std::vector<G4VPhysicalVolume*>::iterat << 255 for (std::vector<G4VPhysicalVolume *>::iterator >> 256 it = fPhysicalVolumeVector.begin(); 256 it != fPhysicalVolumeVector.end() - 1; 257 it != fPhysicalVolumeVector.end() - 1; it++) 257 { 258 { 258 if (*it != fWorldVolume) { << 259 if (*it != pWorldVolume) >> 260 { 259 imp = std::pow(2., n++); 261 imp = std::pow(2., n++); 260 G4cout << "Going to assign importance: " << 262 G4cout << "Going to assign importance: " << imp << ", to volume: " 261 << G4endl; << 263 << (*it)->GetName() << G4endl; 262 istore->AddImportanceGeometryCell(imp, * << 264 istore->AddImportanceGeometryCell(imp, *(*it)); 263 } 265 } 264 } 266 } 265 267 266 // the remaining part pf the geometry (rest) 268 // the remaining part pf the geometry (rest) gets the same 267 // importance as the last conrete cell 269 // importance as the last conrete cell 268 // 270 // 269 istore->AddImportanceGeometryCell(imp, *(fPh << 271 istore->AddImportanceGeometryCell(imp, 270 ++n); << 272 *(fPhysicalVolumeVector[fPhysicalVolumeVector.size()-1])); 271 << 273 272 return istore; 274 return istore; 273 } 275 } 274 276 275 //....oooOO0OOooo........oooOO0OOooo........oo << 277 G4VWeightWindowStore *B01DetectorConstruction::CreateWeightWindowStore() 276 << 277 G4VWeightWindowStore* B01DetectorConstruction: << 278 { 278 { 279 if (!fPhysicalVolumeVector.size()) { << 279 if (!fPhysicalVolumeVector.size()) 280 G4Exception("B01DetectorConstruction::Crea << 280 { 281 RunMustBeAborted, "no physical << 281 G4Exception("B01-CreateWeightWindowStore: no physical volumes created yet!"); 282 } 282 } 283 283 284 fWorldVolume = fPhysicalVolumeVector[0]; << 284 G4VPhysicalVolume *pWorldVolume = fPhysicalVolumeVector[0]; 285 285 286 // creating and filling the weight window st 286 // creating and filling the weight window store 287 << 287 288 G4WeightWindowStore* wwstore = G4WeightWindo << 288 G4WeightWindowStore *wwstore = new G4WeightWindowStore(*pWorldVolume); 289 << 289 290 // create one energy region covering the ene 290 // create one energy region covering the energies of the problem 291 // 291 // 292 std::set<G4double, std::less<G4double>> enBo << 292 std::set<G4double, std::less<G4double> > enBounds; 293 enBounds.insert(1 * GeV); 293 enBounds.insert(1 * GeV); 294 wwstore->SetGeneralUpperEnergyBounds(enBound 294 wwstore->SetGeneralUpperEnergyBounds(enBounds); 295 295 296 G4int n = 0; 296 G4int n = 0; 297 G4double lowerWeight = 1; << 297 G4double lowerWeight =1; 298 std::vector<G4double> lowerWeights; 298 std::vector<G4double> lowerWeights; 299 299 300 lowerWeights.push_back(1); 300 lowerWeights.push_back(1); 301 G4GeometryCell gWorldCell(*fWorldVolume, 0); << 301 G4GeometryCell gWorldCell(*pWorldVolume,0); 302 wwstore->AddLowerWeights(gWorldCell, lowerWe 302 wwstore->AddLowerWeights(gWorldCell, lowerWeights); 303 303 304 for (std::vector<G4VPhysicalVolume*>::iterat << 304 for (std::vector<G4VPhysicalVolume *>::iterator >> 305 it = fPhysicalVolumeVector.begin(); 305 it != fPhysicalVolumeVector.end() - 1; 306 it != fPhysicalVolumeVector.end() - 1; it++) 306 { 307 { 307 if (*it != fWorldVolume) { << 308 if (*it != pWorldVolume) 308 lowerWeight = 1. / std::pow(2., n++); << 309 { 309 G4cout << "Going to assign lower weight: << 310 lowerWeight = 1./std::pow(2., n++); 310 << ", to volume: " << (*it)->GetN << 311 G4cout << "Going to assign lower weight: " << lowerWeight 311 G4GeometryCell gCell(*(*it), n); << 312 << ", to volume: " >> 313 << (*it)->GetName() << G4endl; >> 314 G4GeometryCell gCell(*(*it),0); 312 lowerWeights.clear(); 315 lowerWeights.clear(); 313 lowerWeights.push_back(lowerWeight); 316 lowerWeights.push_back(lowerWeight); 314 wwstore->AddLowerWeights(gCell, lowerWei 317 wwstore->AddLowerWeights(gCell, lowerWeights); 315 } 318 } 316 } 319 } 317 320 318 // the remaining part pf the geometry (rest) 321 // the remaining part pf the geometry (rest) gets the same 319 // lower weight bound as the last conrete c 322 // lower weight bound as the last conrete cell 320 // 323 // 321 G4GeometryCell gRestCell(*(fPhysicalVolumeVe << 324 G4GeometryCell 322 wwstore->AddLowerWeights(gRestCell, lowerWei << 325 gRestCell(*(fPhysicalVolumeVector[fPhysicalVolumeVector.size()-1]), 0); >> 326 wwstore->AddLowerWeights(gRestCell, lowerWeights); 323 327 324 return wwstore; 328 return wwstore; 325 } 329 } 326 330 327 //....oooOO0OOooo........oooOO0OOooo........oo << 328 << 329 G4String B01DetectorConstruction::GetCellName( 331 G4String B01DetectorConstruction::GetCellName(G4int i) 330 { 332 { 331 std::ostringstream os; 333 std::ostringstream os; 332 os << "cell_"; 334 os << "cell_"; 333 if (i < 10) { << 335 if (i<10) >> 336 { 334 os << "0"; 337 os << "0"; 335 } 338 } 336 os << i; << 339 os << i ; 337 G4String name = os.str(); 340 G4String name = os.str(); 338 return name; 341 return name; 339 } 342 } 340 << 341 G4VPhysicalVolume* B01DetectorConstruction::Ge << 342 { << 343 return fWorldVolume; << 344 } << 345 << 346 //....oooOO0OOooo........oooOO0OOooo........oo << 347 << 348 void B01DetectorConstruction::SetSensitive() << 349 { << 350 // ---------------------------------------- << 351 // The collection names of defined Primiti << 352 // 0 ConcreteSD/Collisions << 353 // 1 ConcreteSD/CollWeight << 354 // 2 ConcreteSD/Population << 355 // 3 ConcreteSD/TrackEnter << 356 // 4 ConcreteSD/SL << 357 // 5 ConcreteSD/SLW << 358 // 6 ConcreteSD/SLWE << 359 // 7 ConcreteSD/SLW_V << 360 // 8 ConcreteSD/SLWE_V << 361 // ---------------------------------------- << 362 << 363 // moved to ConstructSDandField() for MT com << 364 } << 365 << 366 //....oooOO0OOooo........oooOO0OOooo........oo << 367 << 368 void B01DetectorConstruction::ConstructSDandFi << 369 { << 370 // Sensitive Detector Manager. << 371 G4SDManager* SDman = G4SDManager::GetSDMpoin << 372 // Sensitive Detector Name << 373 G4String concreteSDname = "ConcreteSD"; << 374 << 375 //------------------------ << 376 // MultiFunctionalDetector << 377 //------------------------ << 378 // << 379 // Define MultiFunctionalDetector with name. << 380 G4MultiFunctionalDetector* MFDet = new G4Mul << 381 SDman->AddNewDetector(MFDet); // Register S << 382 << 383 G4String fltName, particleName; << 384 G4SDParticleFilter* neutronFilter = << 385 new G4SDParticleFilter(fltName = "neutronF << 386 << 387 MFDet->SetFilter(neutronFilter); << 388 << 389 for (std::vector<G4LogicalVolume*>::iterator << 390 it != fLogicalVolumeVector.end(); it++) << 391 { << 392 // (*it)->SetSensitiveDetector(MFDet) << 393 SetSensitiveDetector((*it)->GetName(), MFD << 394 } << 395 << 396 G4String psName; << 397 G4PSNofCollision* scorer0 = new G4PSNofColli << 398 MFDet->RegisterPrimitive(scorer0); << 399 << 400 G4PSNofCollision* scorer1 = new G4PSNofColli << 401 scorer1->Weighted(true); << 402 MFDet->RegisterPrimitive(scorer1); << 403 << 404 G4PSPopulation* scorer2 = new G4PSPopulation << 405 MFDet->RegisterPrimitive(scorer2); << 406 << 407 G4PSTrackCounter* scorer3 = new G4PSTrackCou << 408 MFDet->RegisterPrimitive(scorer3); << 409 << 410 G4PSTrackLength* scorer4 = new G4PSTrackLeng << 411 MFDet->RegisterPrimitive(scorer4); << 412 << 413 G4PSTrackLength* scorer5 = new G4PSTrackLeng << 414 scorer5->Weighted(true); << 415 MFDet->RegisterPrimitive(scorer5); << 416 << 417 G4PSTrackLength* scorer6 = new G4PSTrackLeng << 418 scorer6->Weighted(true); << 419 scorer6->MultiplyKineticEnergy(true); << 420 MFDet->RegisterPrimitive(scorer6); << 421 << 422 G4PSTrackLength* scorer7 = new G4PSTrackLeng << 423 scorer7->Weighted(true); << 424 scorer7->DivideByVelocity(true); << 425 MFDet->RegisterPrimitive(scorer7); << 426 << 427 G4PSTrackLength* scorer8 = new G4PSTrackLeng << 428 scorer8->Weighted(true); << 429 scorer8->MultiplyKineticEnergy(true); << 430 scorer8->DivideByVelocity(true); << 431 MFDet->RegisterPrimitive(scorer8); << 432 } << 433 << 434 //....oooOO0OOooo........oooOO0OOooo........oo << 435 343