Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4SPSEneDistribution << 26 /////////////////////////////////////////////////////////////////////////////// >> 27 // >> 28 // MODULE: G4SPSEneDistribution.hh >> 29 // >> 30 // Version: 1.0 >> 31 // Date: 5/02/04 >> 32 // Author: Fan Lei >> 33 // Organisation: QinetiQ ltd. >> 34 // Customer: ESA/ESTEC >> 35 // >> 36 /////////////////////////////////////////////////////////////////////////////// >> 37 // >> 38 // CHANGE HISTORY >> 39 // -------------- >> 40 // >> 41 // >> 42 // Version 1.0, 05/02/2004, Fan Lei, Created. >> 43 // Based on the G4GeneralParticleSource class in Geant4 v6.0 >> 44 // >> 45 /////////////////////////////////////////////////////////////////////////////// >> 46 // 27 // 47 // 28 // Class Description: 48 // Class Description: 29 // 49 // 30 // To generate the energy of a primary vertex << 50 // To generate the energy of a primary vertex according to the defined distribution 31 // defined distribution. This is a shared clas << 51 // 32 // Only one thread should use the set-methods << 52 /////////////////////////////////////////////////////////////////////////////// 33 // Note that this is exactly what is achieved << 53 // 34 // If you use the set methods to set defaults << 54 // MEMBER FUNCTIONS 35 // care that only one thread is executing them << 55 // ---------------- 36 // In addition take care of calling these meth << 56 // 37 // started. Do not use the setters during the << 57 // G4SPSEneDistribution () >> 58 // Constructor: Initializes variables >> 59 // >> 60 // ~G4SPSEneDistribution () >> 61 // Destructor: >> 62 // >> 63 // void SetEnergyDisType(G4String) >> 64 // Allows the user to choose the energy distribution type. The arguments >> 65 // are Mono (mono-energetic), Lin (linear), Pow (power-law), Exp >> 66 // (exponential), Gauss (gaussian), Brem (bremsstrahlung), BBody (black-body), Cdg >> 67 // (cosmic diffuse gamma-ray), User (user-defined), Arb (arbitrary >> 68 // point-wise), Epn (energy per nucleon). >> 69 // >> 70 // void SetEmin(G4double) >> 71 // Sets the minimum energy. >> 72 // >> 73 // void SetEmax(G4double) >> 74 // Sets the maximum energy. >> 75 // >> 76 // void SetMonoEnergy(G4double) >> 77 // Sets energy for mono-energetic distribution. >> 78 // >> 79 // void SetAlpha(G4double) >> 80 // Sets alpha for a power-law distribution. >> 81 // >> 82 // void SetTemp(G4double) >> 83 // Sets Temperature for a Brem or BBody distributions. >> 84 // >> 85 // void SetEzero(G4double) >> 86 // Sets Ezero for an exponential distribution. >> 87 // >> 88 // void SetGradient(G4double) >> 89 // Sets gradient for a linear distribution. >> 90 // >> 91 // void SetInterCept(G4double) >> 92 // Sets intercept for a linear distribution. >> 93 // >> 94 // void UserEnergyHisto(G4ThreeVector) >> 95 // Allows user to defined a histogram for the energy distribution. >> 96 // >> 97 // void ArbEnergyHisto(G4ThreeVector) >> 98 // Allows the user to define an Arbitrary set of points for the >> 99 // energy distribution. >> 100 // >> 101 // void EpnEnergyHisto(G4ThreeVector) >> 102 // Allows the user to define an Energy per nucleon histogram. >> 103 // >> 104 // void Calculate() >> 105 // Controls the calculation of Integral PDF for the Cdg and BBody >> 106 // distributions. >> 107 // >> 108 // void InputEnergySpectra(G4bool) >> 109 // Allows the user to choose between momentum and energy histograms >> 110 // for user-defined histograms and arbitrary point-wise spectr. >> 111 // The default is true (energy). >> 112 // >> 113 // void InputDifferentialSpectra(G4bool) >> 114 // Allows the user to choose between integral and differential >> 115 // distributions when using the arbitrary point-wise option. >> 116 // >> 117 // void ArbInterpolate(G4String) >> 118 // ArbInterpolate allows the user to specify the type of function to >> 119 // interpolate the Arbitrary points spectrum with. >> 120 // >> 121 // void SetBiasRndm (G4SPSRandomGenerator* a) >> 122 // Sets the biased random number generator >> 123 // >> 124 // G4double GenerateOne(G4ParticleDefinition*); >> 125 // Generate one random energy for the specified particle >> 126 // >> 127 // void ReSetHist(G4String); >> 128 // Re-sets the histogram for user defined distribution >> 129 // >> 130 // void SetVerbosity(G4int) >> 131 // Sets the verbosity level. >> 132 // >> 133 /////////////////////////////////////////////////////////////////////////////// 38 134 39 // Author: Fan Lei, QinetiQ ltd. << 135 #ifndef G4SPSEneDistribution_h 40 // Customer: ESA/ESTEC << 136 #define G4SPSEneDistribution_h 1 41 // History: << 42 // - 05/02/2004, Fan Lei - Created. << 43 // Based on the G4GeneralParticleSource cl << 44 // - 26/03/2014, Andrew Green. << 45 // Modification to use STL vectors instead << 46 // Also moved to dynamically allocated mem << 47 // ExpInterpolation() and LogInterpolation << 48 // - 06/06/2014, Andrea Dotti. << 49 // For thread safety: this is a shared obj << 50 // Added mutex to control access to shared << 51 // in Getters and Setters, mutex is NOT us << 52 // is assumed that properties are not chan << 53 // - 24/11/2017, Fan Lei << 54 // Added cutoff power-law distribution opti << 55 // to that of the BlackBody one. << 56 // ------------------------------------------- << 57 #ifndef G4SPSEneDistribution_hh << 58 #define G4SPSEneDistribution_hh 1 << 59 137 60 #include "G4PhysicsFreeVector.hh" << 138 #include "G4PhysicsOrderedFreeVector.hh" 61 #include "G4ParticleMomentum.hh" 139 #include "G4ParticleMomentum.hh" 62 #include "G4ParticleDefinition.hh" 140 #include "G4ParticleDefinition.hh" 63 #include "G4DataInterpolation.hh" 141 #include "G4DataInterpolation.hh" 64 #include "G4Threading.hh" << 65 #include "G4Cache.hh" << 66 #include <vector> << 67 142 >> 143 // 68 #include "G4SPSRandomGenerator.hh" 144 #include "G4SPSRandomGenerator.hh" 69 145 70 class G4SPSEneDistribution 146 class G4SPSEneDistribution 71 { 147 { 72 public: << 148 public: >> 149 G4SPSEneDistribution (); >> 150 ~G4SPSEneDistribution (); >> 151 >> 152 void SetEnergyDisType(G4String); >> 153 inline G4String GetEnergyDisType() {return EnergyDisType;}; >> 154 void SetEmin(G4double); >> 155 inline G4double GetEmin() {return Emin;} ; >> 156 inline G4double GetArbEmin() {return ArbEmin;} ; >> 157 void SetEmax(G4double); >> 158 inline G4double GetEmax() {return Emax;} ; >> 159 inline G4double GetArbEmax() {return ArbEmax;}; >> 160 void SetMonoEnergy(G4double); >> 161 void SetAlpha(G4double); >> 162 void SetTemp(G4double); >> 163 void SetBeamSigmaInE(G4double); >> 164 void SetEzero(G4double); >> 165 void SetGradient(G4double); >> 166 void SetInterCept(G4double); >> 167 void UserEnergyHisto(G4ThreeVector); >> 168 void ArbEnergyHisto(G4ThreeVector); >> 169 void EpnEnergyHisto(G4ThreeVector); >> 170 >> 171 void InputEnergySpectra(G4bool); >> 172 void InputDifferentialSpectra(G4bool); >> 173 void ArbInterpolate(G4String); >> 174 inline G4String GetIntType() {return IntType;}; >> 175 void Calculate(); >> 176 // >> 177 void SetBiasRndm(G4SPSRandomGenerator* a) {eneRndm = a; }; >> 178 // method to re-set the histograms >> 179 void ReSetHist(G4String); >> 180 // Set the verbosity level. >> 181 void SetVerbosity(G4int a) {verbosityLevel = a; } ; >> 182 //x >> 183 G4double GenerateOne(G4ParticleDefinition*); >> 184 >> 185 private: >> 186 void LinearInterpolation(); >> 187 void LogInterpolation(); >> 188 void ExpInterpolation(); >> 189 void SplineInterpolation(); >> 190 void CalculateCdgSpectrum(); >> 191 void CalculateBbodySpectrum(); >> 192 >> 193 // The following methods generate energies according to the spectral >> 194 // parameters defined above. >> 195 void GenerateMonoEnergetic(); >> 196 void GenerateLinearEnergies(G4bool); >> 197 void GeneratePowEnergies(G4bool); >> 198 void GenerateExpEnergies(G4bool ); >> 199 void GenerateGaussEnergies(); >> 200 void GenerateBremEnergies(); >> 201 void GenerateBbodyEnergies(); >> 202 void GenerateCdgEnergies(); >> 203 void GenUserHistEnergies(); >> 204 void GenEpnHistEnergies(); >> 205 void GenArbPointEnergies(); >> 206 // converts energy per nucleon to energy. >> 207 void ConvertEPNToEnergy(); >> 208 >> 209 private: >> 210 >> 211 G4String EnergyDisType; // energy dis type Variable - Mono,Lin,Exp,etc >> 212 G4double MonoEnergy; //Mono-energteic energy >> 213 G4double SE ; // Standard deviation for Gaussion distrbution in energy >> 214 G4double Emin, Emax; // emin and emax >> 215 G4double alpha, Ezero, Temp; // alpha (pow), E0 (exp) and Temp (bbody,brem) >> 216 G4double grad, cept; // gradient and intercept for linear spectra >> 217 G4bool EnergySpec; // true - energy spectra, false - momentum spectra >> 218 G4bool DiffSpec; // true - differential spec, false integral spec >> 219 G4bool ApplyRig; // false no rigidity cutoff, true then apply one >> 220 G4double ERig; // energy of rigidity cutoff >> 221 G4PhysicsOrderedFreeVector UDefEnergyH; // energy hist data >> 222 G4PhysicsOrderedFreeVector IPDFEnergyH; >> 223 G4bool IPDFEnergyExist, IPDFArbExist, Epnflag; >> 224 G4PhysicsOrderedFreeVector ArbEnergyH; // Arb x,y histogram >> 225 G4PhysicsOrderedFreeVector IPDFArbEnergyH; // IPDF for Arb >> 226 G4PhysicsOrderedFreeVector EpnEnergyH; >> 227 G4double CDGhist[3]; // cumulative histo for cdg >> 228 G4double BBHist[10001], Bbody_x[10001]; >> 229 G4String IntType; // Interpolation type >> 230 G4double Arb_grad[1024], Arb_cept[1024]; // grad and cept for 1024 segments >> 231 G4double Arb_alpha[1024], Arb_Const[1024]; // alpha and constants >> 232 G4double Arb_ezero[1024]; // ezero >> 233 G4double ArbEmin, ArbEmax; // Emin and Emax for the whole arb distribution used primarily for debug. >> 234 >> 235 G4double particle_energy; >> 236 G4ParticleDefinition* particle_definition; >> 237 >> 238 G4SPSRandomGenerator* eneRndm; >> 239 >> 240 // Verbosity >> 241 G4int verbosityLevel; >> 242 >> 243 G4PhysicsOrderedFreeVector ZeroPhysVector ; // for re-set only >> 244 >> 245 G4DataInterpolation *SplineInt; // holds Spline stuff 73 246 74 G4SPSEneDistribution(); << 75 // Constructor: initializes variables << 76 ~G4SPSEneDistribution(); << 77 // Destructor << 78 << 79 void SetEnergyDisType(const G4String&); << 80 // Allows the user to choose the energy << 81 // The arguments are: Mono (mono-energet << 82 // Pow (power-law), Exp (exponential), G << 83 // Brem (bremsstrahlung), BBody (black-b << 84 // Cdg (cosmic diffuse gamma-ray), User << 85 // Arb (arbitrary point-wise), Epn (ener << 86 << 87 const G4String& GetEnergyDisType(); << 88 << 89 void SetEmin(G4double); << 90 // Sets the minimum energy << 91 << 92 G4double GetEmin() const; << 93 G4double GetArbEmin(); << 94 << 95 void SetEmax(G4double); << 96 // Sets the maximum energy << 97 << 98 G4double GetEmax() const; << 99 G4double GetArbEmax(); << 100 << 101 void SetMonoEnergy(G4double); << 102 // Sets energy for mono-energetic distri << 103 << 104 void SetAlpha(G4double); << 105 // Sets alpha for a power-law distributi << 106 << 107 void SetBiasAlpha(G4double); << 108 << 109 void SetTemp(G4double); << 110 // Sets Temperature for a Brem or BBody << 111 << 112 void SetBeamSigmaInE(G4double); << 113 << 114 void SetEzero(G4double); << 115 // Sets Ezero for an exponential distrib << 116 << 117 void SetGradient(G4double); << 118 // Sets gradient for a linear distributi << 119 << 120 void SetInterCept(G4double); << 121 // Sets intercept for a linear distribut << 122 << 123 void UserEnergyHisto(const G4ThreeVector&) << 124 // Allows user to defined a histogram fo << 125 << 126 void ArbEnergyHisto(const G4ThreeVector&); << 127 // Allows the user to define an Arbitrar << 128 // energy distribution << 129 << 130 void ArbEnergyHistoFile(const G4String&); << 131 << 132 void EpnEnergyHisto(const G4ThreeVector&); << 133 // Allows the user to define an Energy p << 134 << 135 void InputEnergySpectra(G4bool); << 136 // Allows the user to choose between mom << 137 // for user-defined histograms and arbit << 138 // The default is true (energy) << 139 << 140 void InputDifferentialSpectra(G4bool); << 141 // Allows the user to choose between int << 142 // distributions when using the arbitrar << 143 << 144 void ArbInterpolate(const G4String&); << 145 // Allows the user to specify the type o << 146 // interpolate the Arbitrary points spec << 147 << 148 const G4String& GetIntType(); << 149 << 150 void Calculate(); << 151 // Controls the calculation of Integral << 152 // distributions << 153 << 154 void SetBiasRndm(G4SPSRandomGenerator* a); << 155 // Sets the biased random number generat << 156 << 157 void ReSetHist(const G4String&); << 158 // Resets the histogram for user defined << 159 << 160 void SetVerbosity(G4int a); << 161 // Sets the verbosity level << 162 << 163 G4double GetWeight() const; << 164 << 165 G4double GetMonoEnergy(); << 166 // Mono-energetic energy << 167 << 168 G4double GetSE(); << 169 // Standard deviation for Gaussian distr << 170 << 171 G4double Getalpha() const; << 172 // Alpha (pow) << 173 << 174 G4double GetEzero() const; << 175 // E0 (exp) << 176 << 177 G4double GetTemp(); << 178 // Temp (bbody,brem) << 179 << 180 G4double Getgrad() const; << 181 // Gradient and intercept for linear spe << 182 << 183 G4double Getcept() const; << 184 << 185 G4PhysicsFreeVector GetUserDefinedEnergyHi << 186 << 187 G4PhysicsFreeVector GetArbEnergyHisto(); << 188 << 189 G4double GenerateOne(G4ParticleDefinition* << 190 // Generate one random energy for the s << 191 << 192 G4double GetProbability (G4double); << 193 << 194 G4double GetArbEneWeight(G4double); << 195 << 196 inline void ApplyEnergyWeight(G4bool val) << 197 inline G4bool IfApplyEnergyWeight() const << 198 << 199 private: << 200 << 201 void LinearInterpolation(); << 202 void LogInterpolation(); << 203 void ExpInterpolation(); << 204 void SplineInterpolation(); << 205 void CalculateCdgSpectrum(); << 206 void CalculateBbodySpectrum(); << 207 void CalculateCPowSpectrum(); << 208 << 209 // The following methods generate energies << 210 // to the spectral parameters defined abov << 211 << 212 void GenerateMonoEnergetic(); << 213 void GenerateBiasPowEnergies(); << 214 void GenerateGaussEnergies(); << 215 void GenerateBremEnergies(); << 216 void GenerateBbodyEnergies(); << 217 void GenerateCdgEnergies(); << 218 void GenUserHistEnergies(); << 219 void GenEpnHistEnergies(); << 220 void GenArbPointEnergies(); // NOTE: REQUI << 221 void GenerateExpEnergies(G4bool); << 222 void GenerateLinearEnergies(G4bool); << 223 void GeneratePowEnergies(G4bool); << 224 void GenerateCPowEnergies(); << 225 << 226 void ConvertEPNToEnergy(); << 227 // Converts energy per nucleon to energy << 228 << 229 void BBInitHists(); << 230 void CPInitHists(); << 231 << 232 private: // Non invariant data members beco << 233 << 234 G4String EnergyDisType; // energy dis type << 235 G4double weight; // particle weight //// N << 236 G4double MonoEnergy; //Mono-energteic ener << 237 G4double SE; // Standard deviation for Gau << 238 << 239 G4double Emin, Emax; // emin and emax //// << 240 G4double alpha, Ezero;// alpha (pow), E0 ( << 241 G4double Temp; // Temp (bbody,brem) << 242 G4double biasalpha; // biased power index << 243 G4double grad, cept; // gradient and inter << 244 G4double prob_norm; // normalisation facto << 245 G4bool Biased = false; // biased to power- << 246 G4bool EnergySpec = true; // energy spectr << 247 G4bool DiffSpec = true; // differential sp << 248 << 249 G4PhysicsFreeVector UDefEnergyH; // energy << 250 G4PhysicsFreeVector IPDFEnergyH; << 251 G4bool IPDFEnergyExist = false, IPDFArbExi << 252 G4PhysicsFreeVector ArbEnergyH; // Arb x,y << 253 G4PhysicsFreeVector IPDFArbEnergyH; // IPD << 254 G4PhysicsFreeVector EpnEnergyH; << 255 G4double CDGhist[3]; // cumulative histo f << 256 << 257 std::vector<G4double>* BBHist = nullptr; << 258 std::vector<G4double>* Bbody_x = nullptr; << 259 G4bool BBhistInit = false; << 260 G4bool BBhistCalcd = false; << 261 << 262 // For cutoff power-law << 263 // << 264 std::vector<G4double>* CPHist = nullptr; << 265 std::vector<G4double>* CP_x = nullptr; << 266 G4bool CPhistInit = false; << 267 G4bool CPhistCalcd = false; << 268 << 269 G4String IntType; // Interpolation type << 270 G4double* Arb_grad = nullptr; << 271 G4double* Arb_cept = nullptr; << 272 G4bool Arb_grad_cept_flag = false; << 273 G4double* Arb_alpha = nullptr; << 274 G4double* Arb_Const = nullptr; << 275 G4bool Arb_alpha_Const_flag = false; << 276 G4double* Arb_ezero = nullptr; << 277 G4bool Arb_ezero_flag = false; << 278 << 279 G4bool applyEvergyWeight = false; << 280 << 281 G4double ArbEmin, ArbEmax; << 282 // Emin and Emax for the whole arb distr << 283 << 284 G4double particle_energy; << 285 << 286 G4SPSRandomGenerator* eneRndm = nullptr; << 287 << 288 G4int verbosityLevel; << 289 << 290 G4PhysicsFreeVector ZeroPhysVector; // for << 291 << 292 std::vector<G4DataInterpolation*> SplineIn << 293 // Holds Spline stuff required for sampl << 294 G4DataInterpolation* Splinetemp = nullptr; << 295 // Holds a temp Spline used for calculat << 296 << 297 G4Mutex mutex; // protect access to shared << 298 << 299 // Thread local data (non-invariant during << 300 // These are copied from master one at the << 301 // generation of each event << 302 // << 303 struct threadLocal_t << 304 { << 305 G4double Emin; << 306 G4double Emax; << 307 G4double alpha; << 308 G4double Ezero; << 309 G4double grad; << 310 G4double cept; << 311 G4ParticleDefinition* particle_definitio << 312 G4double weight; << 313 G4double particle_energy; << 314 }; << 315 G4Cache<threadLocal_t> threadLocalData; << 316 }; 247 }; 317 248 >> 249 318 #endif 250 #endif >> 251 >> 252 >> 253 >> 254 319 255