Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/global/HEPNumerics/include/G4DataInterpolation.hh

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // G4DataInterpolation
 27 //
 28 // Class description:
 29 //
 30 // The class consists of some methods for data interpolations and
 31 // extrapolations. The methods based mainly on recommendations given in the
 32 // book: An introduction to NUMERICAL METHODS IN C++, B.H. Flowers,
 33 //       Claredon Press, Oxford, 1995.
 34 
 35 // Author: V.Grichine, 03.04.1997
 36 // --------------------------------------------------------------------
 37 #ifndef G4DATAINTERPOLATION_HH
 38 #define G4DATAINTERPOLATION_HH 1
 39 
 40 #include "globals.hh"
 41 
 42 class G4DataInterpolation
 43 {
 44  public:
 45   G4DataInterpolation(G4double pX[], G4double pY[], G4int number);
 46   // Constructor for initializing data members.
 47 
 48   G4DataInterpolation(G4double pX[], G4double pY[], G4int number,
 49                       G4double pFirstDerStart, G4double pFirstDerFinish);
 50   // Constructor for cubic spline interpolation. It creates fSecond Deivative
 51   // array as well as fArgument and fFunction.
 52 
 53   ~G4DataInterpolation();
 54   // Destructor deletes dynamically created arrays for data members: fArgument,
 55   // fFunction and fSecondDerivative, all have dimension of fNumber.
 56 
 57   G4DataInterpolation(const G4DataInterpolation&) = delete;
 58   G4DataInterpolation& operator=(const G4DataInterpolation&) = delete;
 59   // Copy constructor and assignement operator not allowed.
 60 
 61   G4double PolynomInterpolation(G4double pX, G4double& deltaY) const;
 62   // This function returns the value P(pX), where P(x) is polynom of fNumber-1
 63   // degree such that P(fArgument[i]) = fFunction[i], for i = 0, ..., fNumber-1.
 64 
 65   void PolIntCoefficient(G4double cof[]) const;
 66   // Given arrays fArgument[0,..,fNumber-1] and fFunction[0,..,fNumber-1], this
 67   // function calculates an array of coefficients.
 68   // The coefficients don't provide usually (fNumber>10) better accuracy for
 69   // polynom interpolation, as compared with PolynomInterpolation() function.
 70   // They could be used instead for derivate calculations and some other
 71   // applications.
 72 
 73   G4double RationalPolInterpolation(G4double pX, G4double& deltaY) const;
 74   // The function returns diagonal rational function (Bulirsch and Stoer
 75   // algorithm of Neville type) Pn(x)/Qm(x) where P and Q are polynoms.
 76   // Tests showed the method is not stable and hasn't advantage if compared
 77   // with polynomial interpolation.
 78 
 79   G4double CubicSplineInterpolation(G4double pX) const;
 80   // Cubic spline interpolation in point pX for function given by the table:
 81   // fArgument, fFunction. The constructor, which creates fSecondDerivative,
 82   // must be called before. The function works optimal, if sequential calls
 83   // are in random values of pX.
 84 
 85   G4double FastCubicSpline(G4double pX, G4int index) const;
 86   // Return cubic spline interpolation in the point pX which is located between
 87   // fArgument[index] and fArgument[index+1]. It is usually called in sequence
 88   // of known from external analysis values of index.
 89 
 90   G4int LocateArgument(G4double pX) const;
 91   // Given argument pX, returns index k, so that pX bracketed by fArgument[k]
 92   // and fArgument[k+1].
 93 
 94   void CorrelatedSearch(G4double pX, G4int& index) const;
 95   // Given a value pX, returns a value 'index' such that pX is between
 96   // fArgument[index] and fArgument[index+1]. fArgument MUST BE MONOTONIC,
 97   // either increasing or decreasing. If index = -1 or fNumber, this indicates
 98   // that pX is out of range. The value index on input is taken as the initial
 99   // approximation for index on output.
100 
101  private:
102   // pointers to data table to be interpolated for y[i] and x[i] respectively
103   G4double* fArgument = nullptr;
104   G4double* fFunction = nullptr;
105 
106   G4double* fSecondDerivative = nullptr;
107 
108   G4int fNumber = 0;  // the corresponding table size
109 };
110 
111 #endif
112