Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // G4DataInterpolation 27 // 28 // Class description: 29 // 30 // The class consists of some methods for data interpolations and 31 // extrapolations. The methods based mainly on recommendations given in the 32 // book: An introduction to NUMERICAL METHODS IN C++, B.H. Flowers, 33 // Claredon Press, Oxford, 1995. 34 35 // Author: V.Grichine, 03.04.1997 36 // -------------------------------------------------------------------- 37 #ifndef G4DATAINTERPOLATION_HH 38 #define G4DATAINTERPOLATION_HH 1 39 40 #include "globals.hh" 41 42 class G4DataInterpolation 43 { 44 public: 45 G4DataInterpolation(G4double pX[], G4double pY[], G4int number); 46 // Constructor for initializing data members. 47 48 G4DataInterpolation(G4double pX[], G4double pY[], G4int number, 49 G4double pFirstDerStart, G4double pFirstDerFinish); 50 // Constructor for cubic spline interpolation. It creates fSecond Deivative 51 // array as well as fArgument and fFunction. 52 53 ~G4DataInterpolation(); 54 // Destructor deletes dynamically created arrays for data members: fArgument, 55 // fFunction and fSecondDerivative, all have dimension of fNumber. 56 57 G4DataInterpolation(const G4DataInterpolation&) = delete; 58 G4DataInterpolation& operator=(const G4DataInterpolation&) = delete; 59 // Copy constructor and assignement operator not allowed. 60 61 G4double PolynomInterpolation(G4double pX, G4double& deltaY) const; 62 // This function returns the value P(pX), where P(x) is polynom of fNumber-1 63 // degree such that P(fArgument[i]) = fFunction[i], for i = 0, ..., fNumber-1. 64 65 void PolIntCoefficient(G4double cof[]) const; 66 // Given arrays fArgument[0,..,fNumber-1] and fFunction[0,..,fNumber-1], this 67 // function calculates an array of coefficients. 68 // The coefficients don't provide usually (fNumber>10) better accuracy for 69 // polynom interpolation, as compared with PolynomInterpolation() function. 70 // They could be used instead for derivate calculations and some other 71 // applications. 72 73 G4double RationalPolInterpolation(G4double pX, G4double& deltaY) const; 74 // The function returns diagonal rational function (Bulirsch and Stoer 75 // algorithm of Neville type) Pn(x)/Qm(x) where P and Q are polynoms. 76 // Tests showed the method is not stable and hasn't advantage if compared 77 // with polynomial interpolation. 78 79 G4double CubicSplineInterpolation(G4double pX) const; 80 // Cubic spline interpolation in point pX for function given by the table: 81 // fArgument, fFunction. The constructor, which creates fSecondDerivative, 82 // must be called before. The function works optimal, if sequential calls 83 // are in random values of pX. 84 85 G4double FastCubicSpline(G4double pX, G4int index) const; 86 // Return cubic spline interpolation in the point pX which is located between 87 // fArgument[index] and fArgument[index+1]. It is usually called in sequence 88 // of known from external analysis values of index. 89 90 G4int LocateArgument(G4double pX) const; 91 // Given argument pX, returns index k, so that pX bracketed by fArgument[k] 92 // and fArgument[k+1]. 93 94 void CorrelatedSearch(G4double pX, G4int& index) const; 95 // Given a value pX, returns a value 'index' such that pX is between 96 // fArgument[index] and fArgument[index+1]. fArgument MUST BE MONOTONIC, 97 // either increasing or decreasing. If index = -1 or fNumber, this indicates 98 // that pX is out of range. The value index on input is taken as the initial 99 // approximation for index on output. 100 101 private: 102 // pointers to data table to be interpolated for y[i] and x[i] respectively 103 G4double* fArgument = nullptr; 104 G4double* fFunction = nullptr; 105 106 G4double* fSecondDerivative = nullptr; 107 108 G4int fNumber = 0; // the corresponding table size 109 }; 110 111 #endif 112