Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 // 28 // ------------------------------------------------------------ 29 // GEANT 4 class header file 30 // 31 // ---------------- G4SampleResonance ---------------- 32 // by Henning Weber, March 2001. 33 // helper class for sampling resonance masses 34 // ------------------------------------------------------------ 35 36 37 #include "globals.hh" 38 #include <iostream> 39 #include "G4SampleResonance.hh" 40 #include "G4DecayTable.hh" 41 #include "Randomize.hh" 42 #include "G4HadronicException.hh" 43 44 G4ThreadLocal G4SampleResonance::minMassMapType *G4SampleResonance::minMassCache_G4MT_TLS_ = 0; 45 46 G4double G4SampleResonance::GetMinimumMass(const G4ParticleDefinition* p) const 47 { ;;; if (!minMassCache_G4MT_TLS_) minMassCache_G4MT_TLS_ = new G4SampleResonance::minMassMapType ; G4SampleResonance::minMassMapType &minMassCache = *minMassCache_G4MT_TLS_; ;;; 48 49 G4double minResonanceMass = DBL_MAX; 50 51 if ( p->IsShortLived() ) 52 { 53 minMassMapIterator iter = minMassCache.find(p); 54 if ( iter!=minMassCache.end() ) 55 { 56 minResonanceMass = (*iter).second; 57 } 58 else 59 { 60 // G4cout << "--> request for " << p->GetParticleName() << G4endl; 61 62 const G4DecayTable* theDecays = p->GetDecayTable(); 63 const G4int nDecays = theDecays->entries(); 64 65 // To find the minimum mass of the resonance, consider only the 66 // decay channels whose branching ratio is above a given threshold. 67 // This is needed to avoid that rare and light decay channels 68 // (e.g. e+ e-) can set a very small minimum mass of the resonance. 69 // In the case that no channel with branching ratio above the 70 // threshold has been found, consider the channel with the highest 71 // branching ratio (whatever its values). 72 // Note that this solution works also when rare decays are artificially 73 // enhanced if both of the following conditions hold: 74 // 1. The enhanced rare decays have branching ratios below the threshold 75 // 2. The decay with the highest branching ratio is a "natural" decay, 76 // i.e. not a rare decay which has been artificially enhanced. 77 const G4double thresholdChannelProbability = 0.10; 78 G4double foundChannelAboveThresholdProbability = false; 79 G4double minMassMostProbableChannel = 0.0; 80 G4double highestChannelProbability = 0.0; 81 for (G4int i=0; i<nDecays; i++) 82 { 83 const G4VDecayChannel* aDecay = theDecays->GetDecayChannel(i); 84 G4double decayBr = aDecay->GetBR(); 85 if (decayBr > std::min(highestChannelProbability, thresholdChannelProbability)) 86 { 87 const G4int nDaughters = aDecay->GetNumberOfDaughters(); 88 G4double minChannelMass = 0; 89 for (G4int j=0; j<nDaughters; j++) 90 { 91 const G4ParticleDefinition* aDaughter = const_cast<G4VDecayChannel*>(aDecay)->GetDaughter(j); 92 G4double minMass = GetMinimumMass(aDaughter); 93 if (!minMass) minMass = DBL_MAX; // exclude gamma channel; 94 minChannelMass+=minMass; 95 } 96 if (decayBr > highestChannelProbability) 97 { 98 highestChannelProbability = decayBr; 99 minMassMostProbableChannel = minChannelMass; 100 } 101 if (decayBr > thresholdChannelProbability) 102 { 103 foundChannelAboveThresholdProbability = true; 104 if (minChannelMass < minResonanceMass) minResonanceMass = minChannelMass; 105 } 106 } 107 } 108 if ( ! foundChannelAboveThresholdProbability ) { 109 minResonanceMass = minMassMostProbableChannel; 110 } 111 // replace this as soon as the compiler supports mutable!! 112 G4SampleResonance* self = const_cast<G4SampleResonance*>(this); 113 //Andrea Dotti (13Jan2013): Change needed for G4MT 114 //(self->minMassCache)[p] = minResonanceMass; 115 self->minMassCache_G4MT_TLS_->operator[](p) = minResonanceMass; 116 117 } 118 } 119 else 120 { 121 122 minResonanceMass = p->GetPDGMass(); 123 124 } 125 // G4cout << "minimal mass for " << p->GetParticleName() << " is " << minResonanceMass/MeV << G4endl; 126 127 return minResonanceMass; 128 } 129 130 131 132 G4double G4SampleResonance::SampleMass(const G4ParticleDefinition* p, const G4double maxMass) const 133 { if (!minMassCache_G4MT_TLS_) minMassCache_G4MT_TLS_ = new G4SampleResonance::minMassMapType ; 134 return SampleMass(p->GetPDGMass(), p->GetPDGWidth(), GetMinimumMass(p), maxMass); 135 } 136 137 138 G4double G4SampleResonance::SampleMass(const G4double poleMass, 139 const G4double gamma, 140 const G4double minMass, 141 const G4double maxMass) const 142 { if (!minMassCache_G4MT_TLS_) minMassCache_G4MT_TLS_ = new G4SampleResonance::minMassMapType ; 143 // Chooses a mass randomly between minMass and maxMass 144 // according to a Breit-Wigner function with constant 145 // width gamma and pole poleMass 146 147 148 //AR-14Nov2017 : protection for rare cases when a wide parent resonance, with a very small 149 // dynamic mass, decays into another wide (daughter) resonance: it can happen 150 // then that for the daugther resonance minMass > maxMass : in these cases, 151 // do not crash, but simply consider maxMass as the minimal mass for 152 // the sampling of the daughter resonance mass. 153 G4double protectedMinMass = minMass; 154 if ( minMass > maxMass ) 155 { 156 //throw G4HadronicException(__FILE__, __LINE__, 157 // "SampleResonanceMass: mass range negative (minMass>maxMass)"); 158 protectedMinMass = maxMass; 159 } 160 161 G4double returnMass; 162 163 if ( gamma < DBL_EPSILON ) 164 { 165 returnMass = std::max(minMass, std::min(maxMass, poleMass)); 166 } 167 else 168 { 169 //double fmin = BrWigInt0(minMass, gamma, poleMass); 170 double fmin = BrWigInt0(protectedMinMass, gamma, poleMass); 171 double fmax = BrWigInt0(maxMass, gamma, poleMass); 172 double f = fmin + (fmax-fmin)*G4UniformRand(); 173 returnMass = BrWigInv(f, gamma, poleMass); 174 } 175 176 return returnMass; 177 } 178 179 180 181 182