Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/qmd/src/G4QMDCollision.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // 080602 Fix memory leaks by T. Koi 
 27 // 081120 Add deltaT in signature of CalKinematicsOfBinaryCollisions
 28 //        Add several required updating of Mean Filed 
 29 //        Modified handling of absorption case by T. Koi
 30 // 090126 Fix in absorption case by T. Koi  
 31 // 090331 Fix for gamma participant by T. Koi 
 32 //
 33 #include "G4QMDCollision.hh"
 34 #include "G4Scatterer.hh"
 35 #include "G4Pow.hh"
 36 #include "G4Exp.hh"
 37 #include "G4Log.hh"
 38 #include "G4PhysicalConstants.hh"
 39 #include "G4SystemOfUnits.hh"
 40 #include "Randomize.hh"
 41 
 42 G4QMDCollision::G4QMDCollision()
 43 : fdeltar ( 4.0 )
 44 , fbcmax0 ( 1.323142 ) // NN maximum impact parameter
 45 , fbcmax1 ( 2.523 )    // others maximum impact parameter
 46 // , sig0 ( 55 )   // NN cross section
 47 //110617 fix for gcc 4.6 compilation warnings 
 48 //, sig1 ( 200 )  // others cross section
 49 , fepse ( 0.0001 )
 50 {
 51    //These two pointers will be set through SetMeanField method
 52    theSystem=NULL;
 53    theMeanField=NULL;
 54    theScatterer = new G4Scatterer();
 55 }
 56 
 57 /*
 58 G4QMDCollision::G4QMDCollision( const G4QMDCollision& obj )
 59 : fdeltar ( obj.fdeltar )
 60 , fbcmax0 ( obj.fbcmax0 ) // NN maximum impact parameter
 61 , fbcmax1 ( obj.fbcmax1 )    // others maximum impact parameter
 62 , fepse ( obj.fepse )
 63 {
 64    
 65    if ( obj.theSystem != NULL ) {
 66       theSystem = new G4QMDSystem;
 67       *theSystem = *obj.theSystem;
 68    } else {
 69       theSystem = NULL;
 70    }
 71    if ( obj.theMeanField != NULL ) {
 72       theMeanField = new G4QMDMeanField;
 73       *theMeanField = *obj.theMeanField;
 74    } else {
 75       theMeanField = NULL;
 76    }
 77    theScatterer = new G4Scatterer();
 78    *theScatterer = *obj.theScatterer;
 79 }
 80 
 81 G4QMDCollision & G4QMDCollision::operator= ( const G4QMDCollision& obj)
 82 {
 83    fdeltar = obj.fdeltar;
 84    fbcmax0 = obj.fbcmax1;
 85    fepse = obj.fepse;
 86 
 87    if ( obj.theSystem != NULL ) {
 88       delete theSystem;
 89       theSystem = new G4QMDSystem;
 90       *theSystem = *obj.theSystem;
 91    } else {
 92       theSystem = NULL;
 93    }
 94    if ( obj.theMeanField != NULL ) {
 95       delete theMeanField;
 96       theMeanField = new G4QMDMeanField;
 97       *theMeanField = *obj.theMeanField;
 98    } else {
 99       theMeanField = NULL;
100    }
101    delete theScatterer;
102    theScatterer = new G4Scatterer();
103    *theScatterer = *obj.theScatterer;
104 
105    return *this;
106 }
107 */
108 
109 
110 G4QMDCollision::~G4QMDCollision()
111 {
112    //if ( theSystem != NULL ) delete theSystem;
113    //if ( theMeanField != NULL ) delete theMeanField;
114    delete theScatterer;
115 }
116 
117 
118 void G4QMDCollision::CalKinematicsOfBinaryCollisions( G4double dt )
119 {
120    G4double deltaT = dt; 
121 
122    G4int n = theSystem->GetTotalNumberOfParticipant(); 
123 //081118
124    //G4int nb = 0;
125    for ( G4int i = 0 ; i < n ; i++ )
126    {
127       theSystem->GetParticipant( i )->UnsetHitMark();
128       theSystem->GetParticipant( i )->UnsetHitMark();
129       //nb += theSystem->GetParticipant( i )->GetBaryonNumber();
130    }
131    //G4cout << "nb = " << nb << " n = " << n << G4endl;
132 
133 
134 //071101
135    for ( G4int i = 0 ; i < n ; i++ )
136    {
137 
138       //std::cout << i << " " << theSystem->GetParticipant( i )->GetDefinition()->GetParticleName() << " " << theSystem->GetParticipant( i )->GetPosition() << std::endl;
139 
140       if ( theSystem->GetParticipant( i )->GetDefinition()->IsShortLived() )
141       {
142 
143          G4bool decayed = false; 
144 
145          const G4ParticleDefinition* pd0 = theSystem->GetParticipant( i )->GetDefinition();
146          G4ThreeVector p0 = theSystem->GetParticipant( i )->GetMomentum();
147          G4ThreeVector r0 = theSystem->GetParticipant( i )->GetPosition();
148 
149          G4LorentzVector p40 = theSystem->GetParticipant( i )->Get4Momentum();
150 
151          G4double eini = theMeanField->GetTotalPotential() + p40.e();
152 
153          G4int n0 = theSystem->GetTotalNumberOfParticipant(); 
154          G4int i0 = 0; 
155 
156          G4bool isThisEnergyOK = false;
157 
158          G4int maximumNumberOfTrial=4;
159          for ( G4int ii = 0 ; ii < maximumNumberOfTrial ; ii++ )
160          { 
161 
162             //G4LorentzVector p4 = theSystem->GetParticipant( i )->Get4Momentum();
163             G4LorentzVector p400 = p40;
164 
165             p400 *= GeV;
166             //G4KineticTrack kt( theSystem->GetParticipant( i )->GetDefinition() , 0.0 , (theSystem->GetParticipant( i )->GetPosition())*fermi , p4 );
167             G4KineticTrack kt( pd0 , 0.0 , r0*fermi , p400 );
168             //std::cout << "G4KineticTrack " << i << " " <<  kt.GetDefinition()->GetParticleName() <<  kt.GetPosition() << std::endl;
169             G4KineticTrackVector* secs = NULL;
170             secs = kt.Decay();
171             G4int id = 0;
172             G4double et = 0;
173             if ( secs )
174             {
175                for ( G4KineticTrackVector::iterator it 
176                      = secs->begin() ; it != secs->end() ; it++ )
177                {
178 /*
179                   G4cout << "G4KineticTrack" 
180                   << " " << (*it)->GetDefinition()->GetParticleName()
181                   << " " << (*it)->Get4Momentum()
182                   << " " << (*it)->GetPosition()/fermi
183                   << G4endl;
184 */
185                    if ( id == 0 ) 
186                    {
187                       theSystem->GetParticipant( i )->SetDefinition( (*it)->GetDefinition() );
188                       theSystem->GetParticipant( i )->SetMomentum( (*it)->Get4Momentum().v()/GeV );
189                       theSystem->GetParticipant( i )->SetPosition( (*it)->GetPosition()/fermi );
190                       //theMeanField->Cal2BodyQuantities( i ); 
191                       et += (*it)->Get4Momentum().e()/GeV;
192                    }
193                    if ( id > 0 )
194                    {
195                       // Append end;
196                       theSystem->SetParticipant ( new G4QMDParticipant ( (*it)->GetDefinition() , (*it)->Get4Momentum().v()/GeV , (*it)->GetPosition()/fermi ) );
197                       et += (*it)->Get4Momentum().e()/GeV;
198                       if ( id > 1 )
199                       {
200                          //081118
201                          //G4cout << "G4QMDCollision id >2; id= " << id  << G4endl; 
202                       }
203                    }
204                    id++; // number of daughter particles
205 
206                    delete *it;
207                }
208 
209                theMeanField->Update();
210                i0 = id-1; // 0 enter to i
211 
212                delete secs;
213             }
214 
215 //          EnergyCheck  
216 
217             G4double efin = theMeanField->GetTotalPotential() + et; 
218             //std::cout <<  std::abs ( eini - efin ) - fepse << std::endl; 
219 //            std::cout <<  std::abs ( eini - efin ) - fepse*10 << std::endl; 
220 //                                           *10 TK  
221             if ( std::abs ( eini - efin ) < fepse*10 ) 
222             {
223                // Energy OK 
224                isThisEnergyOK = true;
225                break; 
226             }
227             else
228             {
229 
230                theSystem->GetParticipant( i )->SetDefinition( pd0 );
231                theSystem->GetParticipant( i )->SetPosition( r0 );
232                theSystem->GetParticipant( i )->SetMomentum( p0 );
233 
234                //for ( G4int i0i = 0 ; i0i < id-1 ; i0i++ )
235                //160210 deletion must be done in descending order
236                for ( G4int i0i = id-2 ; 0 <= i0i ; i0i-- ) {
237                   //081118
238                   //std::cout << "Decay Energitically Blocked deleteing " << i0i+n0  << std::endl;
239                   theSystem->DeleteParticipant( i0i+n0 );
240                }
241                //081103
242                theMeanField->Update();
243             }
244 
245          }
246 
247 
248 //       Pauli Check 
249          if ( isThisEnergyOK == true )
250          {
251             if ( theMeanField->IsPauliBlocked ( i ) != true ) 
252             {
253 
254                G4bool allOK = true; 
255                for ( G4int i0i = 0 ; i0i < i0 ; i0i++ )
256                {
257                   if ( theMeanField->IsPauliBlocked ( i0i+n0 ) == true )
258                   {
259                      allOK = false;
260                      break;
261                   } 
262                }
263 
264                if ( allOK ) 
265                {
266                   decayed = true; //Decay Succeeded
267                }
268             }
269 
270          }
271 //       
272 
273          if ( decayed )
274          {
275             //081119
276             //G4cout << "Decay Suceeded! " << std::endl;
277             theSystem->GetParticipant( i )->SetHitMark();
278             for ( G4int i0i = 0 ; i0i < i0 ; i0i++ )
279             {
280                 theSystem->GetParticipant( i0i+n0 )->SetHitMark();
281             }
282 
283          }
284          else
285          {
286 
287 //          Decay Blocked and re-enter orginal participant;
288 
289             if ( isThisEnergyOK == true )  // for false case already done
290             {
291 
292                theSystem->GetParticipant( i )->SetDefinition( pd0 );
293                theSystem->GetParticipant( i )->SetPosition( r0 );
294                theSystem->GetParticipant( i )->SetMomentum( p0 );
295 
296                for ( G4int i0i = 0 ; i0i < i0 ; i0i++ )
297                {
298                   //081118
299                   //std::cout << "Decay Blocked deleteing " << i0i+n0  << std::endl;
300                   //160210 adding commnet: deletion must be done in descending order
301                   theSystem->DeleteParticipant( i0+n0-i0i-1 );
302                }
303                //081103
304                theMeanField->Update();
305             }
306 
307          }
308 
309       }  //shortlive
310    }  // go next participant 
311 //071101
312 
313 
314    n = theSystem->GetTotalNumberOfParticipant(); 
315 
316 //081118
317    //for ( G4int i = 1 ; i < n ; i++ )
318    for ( G4int i = 1 ; i < theSystem->GetTotalNumberOfParticipant() ; i++ )
319    {
320 
321       //std::cout << "Collision i " << i << std::endl;
322       if ( theSystem->GetParticipant( i )->IsThisHit() ) continue; 
323 
324       G4ThreeVector ri =  theSystem->GetParticipant( i )->GetPosition();
325       G4LorentzVector p4i =  theSystem->GetParticipant( i )->Get4Momentum();
326       G4double rmi =  theSystem->GetParticipant( i )->GetMass();
327       const G4ParticleDefinition* pdi =  theSystem->GetParticipant( i )->GetDefinition();
328 //090331 gamma 
329       if ( pdi->GetPDGMass() == 0.0 ) continue;
330 
331       //std::cout << " p4i00 " << p4i << std::endl;
332       for ( G4int j = 0 ; j < i ; j++ )
333       {
334 
335 
336 /*
337          G4cout << "Collision " << i << " " << theSystem->GetParticipant( i )->IsThisProjectile() << G4endl;
338          G4cout << "Collision " << j << " " << theSystem->GetParticipant( j )->IsThisProjectile() << G4endl;
339          G4cout << "Collision " << i << " " << theSystem->GetParticipant( i )->IsThisTarget() << G4endl;
340          G4cout << "Collision " << j << " " << theSystem->GetParticipant( j )->IsThisTarget() << G4endl;
341 */
342 
343          // Only 1 Collision allowed for each particle in a time step. 
344          //081119
345          if ( theSystem->GetParticipant( i )->IsThisHit() ) continue; 
346          if ( theSystem->GetParticipant( j )->IsThisHit() ) continue; 
347 
348          //std::cout << "Collision " << i << " " << j << std::endl;
349 
350          // Do not allow collision between nucleons in target/projectile til its first collision.
351          if ( theSystem->GetParticipant( i )->IsThisProjectile() )
352          {
353             if ( theSystem->GetParticipant( j )->IsThisProjectile() ) continue;
354          }
355          else if ( theSystem->GetParticipant( i )->IsThisTarget() )
356          {
357             if ( theSystem->GetParticipant( j )->IsThisTarget() ) continue;
358          }
359 
360 
361          G4ThreeVector rj =  theSystem->GetParticipant( j )->GetPosition();
362          G4LorentzVector p4j =  theSystem->GetParticipant( j )->Get4Momentum();
363          G4double rmj =  theSystem->GetParticipant( j )->GetMass();
364          const G4ParticleDefinition* pdj =  theSystem->GetParticipant( j )->GetDefinition();
365 //090331 gamma 
366          if ( pdj->GetPDGMass() == 0.0 ) continue;
367 
368          G4double rr2 = theMeanField->GetRR2( i , j );
369 
370 //       Here we assume elab (beam momentum less than 5 GeV/n )
371          if ( rr2 > fdeltar*fdeltar ) continue;
372 
373          //G4double s = (p4i+p4j)*(p4i+p4j);
374          //G4double srt = std::sqrt ( s );
375 
376          G4double srt = std::sqrt( (p4i+p4j)*(p4i+p4j) );
377 
378          G4double cutoff = 0.0;
379          G4double fbcmax = 0.0;
380          //110617 fix for gcc 4.6 compilation warnings 
381          //G4double sig = 0.0;
382 
383          if ( rmi < 0.94 && rmj < 0.94 ) 
384          {
385 //          nucleon or pion case
386             cutoff = rmi + rmj + 0.02; 
387             fbcmax = fbcmax0;
388             //110617 fix for gcc 4.6 compilation warnings 
389             //sig = sig0;
390          }
391          else
392          {
393             cutoff = rmi + rmj; 
394             fbcmax = fbcmax1;
395             //110617 fix for gcc compilation warnings 
396             //sig = sig1;
397          }
398 
399          //std::cout << "Collision cutoff " << i << " " << j << " " << cutoff << std::endl;
400          if ( srt < cutoff ) continue; 
401         
402          G4ThreeVector dr = ri - rj;
403          G4double rsq = dr*dr;
404 
405          G4double pij = p4i*p4j; 
406          G4double pidr = p4i.vect()*dr;
407          G4double pjdr = p4j.vect()*dr;
408 
409          G4double aij = 1.0 - ( rmi*rmj /pij ) * ( rmi*rmj /pij ); 
410          G4double bij = pidr / rmi - pjdr*rmi/pij;
411          G4double cij = rsq + ( pidr / rmi ) * ( pidr / rmi );
412          G4double brel = std::sqrt ( std::abs ( cij - bij*bij/aij ) );
413  
414          if ( brel > fbcmax ) continue;
415          //std::cout << "collisions3 " << std::endl;
416      
417          G4double bji = -pjdr/rmj + pidr * rmj /pij;
418  
419          G4double ti = ( pidr/rmi - bij / aij ) * p4i.e() / rmi;
420          G4double tj = (-pjdr/rmj - bji / aij ) * p4j.e() / rmj;
421 
422 
423 /*
424          G4cout << "collisions4  p4i " << p4i << G4endl;
425          G4cout << "collisions4  ri " << ri << G4endl;
426          G4cout << "collisions4  p4j " << p4j << G4endl;
427          G4cout << "collisions4  rj " << rj << G4endl;
428          G4cout << "collisions4  dr " << dr << G4endl;
429          G4cout << "collisions4  pij " << pij << G4endl;
430          G4cout << "collisions4  aij " << aij << G4endl;
431          G4cout << "collisions4  bij bji " << bij << " " << bji << G4endl;
432          G4cout << "collisions4  pidr pjdr " << pidr << " " << pjdr << G4endl;
433          G4cout << "collisions4  p4i.e() p4j.e() " << p4i.e() << " " << p4j.e() << G4endl;
434          G4cout << "collisions4  rmi rmj " << rmi << " " << rmj << G4endl;
435          G4cout << "collisions4 " << ti << " " << tj << G4endl;
436 */
437          if ( std::abs ( ti + tj ) > deltaT ) continue;
438          //std::cout << "collisions4 " << std::endl;
439 
440          G4ThreeVector beta = ( p4i + p4j ).boostVector();
441 
442          G4LorentzVector p = p4i;
443          G4LorentzVector p4icm = p.boost( p.findBoostToCM ( p4j ) );
444          G4ThreeVector pcm = p4icm.vect();
445          
446          G4double prcm = pcm.mag();
447 
448          if ( prcm <= 0.00001 ) continue; 
449          //std::cout << "collisions5 " << std::endl;
450 
451          G4bool energetically_forbidden = !( CalFinalStateOfTheBinaryCollision ( i , j ) ); // Use Geant4 Collision Library
452          //G4bool energetically_forbidden = !( CalFinalStateOfTheBinaryCollisionJQMD ( sig , cutoff , pcm , prcm , srt, beta , gamma , i , j ) ); // JQMD Elastic 
453 
454 /*
455          G4bool pauli_blocked = false;
456          if ( energetically_forbidden == false ) // result true 
457          { 
458             if ( theMeanField->IsPauliBlocked ( i ) == true || theMeanField->IsPauliBlocked ( j ) == true ) 
459             {
460                pauli_blocked = true;
461                //std::cout << "G4QMDRESULT Collsion Pauli Blocked " << std::endl;
462             }
463          }
464          else
465          {
466             if ( theMeanField->IsPauliBlocked ( i ) == true || theMeanField->IsPauliBlocked ( j ) == true ) 
467                pauli_blocked = false;
468             //std::cout << "G4QMDRESULT Collsion Blocked " << std::endl;
469          } 
470 */
471 
472 /*
473             G4cout << "G4QMDRESULT Collsion initial p4 i and j " 
474                       << p4i << " " << p4j
475                       << G4endl;
476 */
477 //       081118
478          //if ( energetically_forbidden == true || pauli_blocked == true )
479          if ( energetically_forbidden == true )
480          {
481 
482             //G4cout << " energetically_forbidden  " << G4endl;
483 //          Collsion not allowed then re enter orginal participants 
484 //          Now only momentum, becasuse we only consider elastic scattering of nucleons
485 
486             theSystem->GetParticipant( i )->SetMomentum( p4i.vect() );
487             theSystem->GetParticipant( i )->SetDefinition( pdi );
488             theSystem->GetParticipant( i )->SetPosition( ri );
489 
490             theSystem->GetParticipant( j )->SetMomentum( p4j.vect() );
491             theSystem->GetParticipant( j )->SetDefinition( pdj );
492             theSystem->GetParticipant( j )->SetPosition( rj );
493 
494             theMeanField->Cal2BodyQuantities( i ); 
495             theMeanField->Cal2BodyQuantities( j ); 
496 
497          }
498          else 
499          {
500 
501             
502            G4bool absorption = false; 
503            if ( n == theSystem->GetTotalNumberOfParticipant()+1 ) absorption = true;
504            if ( absorption ) 
505            {
506               //G4cout << "Absorption happend " << G4endl; 
507               i = i-1; 
508               n = n-1;
509            } 
510               
511 //          Collsion allowed (really happened) 
512 
513             // Unset Projectile/Target flag
514             theSystem->GetParticipant( i )->UnsetInitialMark();
515             if ( !absorption ) theSystem->GetParticipant( j )->UnsetInitialMark();
516 
517             theSystem->GetParticipant( i )->SetHitMark();
518             if ( !absorption ) theSystem->GetParticipant( j )->SetHitMark();
519 
520             theSystem->IncrementCollisionCounter();
521 
522 /*
523             G4cout << "G4QMDRESULT Collsion Really Happened between " 
524                       << i << " and " << j 
525                       << G4endl;
526             G4cout << "G4QMDRESULT Collsion initial p4 i and j " 
527                       << p4i << " " << p4j
528                       << G4endl;
529             G4cout << "G4QMDRESULT Collsion after p4 i and j " 
530                       << theSystem->GetParticipant( i )->Get4Momentum()
531                       << " " 
532                       << theSystem->GetParticipant( j )->Get4Momentum()
533                       << G4endl;
534             G4cout << "G4QMDRESULT Collsion Diff " 
535                       << p4i + p4j - theSystem->GetParticipant( i )->Get4Momentum() - theSystem->GetParticipant( j )->Get4Momentum()
536                       << G4endl;
537             G4cout << "G4QMDRESULT Collsion initial r i and j " 
538                       << ri << " " << rj
539                       << G4endl;
540             G4cout << "G4QMDRESULT Collsion after r i and j " 
541                       << theSystem->GetParticipant( i )->GetPosition()
542                       << " " 
543                       << theSystem->GetParticipant( j )->GetPosition()
544                       << G4endl;
545 */
546              
547 
548          }
549 
550       }
551 
552    }
553 
554 
555 }
556 
557 
558 
559 G4bool G4QMDCollision::CalFinalStateOfTheBinaryCollision( G4int i , G4int j )
560 {
561 
562 //081103
563    //G4cout << "CalFinalStateOfTheBinaryCollision " << i << " " << j << " " << theSystem->GetTotalNumberOfParticipant() << G4endl;
564 
565    G4bool result = false;
566    G4bool energyOK = false; 
567    G4bool pauliOK = false; 
568    G4bool abs = false;
569    G4QMDParticipant* absorbed = NULL;  
570 
571    G4LorentzVector p4i = theSystem->GetParticipant( i )->Get4Momentum();
572    G4LorentzVector p4j = theSystem->GetParticipant( j )->Get4Momentum();
573 
574 //071031
575 
576    G4double epot = theMeanField->GetTotalPotential();
577 
578    G4double eini = epot + p4i.e() + p4j.e();
579 
580 //071031
581    // will use KineticTrack
582    const G4ParticleDefinition* pdi0 =theSystem->GetParticipant( i )->GetDefinition();
583    const G4ParticleDefinition* pdj0 =theSystem->GetParticipant( j )->GetDefinition();
584    G4LorentzVector p4i0 = p4i*GeV;
585    G4LorentzVector p4j0 = p4j*GeV;
586    G4ThreeVector ri0 = ( theSystem->GetParticipant( i )->GetPosition() )*fermi;
587    G4ThreeVector rj0 = ( theSystem->GetParticipant( j )->GetPosition() )*fermi;
588 
589    for ( G4int iitry = 0 ; iitry < 4 ; iitry++ )
590    {
591 
592       abs = false;
593 
594       G4KineticTrack kt1( pdi0 , 0.0 , ri0 , p4i0 );
595       G4KineticTrack kt2( pdj0 , 0.0 , rj0 , p4j0 );
596 
597       G4LorentzVector p4ix_new; 
598       G4LorentzVector p4jx_new; 
599       G4KineticTrackVector* secs = NULL;
600       secs = theScatterer->Scatter( kt1 , kt2 );
601 
602       //std::cout << "G4QMDSCATTERER BEFORE " << kt1.GetDefinition()->GetParticleName() << " " << kt1.Get4Momentum()/GeV << " " << kt1.GetPosition()/fermi << std::endl;
603       //std::cout << "G4QMDSCATTERER BEFORE " << kt2.GetDefinition()->GetParticleName() << " " << kt2.Get4Momentum()/GeV << " " << kt2.GetPosition()/fermi << std::endl;
604       //std::cout << "THESCATTERER " << theScatterer->GetCrossSection ( kt1 , kt2 )/millibarn << " " << elastic << " " << sig << std::endl;
605 
606 
607       if ( secs )
608       {
609          G4int iti = 0;
610          if (  secs->size() == 2 )
611          {
612             for ( G4KineticTrackVector::iterator it 
613                 = secs->begin() ; it != secs->end() ; it++ )
614             {
615                if ( iti == 0 ) 
616                {
617                   theSystem->GetParticipant( i )->SetDefinition( (*it)->GetDefinition() );
618                   p4ix_new = (*it)->Get4Momentum()/GeV;
619                   //std::cout << "THESCATTERER " << (*it)->GetDefinition()->GetParticleName() << std::endl;
620                   theSystem->GetParticipant( i )->SetMomentum( p4ix_new.v() );
621                } 
622                if ( iti == 1 )
623                {
624                   theSystem->GetParticipant( j )->SetDefinition( (*it)->GetDefinition() );
625                   p4jx_new = (*it)->Get4Momentum()/GeV;
626                   //std::cout << "THESCATTERER " << p4jx_new.e()-p4jx_new.m() << std::endl;
627                   theSystem->GetParticipant( j )->SetMomentum( p4jx_new.v() );
628                }
629                //std::cout << "G4QMDSCATTERER AFTER " << (*it)->GetDefinition()->GetParticleName() << " " << (*it)->Get4Momentum()/GeV << std::endl;
630                iti++;
631             }
632          }
633          else if ( secs->size() == 1 )
634          {
635 //081118
636             abs = true;
637             //G4cout << "G4QMDCollision pion absrorption " << secs->front()->GetDefinition()->GetParticleName() << G4endl;
638             //secs->front()->Decay();
639             theSystem->GetParticipant( i )->SetDefinition( secs->front()->GetDefinition() );
640             p4ix_new = secs->front()->Get4Momentum()/GeV;
641             theSystem->GetParticipant( i )->SetMomentum( p4ix_new.v() );
642 
643          } 
644 
645 //081118
646          if ( secs->size() > 2 ) 
647          {
648 
649             G4cout << "G4QMDCollision secs size > 2;  " << secs->size() << G4endl;
650 
651             for ( G4KineticTrackVector::iterator it 
652                 = secs->begin() ; it != secs->end() ; it++ )
653             {
654                G4cout << "G4QMDSCATTERER AFTER " << (*it)->GetDefinition()->GetParticleName() << " " << (*it)->Get4Momentum()/GeV << G4endl;
655             }
656 
657          }
658 
659          // deleteing KineticTrack
660          for ( G4KineticTrackVector::iterator it 
661                = secs->begin() ; it != secs->end() ; it++ )
662          {  
663             delete *it;
664          }
665 
666          delete secs;
667       }
668 //071031
669 
670       if ( !abs )
671       { 
672          theMeanField->Cal2BodyQuantities( i ); 
673          theMeanField->Cal2BodyQuantities( j ); 
674       } 
675       else
676       {
677          absorbed = theSystem->EraseParticipant( j ); 
678          theMeanField->Update();
679       }
680 
681       epot = theMeanField->GetTotalPotential();
682 
683       G4double efin = epot + p4ix_new.e() + p4jx_new.e(); 
684 
685       //std::cout << "Collision NEW epot " << i << " " << j << " " << epot << " " << std::abs ( eini - efin ) - fepse << std::endl;
686 
687 /*
688       G4cout << "Collision efin " << i << " " << j << " " << efin << G4endl;
689       G4cout << "Collision " << i << " " << j << " " << std::abs ( eini - efin ) << " " << fepse << G4endl;
690       G4cout << "Collision " << std::abs ( eini - efin ) << " " << fepse << G4endl;
691 */
692 
693 //071031
694       if ( std::abs ( eini - efin ) < fepse ) 
695       {
696          // Collison OK 
697          //std::cout << "collisions6" << std::endl;
698          //std::cout << "collisions before " << p4i << " " << p4j << std::endl;
699          //std::cout << "collisions after " << theSystem->GetParticipant( i )->Get4Momentum() << " " << theSystem->GetParticipant( j )->Get4Momentum() << std::endl;
700          //std::cout << "collisions dif " << ( p4i + p4j ) - ( theSystem->GetParticipant( i )->Get4Momentum() + theSystem->GetParticipant( j )->Get4Momentum() ) << std::endl;
701          //std::cout << "collisions before " << ri0/fermi << " " << rj0/fermi << std::endl;
702          //std::cout << "collisions after " << theSystem->GetParticipant( i )->GetPosition() << " " << theSystem->GetParticipant( j )->GetPosition() << std::endl;
703          energyOK = true;
704          break;
705       }
706       else
707       {
708          //G4cout << "Energy Not OK " << G4endl;
709          if ( abs )
710          {
711             //G4cout << "TKDB reinsert j " << G4endl;
712             theSystem->InsertParticipant( absorbed , j );   
713             theMeanField->Update();
714          }
715          // do not need reinsert in no absroption case 
716       }
717 //071031
718    }
719 
720 // Energetically forbidden collision
721 
722    if ( energyOK )
723    {
724       // Pauli Check 
725       //G4cout << "Pauli Checking " << theSystem->GetTotalNumberOfParticipant() << G4endl;
726       if ( !abs ) 
727       {
728          if ( !( theMeanField->IsPauliBlocked ( i ) == true || theMeanField->IsPauliBlocked ( j ) == true ) ) 
729          {
730             //G4cout << "Binary Collision Happen " << theSystem->GetTotalNumberOfParticipant() << G4endl;
731             pauliOK = true;
732          }
733       }
734       else 
735       {
736          //if ( theMeanField->IsPauliBlocked ( i ) == false ) 
737          //090126                            i-1 cause jth is erased
738          if ( theMeanField->IsPauliBlocked ( i-1 ) == false ) 
739          { 
740             //G4cout << "Absorption Happen " << theSystem->GetTotalNumberOfParticipant() << G4endl;
741             delete absorbed;
742             pauliOK = true;
743          }
744       }
745       
746 
747       if ( pauliOK ) 
748       {
749          result = true;
750       }
751       else
752       {
753          //G4cout << "Pauli Blocked" << G4endl;
754          if ( abs )
755          {
756             //G4cout << "TKDB reinsert j pauli block" << G4endl;
757             theSystem->InsertParticipant( absorbed , j );   
758             theMeanField->Update(); 
759          }
760       }
761    }
762 
763    return result;
764 
765 } 
766 
767 
768 
769 G4bool G4QMDCollision::CalFinalStateOfTheBinaryCollisionJQMD( G4double sig , G4double cutoff , G4ThreeVector pcm , G4double prcm , G4double srt , G4ThreeVector beta , G4double gamma , G4int i , G4int j )
770 {
771 
772    //G4cout << "CalFinalStateOfTheBinaryCollisionJQMD" << G4endl;
773 
774    G4bool result = true;
775 
776    G4LorentzVector p4i =  theSystem->GetParticipant( i )->Get4Momentum();
777    G4double rmi =  theSystem->GetParticipant( i )->GetMass();
778    G4int zi =  theSystem->GetParticipant( i )->GetChargeInUnitOfEplus();
779 
780    G4LorentzVector p4j =  theSystem->GetParticipant( j )->Get4Momentum();
781    G4double rmj =  theSystem->GetParticipant( j )->GetMass();
782    G4int zj =  theSystem->GetParticipant( j )->GetChargeInUnitOfEplus();
783 
784    G4double pr = prcm;
785 
786    G4double c2  = pcm.z()/pr;
787     
788    G4double csrt = srt - cutoff;
789 
790    //G4double pri = prcm;
791    //G4double prf = sqrt ( 0.25 * srt*srt -rm2 );
792     
793    G4double asrt = srt - rmi - rmj;
794    G4double pra = prcm;
795    
796 
797 
798    G4double elastic = 0.0; 
799 
800    if ( zi == zj )
801    {
802       if ( csrt < 0.4286 )
803       {
804          elastic = 35.0 / ( 1. + csrt * 100.0 )  +  20.0;
805       }
806       else
807       {
808          elastic = ( - std::atan( ( csrt - 0.4286 ) * 1.5 - 0.8 )
809                  *   2. / pi + 1.0 ) * 9.65 + 7.0;
810       }         
811    }
812    else
813    {
814       if ( csrt < 0.4286 )
815       {
816          elastic = 28.0 / ( 1. + csrt * 100.0 )  +  27.0;
817       }
818       else
819       {
820          elastic = ( - std::atan( ( csrt - 0.4286 ) * 1.5 - 0.8 )
821                  *   2. / pi + 1.0 ) * 12.34 + 10.0;
822       }         
823    }
824 
825 //   std::cout << "Collision csrt " << i << " " << j << " " << csrt << std::endl;
826 //   std::cout << "Collision elstic " << i << " " << j << " " << elastic << std::endl;
827 
828 
829 //   std::cout << "Collision sig " << i << " " << j  << " " << sig << std::endl;
830    if ( G4UniformRand() > elastic / sig ) 
831    { 
832       //std::cout << "Inelastic " << std::endl; 
833       //std::cout << "elastic/sig " << elastic/sig << std::endl; 
834       return result; 
835    }
836    else
837    {
838       //std::cout << "Elastic " << std::endl; 
839    } 
840 //   std::cout << "Collision ELSTIC " << i << " " << j << std::endl;
841 
842    
843    G4double as = G4Pow::GetInstance()->powN ( 3.65 * asrt , 6 );
844    G4double a = 6.0 * as / (1.0 + as);
845    G4double ta = -2.0 * pra*pra;
846    G4double x = G4UniformRand(); 
847    G4double t1 = G4Log( (1-x) * G4Exp(2.*a*ta) + x )  /  a;
848    G4double c1 = 1.0 - t1/ta;
849  
850    if( std::abs(c1) > 1.0 ) c1 = 2.0 * x - 1.0;
851 
852 /*
853    G4cout << "Collision as " << i << " " << j << " " << as << G4endl;
854    G4cout << "Collision a " << i << " " << j << " " << a << G4endl;
855    G4cout << "Collision ta " << i << " " << j << " " << ta << G4endl;
856    G4cout << "Collision x " << i << " " << j << " " << x << G4endl;
857    G4cout << "Collision t1 " << i << " " << j << " " << t1 << G4endl;
858    G4cout << "Collision c1 " << i << " " << j << " " << c1 << G4endl;
859 */
860    t1 = 2.0*pi*G4UniformRand(); 
861 //   std::cout << "Collision t1 " << i << " " << j << " " << t1 << std::endl;
862    G4double t2 = 0.0;
863    if ( pcm.x() == 0.0 && pcm.y() == 0 )
864    {
865       t2 = 0.0;
866    }
867    else 
868    {
869       t2 = std::atan2( pcm.y() , pcm.x() );
870    }
871 //      std::cout << "Collision t2 " << i << " " << j << " " << t2 << std::endl;
872 
873    G4double s1 = std::sqrt ( 1.0 - c1*c1 );
874    G4double s2 = std::sqrt ( 1.0 - c2*c2 );
875  
876    G4double ct1 = std::cos(t1);      
877    G4double st1 = std::sin(t1);      
878 
879    G4double ct2 = std::cos(t2);      
880    G4double st2 = std::sin(t2);      
881 
882    G4double ss = c2*s1*ct1 + s2*c1;
883 
884    pcm.setX( pr * ( ss*ct2 - s1*st1*st2) );
885    pcm.setY( pr * ( ss*st2 + s1*st1*ct2) );
886    pcm.setZ( pr * ( c1*c2 - s1*s2*ct1) );
887 
888 // std::cout << "Collision pcm " << i << " " << j << " " << pcm << std::endl;
889 
890    G4double epot = theMeanField->GetTotalPotential();
891 
892    G4double eini = epot + p4i.e() + p4j.e();
893    G4double etwo = p4i.e() + p4j.e();
894 
895 /*
896    G4cout << "Collision epot " << i << " " << j << " " << epot << G4endl;
897    G4cout << "Collision eini " << i << " " << j << " " << eini << G4endl;
898    G4cout << "Collision etwo " << i << " " << j << " " << etwo << G4endl;
899 */
900 
901 
902    for ( G4int itry = 0 ; itry < 4 ; itry++ )
903    {
904 
905       G4double eicm = std::sqrt ( rmi*rmi + pcm*pcm );
906       G4double pibeta = pcm*beta;
907 
908       G4double trans = gamma * ( gamma * pibeta / ( gamma + 1 ) + eicm );
909    
910       G4ThreeVector pi_new = beta*trans + pcm;
911    
912       G4double ejcm = std::sqrt ( rmj*rmj + pcm*pcm );
913       trans = gamma * ( gamma * pibeta / ( gamma + 1 ) + ejcm );
914 
915       G4ThreeVector pj_new = beta*trans - pcm;
916 
917 //
918 // Delete old 
919 // Add new Particitipants
920 //
921 // Now only change momentum ( Beacuse we only have elastic sctter of nucleon
922 // In future Definition also will be change 
923 //
924 
925       theSystem->GetParticipant( i )->SetMomentum( pi_new );
926       theSystem->GetParticipant( j )->SetMomentum( pj_new );
927 
928       G4double pi_new_e = (theSystem->GetParticipant( i )->Get4Momentum()).e();
929       G4double pj_new_e = (theSystem->GetParticipant( j )->Get4Momentum()).e();
930 
931       theMeanField->Cal2BodyQuantities( i ); 
932       theMeanField->Cal2BodyQuantities( j ); 
933 
934       epot = theMeanField->GetTotalPotential();
935 
936       G4double efin = epot + pi_new_e + pj_new_e ; 
937 
938       //std::cout << "Collision NEW epot " << i << " " << j << " " << epot << " " << std::abs ( eini - efin ) - fepse << std::endl;
939 /*
940       G4cout << "Collision efin " << i << " " << j << " " << efin << G4endl;
941       G4cout << "Collision " << i << " " << j << " " << std::abs ( eini - efin ) << " " << fepse << G4endl;
942       G4cout << "Collision " << std::abs ( eini - efin ) << " " << fepse << G4endl;
943 */
944 
945 //071031
946       if ( std::abs ( eini - efin ) < fepse ) 
947       {
948    // Collison OK 
949          //std::cout << "collisions6" << std::endl;
950          //std::cout << "collisions before " << p4i << " " << p4j << std::endl;
951          //std::cout << "collisions after " << theSystem->GetParticipant( i )->Get4Momentum() << " " << theSystem->GetParticipant( j )->Get4Momentum() << std::endl;
952          //std::cout << "collisions dif " << ( p4i + p4j ) - ( theSystem->GetParticipant( i )->Get4Momentum() + theSystem->GetParticipant( j )->Get4Momentum() ) << std::endl;
953          //std::cout << "collisions before " << rix/fermi << " " << rjx/fermi << std::endl;
954          //std::cout << "collisions after " << theSystem->GetParticipant( i )->GetPosition() << " " << theSystem->GetParticipant( j )->GetPosition() << std::endl;
955       }
956 //071031
957 
958          if ( std::abs ( eini - efin ) < fepse ) return result;  // Collison OK 
959       
960          G4double cona = ( eini - efin + etwo ) / gamma;
961          G4double fac2 = 1.0 / ( 4.0 * cona*cona * pr*pr ) *
962                        ( ( cona*cona - ( rmi*rmi + rmj*rmj ) )*( cona*cona - ( rmi*rmi + rmj*rmj ) )
963                        - 4.0 * rmi*rmi * rmj*rmj );
964 
965          if ( fac2 > 0 ) 
966          {
967             G4double fact = std::sqrt ( fac2 ); 
968             pcm = fact*pcm;
969          }
970 
971 
972    }
973 
974 // Energetically forbidden collision
975    result = false;
976 
977    return result;
978 
979 } 
980