Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 080602 Fix memory leaks by T. Koi 27 // 081120 Add deltaT in signature of CalKinematicsOfBinaryCollisions 28 // Add several required updating of Mean Filed 29 // Modified handling of absorption case by T. Koi 30 // 090126 Fix in absorption case by T. Koi 31 // 090331 Fix for gamma participant by T. Koi 32 // 33 #include "G4QMDCollision.hh" 34 #include "G4Scatterer.hh" 35 #include "G4Pow.hh" 36 #include "G4Exp.hh" 37 #include "G4Log.hh" 38 #include "G4PhysicalConstants.hh" 39 #include "G4SystemOfUnits.hh" 40 #include "Randomize.hh" 41 42 G4QMDCollision::G4QMDCollision() 43 : fdeltar ( 4.0 ) 44 , fbcmax0 ( 1.323142 ) // NN maximum impact parameter 45 , fbcmax1 ( 2.523 ) // others maximum impact parameter 46 // , sig0 ( 55 ) // NN cross section 47 //110617 fix for gcc 4.6 compilation warnings 48 //, sig1 ( 200 ) // others cross section 49 , fepse ( 0.0001 ) 50 { 51 //These two pointers will be set through SetMeanField method 52 theSystem=NULL; 53 theMeanField=NULL; 54 theScatterer = new G4Scatterer(); 55 } 56 57 /* 58 G4QMDCollision::G4QMDCollision( const G4QMDCollision& obj ) 59 : fdeltar ( obj.fdeltar ) 60 , fbcmax0 ( obj.fbcmax0 ) // NN maximum impact parameter 61 , fbcmax1 ( obj.fbcmax1 ) // others maximum impact parameter 62 , fepse ( obj.fepse ) 63 { 64 65 if ( obj.theSystem != NULL ) { 66 theSystem = new G4QMDSystem; 67 *theSystem = *obj.theSystem; 68 } else { 69 theSystem = NULL; 70 } 71 if ( obj.theMeanField != NULL ) { 72 theMeanField = new G4QMDMeanField; 73 *theMeanField = *obj.theMeanField; 74 } else { 75 theMeanField = NULL; 76 } 77 theScatterer = new G4Scatterer(); 78 *theScatterer = *obj.theScatterer; 79 } 80 81 G4QMDCollision & G4QMDCollision::operator= ( const G4QMDCollision& obj) 82 { 83 fdeltar = obj.fdeltar; 84 fbcmax0 = obj.fbcmax1; 85 fepse = obj.fepse; 86 87 if ( obj.theSystem != NULL ) { 88 delete theSystem; 89 theSystem = new G4QMDSystem; 90 *theSystem = *obj.theSystem; 91 } else { 92 theSystem = NULL; 93 } 94 if ( obj.theMeanField != NULL ) { 95 delete theMeanField; 96 theMeanField = new G4QMDMeanField; 97 *theMeanField = *obj.theMeanField; 98 } else { 99 theMeanField = NULL; 100 } 101 delete theScatterer; 102 theScatterer = new G4Scatterer(); 103 *theScatterer = *obj.theScatterer; 104 105 return *this; 106 } 107 */ 108 109 110 G4QMDCollision::~G4QMDCollision() 111 { 112 //if ( theSystem != NULL ) delete theSystem; 113 //if ( theMeanField != NULL ) delete theMeanField; 114 delete theScatterer; 115 } 116 117 118 void G4QMDCollision::CalKinematicsOfBinaryCollisions( G4double dt ) 119 { 120 G4double deltaT = dt; 121 122 G4int n = theSystem->GetTotalNumberOfParticipant(); 123 //081118 124 //G4int nb = 0; 125 for ( G4int i = 0 ; i < n ; i++ ) 126 { 127 theSystem->GetParticipant( i )->UnsetHitMark(); 128 theSystem->GetParticipant( i )->UnsetHitMark(); 129 //nb += theSystem->GetParticipant( i )->GetBaryonNumber(); 130 } 131 //G4cout << "nb = " << nb << " n = " << n << G4endl; 132 133 134 //071101 135 for ( G4int i = 0 ; i < n ; i++ ) 136 { 137 138 //std::cout << i << " " << theSystem->GetParticipant( i )->GetDefinition()->GetParticleName() << " " << theSystem->GetParticipant( i )->GetPosition() << std::endl; 139 140 if ( theSystem->GetParticipant( i )->GetDefinition()->IsShortLived() ) 141 { 142 143 G4bool decayed = false; 144 145 const G4ParticleDefinition* pd0 = theSystem->GetParticipant( i )->GetDefinition(); 146 G4ThreeVector p0 = theSystem->GetParticipant( i )->GetMomentum(); 147 G4ThreeVector r0 = theSystem->GetParticipant( i )->GetPosition(); 148 149 G4LorentzVector p40 = theSystem->GetParticipant( i )->Get4Momentum(); 150 151 G4double eini = theMeanField->GetTotalPotential() + p40.e(); 152 153 G4int n0 = theSystem->GetTotalNumberOfParticipant(); 154 G4int i0 = 0; 155 156 G4bool isThisEnergyOK = false; 157 158 G4int maximumNumberOfTrial=4; 159 for ( G4int ii = 0 ; ii < maximumNumberOfTrial ; ii++ ) 160 { 161 162 //G4LorentzVector p4 = theSystem->GetParticipant( i )->Get4Momentum(); 163 G4LorentzVector p400 = p40; 164 165 p400 *= GeV; 166 //G4KineticTrack kt( theSystem->GetParticipant( i )->GetDefinition() , 0.0 , (theSystem->GetParticipant( i )->GetPosition())*fermi , p4 ); 167 G4KineticTrack kt( pd0 , 0.0 , r0*fermi , p400 ); 168 //std::cout << "G4KineticTrack " << i << " " << kt.GetDefinition()->GetParticleName() << kt.GetPosition() << std::endl; 169 G4KineticTrackVector* secs = NULL; 170 secs = kt.Decay(); 171 G4int id = 0; 172 G4double et = 0; 173 if ( secs ) 174 { 175 for ( G4KineticTrackVector::iterator it 176 = secs->begin() ; it != secs->end() ; it++ ) 177 { 178 /* 179 G4cout << "G4KineticTrack" 180 << " " << (*it)->GetDefinition()->GetParticleName() 181 << " " << (*it)->Get4Momentum() 182 << " " << (*it)->GetPosition()/fermi 183 << G4endl; 184 */ 185 if ( id == 0 ) 186 { 187 theSystem->GetParticipant( i )->SetDefinition( (*it)->GetDefinition() ); 188 theSystem->GetParticipant( i )->SetMomentum( (*it)->Get4Momentum().v()/GeV ); 189 theSystem->GetParticipant( i )->SetPosition( (*it)->GetPosition()/fermi ); 190 //theMeanField->Cal2BodyQuantities( i ); 191 et += (*it)->Get4Momentum().e()/GeV; 192 } 193 if ( id > 0 ) 194 { 195 // Append end; 196 theSystem->SetParticipant ( new G4QMDParticipant ( (*it)->GetDefinition() , (*it)->Get4Momentum().v()/GeV , (*it)->GetPosition()/fermi ) ); 197 et += (*it)->Get4Momentum().e()/GeV; 198 if ( id > 1 ) 199 { 200 //081118 201 //G4cout << "G4QMDCollision id >2; id= " << id << G4endl; 202 } 203 } 204 id++; // number of daughter particles 205 206 delete *it; 207 } 208 209 theMeanField->Update(); 210 i0 = id-1; // 0 enter to i 211 212 delete secs; 213 } 214 215 // EnergyCheck 216 217 G4double efin = theMeanField->GetTotalPotential() + et; 218 //std::cout << std::abs ( eini - efin ) - fepse << std::endl; 219 // std::cout << std::abs ( eini - efin ) - fepse*10 << std::endl; 220 // *10 TK 221 if ( std::abs ( eini - efin ) < fepse*10 ) 222 { 223 // Energy OK 224 isThisEnergyOK = true; 225 break; 226 } 227 else 228 { 229 230 theSystem->GetParticipant( i )->SetDefinition( pd0 ); 231 theSystem->GetParticipant( i )->SetPosition( r0 ); 232 theSystem->GetParticipant( i )->SetMomentum( p0 ); 233 234 //for ( G4int i0i = 0 ; i0i < id-1 ; i0i++ ) 235 //160210 deletion must be done in descending order 236 for ( G4int i0i = id-2 ; 0 <= i0i ; i0i-- ) { 237 //081118 238 //std::cout << "Decay Energitically Blocked deleteing " << i0i+n0 << std::endl; 239 theSystem->DeleteParticipant( i0i+n0 ); 240 } 241 //081103 242 theMeanField->Update(); 243 } 244 245 } 246 247 248 // Pauli Check 249 if ( isThisEnergyOK == true ) 250 { 251 if ( theMeanField->IsPauliBlocked ( i ) != true ) 252 { 253 254 G4bool allOK = true; 255 for ( G4int i0i = 0 ; i0i < i0 ; i0i++ ) 256 { 257 if ( theMeanField->IsPauliBlocked ( i0i+n0 ) == true ) 258 { 259 allOK = false; 260 break; 261 } 262 } 263 264 if ( allOK ) 265 { 266 decayed = true; //Decay Succeeded 267 } 268 } 269 270 } 271 // 272 273 if ( decayed ) 274 { 275 //081119 276 //G4cout << "Decay Suceeded! " << std::endl; 277 theSystem->GetParticipant( i )->SetHitMark(); 278 for ( G4int i0i = 0 ; i0i < i0 ; i0i++ ) 279 { 280 theSystem->GetParticipant( i0i+n0 )->SetHitMark(); 281 } 282 283 } 284 else 285 { 286 287 // Decay Blocked and re-enter orginal participant; 288 289 if ( isThisEnergyOK == true ) // for false case already done 290 { 291 292 theSystem->GetParticipant( i )->SetDefinition( pd0 ); 293 theSystem->GetParticipant( i )->SetPosition( r0 ); 294 theSystem->GetParticipant( i )->SetMomentum( p0 ); 295 296 for ( G4int i0i = 0 ; i0i < i0 ; i0i++ ) 297 { 298 //081118 299 //std::cout << "Decay Blocked deleteing " << i0i+n0 << std::endl; 300 //160210 adding commnet: deletion must be done in descending order 301 theSystem->DeleteParticipant( i0+n0-i0i-1 ); 302 } 303 //081103 304 theMeanField->Update(); 305 } 306 307 } 308 309 } //shortlive 310 } // go next participant 311 //071101 312 313 314 n = theSystem->GetTotalNumberOfParticipant(); 315 316 //081118 317 //for ( G4int i = 1 ; i < n ; i++ ) 318 for ( G4int i = 1 ; i < theSystem->GetTotalNumberOfParticipant() ; i++ ) 319 { 320 321 //std::cout << "Collision i " << i << std::endl; 322 if ( theSystem->GetParticipant( i )->IsThisHit() ) continue; 323 324 G4ThreeVector ri = theSystem->GetParticipant( i )->GetPosition(); 325 G4LorentzVector p4i = theSystem->GetParticipant( i )->Get4Momentum(); 326 G4double rmi = theSystem->GetParticipant( i )->GetMass(); 327 const G4ParticleDefinition* pdi = theSystem->GetParticipant( i )->GetDefinition(); 328 //090331 gamma 329 if ( pdi->GetPDGMass() == 0.0 ) continue; 330 331 //std::cout << " p4i00 " << p4i << std::endl; 332 for ( G4int j = 0 ; j < i ; j++ ) 333 { 334 335 336 /* 337 G4cout << "Collision " << i << " " << theSystem->GetParticipant( i )->IsThisProjectile() << G4endl; 338 G4cout << "Collision " << j << " " << theSystem->GetParticipant( j )->IsThisProjectile() << G4endl; 339 G4cout << "Collision " << i << " " << theSystem->GetParticipant( i )->IsThisTarget() << G4endl; 340 G4cout << "Collision " << j << " " << theSystem->GetParticipant( j )->IsThisTarget() << G4endl; 341 */ 342 343 // Only 1 Collision allowed for each particle in a time step. 344 //081119 345 if ( theSystem->GetParticipant( i )->IsThisHit() ) continue; 346 if ( theSystem->GetParticipant( j )->IsThisHit() ) continue; 347 348 //std::cout << "Collision " << i << " " << j << std::endl; 349 350 // Do not allow collision between nucleons in target/projectile til its first collision. 351 if ( theSystem->GetParticipant( i )->IsThisProjectile() ) 352 { 353 if ( theSystem->GetParticipant( j )->IsThisProjectile() ) continue; 354 } 355 else if ( theSystem->GetParticipant( i )->IsThisTarget() ) 356 { 357 if ( theSystem->GetParticipant( j )->IsThisTarget() ) continue; 358 } 359 360 361 G4ThreeVector rj = theSystem->GetParticipant( j )->GetPosition(); 362 G4LorentzVector p4j = theSystem->GetParticipant( j )->Get4Momentum(); 363 G4double rmj = theSystem->GetParticipant( j )->GetMass(); 364 const G4ParticleDefinition* pdj = theSystem->GetParticipant( j )->GetDefinition(); 365 //090331 gamma 366 if ( pdj->GetPDGMass() == 0.0 ) continue; 367 368 G4double rr2 = theMeanField->GetRR2( i , j ); 369 370 // Here we assume elab (beam momentum less than 5 GeV/n ) 371 if ( rr2 > fdeltar*fdeltar ) continue; 372 373 //G4double s = (p4i+p4j)*(p4i+p4j); 374 //G4double srt = std::sqrt ( s ); 375 376 G4double srt = std::sqrt( (p4i+p4j)*(p4i+p4j) ); 377 378 G4double cutoff = 0.0; 379 G4double fbcmax = 0.0; 380 //110617 fix for gcc 4.6 compilation warnings 381 //G4double sig = 0.0; 382 383 if ( rmi < 0.94 && rmj < 0.94 ) 384 { 385 // nucleon or pion case 386 cutoff = rmi + rmj + 0.02; 387 fbcmax = fbcmax0; 388 //110617 fix for gcc 4.6 compilation warnings 389 //sig = sig0; 390 } 391 else 392 { 393 cutoff = rmi + rmj; 394 fbcmax = fbcmax1; 395 //110617 fix for gcc compilation warnings 396 //sig = sig1; 397 } 398 399 //std::cout << "Collision cutoff " << i << " " << j << " " << cutoff << std::endl; 400 if ( srt < cutoff ) continue; 401 402 G4ThreeVector dr = ri - rj; 403 G4double rsq = dr*dr; 404 405 G4double pij = p4i*p4j; 406 G4double pidr = p4i.vect()*dr; 407 G4double pjdr = p4j.vect()*dr; 408 409 G4double aij = 1.0 - ( rmi*rmj /pij ) * ( rmi*rmj /pij ); 410 G4double bij = pidr / rmi - pjdr*rmi/pij; 411 G4double cij = rsq + ( pidr / rmi ) * ( pidr / rmi ); 412 G4double brel = std::sqrt ( std::abs ( cij - bij*bij/aij ) ); 413 414 if ( brel > fbcmax ) continue; 415 //std::cout << "collisions3 " << std::endl; 416 417 G4double bji = -pjdr/rmj + pidr * rmj /pij; 418 419 G4double ti = ( pidr/rmi - bij / aij ) * p4i.e() / rmi; 420 G4double tj = (-pjdr/rmj - bji / aij ) * p4j.e() / rmj; 421 422 423 /* 424 G4cout << "collisions4 p4i " << p4i << G4endl; 425 G4cout << "collisions4 ri " << ri << G4endl; 426 G4cout << "collisions4 p4j " << p4j << G4endl; 427 G4cout << "collisions4 rj " << rj << G4endl; 428 G4cout << "collisions4 dr " << dr << G4endl; 429 G4cout << "collisions4 pij " << pij << G4endl; 430 G4cout << "collisions4 aij " << aij << G4endl; 431 G4cout << "collisions4 bij bji " << bij << " " << bji << G4endl; 432 G4cout << "collisions4 pidr pjdr " << pidr << " " << pjdr << G4endl; 433 G4cout << "collisions4 p4i.e() p4j.e() " << p4i.e() << " " << p4j.e() << G4endl; 434 G4cout << "collisions4 rmi rmj " << rmi << " " << rmj << G4endl; 435 G4cout << "collisions4 " << ti << " " << tj << G4endl; 436 */ 437 if ( std::abs ( ti + tj ) > deltaT ) continue; 438 //std::cout << "collisions4 " << std::endl; 439 440 G4ThreeVector beta = ( p4i + p4j ).boostVector(); 441 442 G4LorentzVector p = p4i; 443 G4LorentzVector p4icm = p.boost( p.findBoostToCM ( p4j ) ); 444 G4ThreeVector pcm = p4icm.vect(); 445 446 G4double prcm = pcm.mag(); 447 448 if ( prcm <= 0.00001 ) continue; 449 //std::cout << "collisions5 " << std::endl; 450 451 G4bool energetically_forbidden = !( CalFinalStateOfTheBinaryCollision ( i , j ) ); // Use Geant4 Collision Library 452 //G4bool energetically_forbidden = !( CalFinalStateOfTheBinaryCollisionJQMD ( sig , cutoff , pcm , prcm , srt, beta , gamma , i , j ) ); // JQMD Elastic 453 454 /* 455 G4bool pauli_blocked = false; 456 if ( energetically_forbidden == false ) // result true 457 { 458 if ( theMeanField->IsPauliBlocked ( i ) == true || theMeanField->IsPauliBlocked ( j ) == true ) 459 { 460 pauli_blocked = true; 461 //std::cout << "G4QMDRESULT Collsion Pauli Blocked " << std::endl; 462 } 463 } 464 else 465 { 466 if ( theMeanField->IsPauliBlocked ( i ) == true || theMeanField->IsPauliBlocked ( j ) == true ) 467 pauli_blocked = false; 468 //std::cout << "G4QMDRESULT Collsion Blocked " << std::endl; 469 } 470 */ 471 472 /* 473 G4cout << "G4QMDRESULT Collsion initial p4 i and j " 474 << p4i << " " << p4j 475 << G4endl; 476 */ 477 // 081118 478 //if ( energetically_forbidden == true || pauli_blocked == true ) 479 if ( energetically_forbidden == true ) 480 { 481 482 //G4cout << " energetically_forbidden " << G4endl; 483 // Collsion not allowed then re enter orginal participants 484 // Now only momentum, becasuse we only consider elastic scattering of nucleons 485 486 theSystem->GetParticipant( i )->SetMomentum( p4i.vect() ); 487 theSystem->GetParticipant( i )->SetDefinition( pdi ); 488 theSystem->GetParticipant( i )->SetPosition( ri ); 489 490 theSystem->GetParticipant( j )->SetMomentum( p4j.vect() ); 491 theSystem->GetParticipant( j )->SetDefinition( pdj ); 492 theSystem->GetParticipant( j )->SetPosition( rj ); 493 494 theMeanField->Cal2BodyQuantities( i ); 495 theMeanField->Cal2BodyQuantities( j ); 496 497 } 498 else 499 { 500 501 502 G4bool absorption = false; 503 if ( n == theSystem->GetTotalNumberOfParticipant()+1 ) absorption = true; 504 if ( absorption ) 505 { 506 //G4cout << "Absorption happend " << G4endl; 507 i = i-1; 508 n = n-1; 509 } 510 511 // Collsion allowed (really happened) 512 513 // Unset Projectile/Target flag 514 theSystem->GetParticipant( i )->UnsetInitialMark(); 515 if ( !absorption ) theSystem->GetParticipant( j )->UnsetInitialMark(); 516 517 theSystem->GetParticipant( i )->SetHitMark(); 518 if ( !absorption ) theSystem->GetParticipant( j )->SetHitMark(); 519 520 theSystem->IncrementCollisionCounter(); 521 522 /* 523 G4cout << "G4QMDRESULT Collsion Really Happened between " 524 << i << " and " << j 525 << G4endl; 526 G4cout << "G4QMDRESULT Collsion initial p4 i and j " 527 << p4i << " " << p4j 528 << G4endl; 529 G4cout << "G4QMDRESULT Collsion after p4 i and j " 530 << theSystem->GetParticipant( i )->Get4Momentum() 531 << " " 532 << theSystem->GetParticipant( j )->Get4Momentum() 533 << G4endl; 534 G4cout << "G4QMDRESULT Collsion Diff " 535 << p4i + p4j - theSystem->GetParticipant( i )->Get4Momentum() - theSystem->GetParticipant( j )->Get4Momentum() 536 << G4endl; 537 G4cout << "G4QMDRESULT Collsion initial r i and j " 538 << ri << " " << rj 539 << G4endl; 540 G4cout << "G4QMDRESULT Collsion after r i and j " 541 << theSystem->GetParticipant( i )->GetPosition() 542 << " " 543 << theSystem->GetParticipant( j )->GetPosition() 544 << G4endl; 545 */ 546 547 548 } 549 550 } 551 552 } 553 554 555 } 556 557 558 559 G4bool G4QMDCollision::CalFinalStateOfTheBinaryCollision( G4int i , G4int j ) 560 { 561 562 //081103 563 //G4cout << "CalFinalStateOfTheBinaryCollision " << i << " " << j << " " << theSystem->GetTotalNumberOfParticipant() << G4endl; 564 565 G4bool result = false; 566 G4bool energyOK = false; 567 G4bool pauliOK = false; 568 G4bool abs = false; 569 G4QMDParticipant* absorbed = NULL; 570 571 G4LorentzVector p4i = theSystem->GetParticipant( i )->Get4Momentum(); 572 G4LorentzVector p4j = theSystem->GetParticipant( j )->Get4Momentum(); 573 574 //071031 575 576 G4double epot = theMeanField->GetTotalPotential(); 577 578 G4double eini = epot + p4i.e() + p4j.e(); 579 580 //071031 581 // will use KineticTrack 582 const G4ParticleDefinition* pdi0 =theSystem->GetParticipant( i )->GetDefinition(); 583 const G4ParticleDefinition* pdj0 =theSystem->GetParticipant( j )->GetDefinition(); 584 G4LorentzVector p4i0 = p4i*GeV; 585 G4LorentzVector p4j0 = p4j*GeV; 586 G4ThreeVector ri0 = ( theSystem->GetParticipant( i )->GetPosition() )*fermi; 587 G4ThreeVector rj0 = ( theSystem->GetParticipant( j )->GetPosition() )*fermi; 588 589 for ( G4int iitry = 0 ; iitry < 4 ; iitry++ ) 590 { 591 592 abs = false; 593 594 G4KineticTrack kt1( pdi0 , 0.0 , ri0 , p4i0 ); 595 G4KineticTrack kt2( pdj0 , 0.0 , rj0 , p4j0 ); 596 597 G4LorentzVector p4ix_new; 598 G4LorentzVector p4jx_new; 599 G4KineticTrackVector* secs = NULL; 600 secs = theScatterer->Scatter( kt1 , kt2 ); 601 602 //std::cout << "G4QMDSCATTERER BEFORE " << kt1.GetDefinition()->GetParticleName() << " " << kt1.Get4Momentum()/GeV << " " << kt1.GetPosition()/fermi << std::endl; 603 //std::cout << "G4QMDSCATTERER BEFORE " << kt2.GetDefinition()->GetParticleName() << " " << kt2.Get4Momentum()/GeV << " " << kt2.GetPosition()/fermi << std::endl; 604 //std::cout << "THESCATTERER " << theScatterer->GetCrossSection ( kt1 , kt2 )/millibarn << " " << elastic << " " << sig << std::endl; 605 606 607 if ( secs ) 608 { 609 G4int iti = 0; 610 if ( secs->size() == 2 ) 611 { 612 for ( G4KineticTrackVector::iterator it 613 = secs->begin() ; it != secs->end() ; it++ ) 614 { 615 if ( iti == 0 ) 616 { 617 theSystem->GetParticipant( i )->SetDefinition( (*it)->GetDefinition() ); 618 p4ix_new = (*it)->Get4Momentum()/GeV; 619 //std::cout << "THESCATTERER " << (*it)->GetDefinition()->GetParticleName() << std::endl; 620 theSystem->GetParticipant( i )->SetMomentum( p4ix_new.v() ); 621 } 622 if ( iti == 1 ) 623 { 624 theSystem->GetParticipant( j )->SetDefinition( (*it)->GetDefinition() ); 625 p4jx_new = (*it)->Get4Momentum()/GeV; 626 //std::cout << "THESCATTERER " << p4jx_new.e()-p4jx_new.m() << std::endl; 627 theSystem->GetParticipant( j )->SetMomentum( p4jx_new.v() ); 628 } 629 //std::cout << "G4QMDSCATTERER AFTER " << (*it)->GetDefinition()->GetParticleName() << " " << (*it)->Get4Momentum()/GeV << std::endl; 630 iti++; 631 } 632 } 633 else if ( secs->size() == 1 ) 634 { 635 //081118 636 abs = true; 637 //G4cout << "G4QMDCollision pion absrorption " << secs->front()->GetDefinition()->GetParticleName() << G4endl; 638 //secs->front()->Decay(); 639 theSystem->GetParticipant( i )->SetDefinition( secs->front()->GetDefinition() ); 640 p4ix_new = secs->front()->Get4Momentum()/GeV; 641 theSystem->GetParticipant( i )->SetMomentum( p4ix_new.v() ); 642 643 } 644 645 //081118 646 if ( secs->size() > 2 ) 647 { 648 649 G4cout << "G4QMDCollision secs size > 2; " << secs->size() << G4endl; 650 651 for ( G4KineticTrackVector::iterator it 652 = secs->begin() ; it != secs->end() ; it++ ) 653 { 654 G4cout << "G4QMDSCATTERER AFTER " << (*it)->GetDefinition()->GetParticleName() << " " << (*it)->Get4Momentum()/GeV << G4endl; 655 } 656 657 } 658 659 // deleteing KineticTrack 660 for ( G4KineticTrackVector::iterator it 661 = secs->begin() ; it != secs->end() ; it++ ) 662 { 663 delete *it; 664 } 665 666 delete secs; 667 } 668 //071031 669 670 if ( !abs ) 671 { 672 theMeanField->Cal2BodyQuantities( i ); 673 theMeanField->Cal2BodyQuantities( j ); 674 } 675 else 676 { 677 absorbed = theSystem->EraseParticipant( j ); 678 theMeanField->Update(); 679 } 680 681 epot = theMeanField->GetTotalPotential(); 682 683 G4double efin = epot + p4ix_new.e() + p4jx_new.e(); 684 685 //std::cout << "Collision NEW epot " << i << " " << j << " " << epot << " " << std::abs ( eini - efin ) - fepse << std::endl; 686 687 /* 688 G4cout << "Collision efin " << i << " " << j << " " << efin << G4endl; 689 G4cout << "Collision " << i << " " << j << " " << std::abs ( eini - efin ) << " " << fepse << G4endl; 690 G4cout << "Collision " << std::abs ( eini - efin ) << " " << fepse << G4endl; 691 */ 692 693 //071031 694 if ( std::abs ( eini - efin ) < fepse ) 695 { 696 // Collison OK 697 //std::cout << "collisions6" << std::endl; 698 //std::cout << "collisions before " << p4i << " " << p4j << std::endl; 699 //std::cout << "collisions after " << theSystem->GetParticipant( i )->Get4Momentum() << " " << theSystem->GetParticipant( j )->Get4Momentum() << std::endl; 700 //std::cout << "collisions dif " << ( p4i + p4j ) - ( theSystem->GetParticipant( i )->Get4Momentum() + theSystem->GetParticipant( j )->Get4Momentum() ) << std::endl; 701 //std::cout << "collisions before " << ri0/fermi << " " << rj0/fermi << std::endl; 702 //std::cout << "collisions after " << theSystem->GetParticipant( i )->GetPosition() << " " << theSystem->GetParticipant( j )->GetPosition() << std::endl; 703 energyOK = true; 704 break; 705 } 706 else 707 { 708 //G4cout << "Energy Not OK " << G4endl; 709 if ( abs ) 710 { 711 //G4cout << "TKDB reinsert j " << G4endl; 712 theSystem->InsertParticipant( absorbed , j ); 713 theMeanField->Update(); 714 } 715 // do not need reinsert in no absroption case 716 } 717 //071031 718 } 719 720 // Energetically forbidden collision 721 722 if ( energyOK ) 723 { 724 // Pauli Check 725 //G4cout << "Pauli Checking " << theSystem->GetTotalNumberOfParticipant() << G4endl; 726 if ( !abs ) 727 { 728 if ( !( theMeanField->IsPauliBlocked ( i ) == true || theMeanField->IsPauliBlocked ( j ) == true ) ) 729 { 730 //G4cout << "Binary Collision Happen " << theSystem->GetTotalNumberOfParticipant() << G4endl; 731 pauliOK = true; 732 } 733 } 734 else 735 { 736 //if ( theMeanField->IsPauliBlocked ( i ) == false ) 737 //090126 i-1 cause jth is erased 738 if ( theMeanField->IsPauliBlocked ( i-1 ) == false ) 739 { 740 //G4cout << "Absorption Happen " << theSystem->GetTotalNumberOfParticipant() << G4endl; 741 delete absorbed; 742 pauliOK = true; 743 } 744 } 745 746 747 if ( pauliOK ) 748 { 749 result = true; 750 } 751 else 752 { 753 //G4cout << "Pauli Blocked" << G4endl; 754 if ( abs ) 755 { 756 //G4cout << "TKDB reinsert j pauli block" << G4endl; 757 theSystem->InsertParticipant( absorbed , j ); 758 theMeanField->Update(); 759 } 760 } 761 } 762 763 return result; 764 765 } 766 767 768 769 G4bool G4QMDCollision::CalFinalStateOfTheBinaryCollisionJQMD( G4double sig , G4double cutoff , G4ThreeVector pcm , G4double prcm , G4double srt , G4ThreeVector beta , G4double gamma , G4int i , G4int j ) 770 { 771 772 //G4cout << "CalFinalStateOfTheBinaryCollisionJQMD" << G4endl; 773 774 G4bool result = true; 775 776 G4LorentzVector p4i = theSystem->GetParticipant( i )->Get4Momentum(); 777 G4double rmi = theSystem->GetParticipant( i )->GetMass(); 778 G4int zi = theSystem->GetParticipant( i )->GetChargeInUnitOfEplus(); 779 780 G4LorentzVector p4j = theSystem->GetParticipant( j )->Get4Momentum(); 781 G4double rmj = theSystem->GetParticipant( j )->GetMass(); 782 G4int zj = theSystem->GetParticipant( j )->GetChargeInUnitOfEplus(); 783 784 G4double pr = prcm; 785 786 G4double c2 = pcm.z()/pr; 787 788 G4double csrt = srt - cutoff; 789 790 //G4double pri = prcm; 791 //G4double prf = sqrt ( 0.25 * srt*srt -rm2 ); 792 793 G4double asrt = srt - rmi - rmj; 794 G4double pra = prcm; 795 796 797 798 G4double elastic = 0.0; 799 800 if ( zi == zj ) 801 { 802 if ( csrt < 0.4286 ) 803 { 804 elastic = 35.0 / ( 1. + csrt * 100.0 ) + 20.0; 805 } 806 else 807 { 808 elastic = ( - std::atan( ( csrt - 0.4286 ) * 1.5 - 0.8 ) 809 * 2. / pi + 1.0 ) * 9.65 + 7.0; 810 } 811 } 812 else 813 { 814 if ( csrt < 0.4286 ) 815 { 816 elastic = 28.0 / ( 1. + csrt * 100.0 ) + 27.0; 817 } 818 else 819 { 820 elastic = ( - std::atan( ( csrt - 0.4286 ) * 1.5 - 0.8 ) 821 * 2. / pi + 1.0 ) * 12.34 + 10.0; 822 } 823 } 824 825 // std::cout << "Collision csrt " << i << " " << j << " " << csrt << std::endl; 826 // std::cout << "Collision elstic " << i << " " << j << " " << elastic << std::endl; 827 828 829 // std::cout << "Collision sig " << i << " " << j << " " << sig << std::endl; 830 if ( G4UniformRand() > elastic / sig ) 831 { 832 //std::cout << "Inelastic " << std::endl; 833 //std::cout << "elastic/sig " << elastic/sig << std::endl; 834 return result; 835 } 836 else 837 { 838 //std::cout << "Elastic " << std::endl; 839 } 840 // std::cout << "Collision ELSTIC " << i << " " << j << std::endl; 841 842 843 G4double as = G4Pow::GetInstance()->powN ( 3.65 * asrt , 6 ); 844 G4double a = 6.0 * as / (1.0 + as); 845 G4double ta = -2.0 * pra*pra; 846 G4double x = G4UniformRand(); 847 G4double t1 = G4Log( (1-x) * G4Exp(2.*a*ta) + x ) / a; 848 G4double c1 = 1.0 - t1/ta; 849 850 if( std::abs(c1) > 1.0 ) c1 = 2.0 * x - 1.0; 851 852 /* 853 G4cout << "Collision as " << i << " " << j << " " << as << G4endl; 854 G4cout << "Collision a " << i << " " << j << " " << a << G4endl; 855 G4cout << "Collision ta " << i << " " << j << " " << ta << G4endl; 856 G4cout << "Collision x " << i << " " << j << " " << x << G4endl; 857 G4cout << "Collision t1 " << i << " " << j << " " << t1 << G4endl; 858 G4cout << "Collision c1 " << i << " " << j << " " << c1 << G4endl; 859 */ 860 t1 = 2.0*pi*G4UniformRand(); 861 // std::cout << "Collision t1 " << i << " " << j << " " << t1 << std::endl; 862 G4double t2 = 0.0; 863 if ( pcm.x() == 0.0 && pcm.y() == 0 ) 864 { 865 t2 = 0.0; 866 } 867 else 868 { 869 t2 = std::atan2( pcm.y() , pcm.x() ); 870 } 871 // std::cout << "Collision t2 " << i << " " << j << " " << t2 << std::endl; 872 873 G4double s1 = std::sqrt ( 1.0 - c1*c1 ); 874 G4double s2 = std::sqrt ( 1.0 - c2*c2 ); 875 876 G4double ct1 = std::cos(t1); 877 G4double st1 = std::sin(t1); 878 879 G4double ct2 = std::cos(t2); 880 G4double st2 = std::sin(t2); 881 882 G4double ss = c2*s1*ct1 + s2*c1; 883 884 pcm.setX( pr * ( ss*ct2 - s1*st1*st2) ); 885 pcm.setY( pr * ( ss*st2 + s1*st1*ct2) ); 886 pcm.setZ( pr * ( c1*c2 - s1*s2*ct1) ); 887 888 // std::cout << "Collision pcm " << i << " " << j << " " << pcm << std::endl; 889 890 G4double epot = theMeanField->GetTotalPotential(); 891 892 G4double eini = epot + p4i.e() + p4j.e(); 893 G4double etwo = p4i.e() + p4j.e(); 894 895 /* 896 G4cout << "Collision epot " << i << " " << j << " " << epot << G4endl; 897 G4cout << "Collision eini " << i << " " << j << " " << eini << G4endl; 898 G4cout << "Collision etwo " << i << " " << j << " " << etwo << G4endl; 899 */ 900 901 902 for ( G4int itry = 0 ; itry < 4 ; itry++ ) 903 { 904 905 G4double eicm = std::sqrt ( rmi*rmi + pcm*pcm ); 906 G4double pibeta = pcm*beta; 907 908 G4double trans = gamma * ( gamma * pibeta / ( gamma + 1 ) + eicm ); 909 910 G4ThreeVector pi_new = beta*trans + pcm; 911 912 G4double ejcm = std::sqrt ( rmj*rmj + pcm*pcm ); 913 trans = gamma * ( gamma * pibeta / ( gamma + 1 ) + ejcm ); 914 915 G4ThreeVector pj_new = beta*trans - pcm; 916 917 // 918 // Delete old 919 // Add new Particitipants 920 // 921 // Now only change momentum ( Beacuse we only have elastic sctter of nucleon 922 // In future Definition also will be change 923 // 924 925 theSystem->GetParticipant( i )->SetMomentum( pi_new ); 926 theSystem->GetParticipant( j )->SetMomentum( pj_new ); 927 928 G4double pi_new_e = (theSystem->GetParticipant( i )->Get4Momentum()).e(); 929 G4double pj_new_e = (theSystem->GetParticipant( j )->Get4Momentum()).e(); 930 931 theMeanField->Cal2BodyQuantities( i ); 932 theMeanField->Cal2BodyQuantities( j ); 933 934 epot = theMeanField->GetTotalPotential(); 935 936 G4double efin = epot + pi_new_e + pj_new_e ; 937 938 //std::cout << "Collision NEW epot " << i << " " << j << " " << epot << " " << std::abs ( eini - efin ) - fepse << std::endl; 939 /* 940 G4cout << "Collision efin " << i << " " << j << " " << efin << G4endl; 941 G4cout << "Collision " << i << " " << j << " " << std::abs ( eini - efin ) << " " << fepse << G4endl; 942 G4cout << "Collision " << std::abs ( eini - efin ) << " " << fepse << G4endl; 943 */ 944 945 //071031 946 if ( std::abs ( eini - efin ) < fepse ) 947 { 948 // Collison OK 949 //std::cout << "collisions6" << std::endl; 950 //std::cout << "collisions before " << p4i << " " << p4j << std::endl; 951 //std::cout << "collisions after " << theSystem->GetParticipant( i )->Get4Momentum() << " " << theSystem->GetParticipant( j )->Get4Momentum() << std::endl; 952 //std::cout << "collisions dif " << ( p4i + p4j ) - ( theSystem->GetParticipant( i )->Get4Momentum() + theSystem->GetParticipant( j )->Get4Momentum() ) << std::endl; 953 //std::cout << "collisions before " << rix/fermi << " " << rjx/fermi << std::endl; 954 //std::cout << "collisions after " << theSystem->GetParticipant( i )->GetPosition() << " " << theSystem->GetParticipant( j )->GetPosition() << std::endl; 955 } 956 //071031 957 958 if ( std::abs ( eini - efin ) < fepse ) return result; // Collison OK 959 960 G4double cona = ( eini - efin + etwo ) / gamma; 961 G4double fac2 = 1.0 / ( 4.0 * cona*cona * pr*pr ) * 962 ( ( cona*cona - ( rmi*rmi + rmj*rmj ) )*( cona*cona - ( rmi*rmi + rmj*rmj ) ) 963 - 4.0 * rmi*rmi * rmj*rmj ); 964 965 if ( fac2 > 0 ) 966 { 967 G4double fact = std::sqrt ( fac2 ); 968 pcm = fact*pcm; 969 } 970 971 972 } 973 974 // Energetically forbidden collision 975 result = false; 976 977 return result; 978 979 } 980