Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/particle_hp/src/G4ParticleHPFissionData.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // neutron_hp -- source file
 27 // J.P. Wellisch, Nov-1996
 28 // A prototype of the low energy neutron transport model.
 29 //
 30 // 070618 fix memory leaking by T. Koi
 31 // 071002 enable cross section dump by T. Koi
 32 // 081024 G4NucleiPropertiesTable:: to G4NucleiProperties::
 33 // 081124 Protect invalid read which caused run time errors by T. Koi
 34 // 100729 Add safty for 0 lenght cross sections by T. Ko
 35 // P. Arce, June-2014 Conversion neutron_hp to particle_hp
 36 //
 37 #include "G4ParticleHPFissionData.hh"
 38 
 39 #include "G4ElementTable.hh"
 40 #include "G4HadronicParameters.hh"
 41 #include "G4Neutron.hh"
 42 #include "G4NucleiProperties.hh"
 43 #include "G4ParticleHPData.hh"
 44 #include "G4ParticleHPManager.hh"
 45 #include "G4PhysicalConstants.hh"
 46 #include "G4Pow.hh"
 47 #include "G4SystemOfUnits.hh"
 48 
 49 G4ParticleHPFissionData::G4ParticleHPFissionData() : G4VCrossSectionDataSet("NeutronHPFissionXS")
 50 {
 51   SetMinKinEnergy(0 * MeV);
 52   SetMaxKinEnergy(20 * MeV);
 53 
 54   theCrossSections = nullptr;
 55   instanceOfWorker = false;
 56   if (G4Threading::IsWorkerThread()) {
 57     instanceOfWorker = true;
 58   }
 59   element_cache = nullptr;
 60   material_cache = nullptr;
 61   ke_cache = 0.0;
 62   xs_cache = 0.0;
 63 }
 64 
 65 G4ParticleHPFissionData::~G4ParticleHPFissionData()
 66 {
 67   if (theCrossSections != nullptr && !instanceOfWorker) {
 68     theCrossSections->clearAndDestroy();
 69     delete theCrossSections;
 70     theCrossSections = nullptr;
 71   }
 72 }
 73 
 74 G4bool G4ParticleHPFissionData::IsIsoApplicable(const G4DynamicParticle* dp, G4int /*Z*/,
 75                                                 G4int /*A*/, const G4Element* /*elm*/,
 76                                                 const G4Material* /*mat*/)
 77 {
 78   G4double eKin = dp->GetKineticEnergy();
 79   return eKin <= GetMaxKinEnergy() && eKin >= GetMinKinEnergy()
 80          && dp->GetDefinition() == G4Neutron::Neutron();
 81 }
 82 
 83 G4double G4ParticleHPFissionData::GetIsoCrossSection(const G4DynamicParticle* dp, G4int /*Z*/,
 84                                                      G4int /*A*/, const G4Isotope* /*iso*/,
 85                                                      const G4Element* element,
 86                                                      const G4Material* material)
 87 {
 88   if (dp->GetKineticEnergy() == ke_cache && element == element_cache && material == material_cache)
 89     return xs_cache;
 90 
 91   ke_cache = dp->GetKineticEnergy();
 92   element_cache = element;
 93   material_cache = material;
 94   G4double xs = GetCrossSection(dp, element, material->GetTemperature());
 95   xs_cache = xs;
 96   return xs;
 97 }
 98 
 99 void G4ParticleHPFissionData::BuildPhysicsTable(const G4ParticleDefinition&)
100 {
101   if (G4Threading::IsWorkerThread()) {
102     theCrossSections = G4ParticleHPManager::GetInstance()->GetFissionCrossSections();
103     return;
104   }
105 
106   std::size_t numberOfElements = G4Element::GetNumberOfElements();
107   if (theCrossSections == nullptr)
108     theCrossSections = new G4PhysicsTable(numberOfElements);
109   else
110     theCrossSections->clearAndDestroy();
111 
112   // make a PhysicsVector for each element
113 
114   auto theElementTable = G4Element::GetElementTable();
115   for (std::size_t i = 0; i < numberOfElements; ++i) {
116     G4PhysicsVector* physVec = G4ParticleHPData::Instance(G4Neutron::Neutron())
117                                  ->MakePhysicsVector((*theElementTable)[i], this);
118     theCrossSections->push_back(physVec);
119   }
120 
121   G4ParticleHPManager::GetInstance()->RegisterFissionCrossSections(theCrossSections);
122 }
123 
124 void G4ParticleHPFissionData::DumpPhysicsTable(const G4ParticleDefinition&)
125 {
126 #ifdef G4VERBOSE
127   if (G4HadronicParameters::Instance()->GetVerboseLevel() == 0) return;
128 
129   //
130   // Dump element based cross section
131   // range 10e-5 eV to 20 MeV
132   // 10 point per decade
133   // in barn
134   //
135   G4cout << G4endl;
136   G4cout << G4endl;
137   G4cout << "Fission Cross Section of Neutron HP" << G4endl;
138   G4cout << "(Pointwise cross-section at 0 Kelvin.)" << G4endl;
139   G4cout << G4endl;
140   G4cout << "Name of Element" << G4endl;
141   G4cout << "Energy[eV]  XS[barn]" << G4endl;
142   G4cout << G4endl;
143 
144   std::size_t numberOfElements = G4Element::GetNumberOfElements();
145   auto theElementTable = G4Element::GetElementTable();
146 
147   for (std::size_t i = 0; i < numberOfElements; ++i) {
148     G4cout << (*theElementTable)[i]->GetName() << G4endl;
149 
150     if ((*((*theCrossSections)(i))).GetVectorLength() == 0) {
151       G4cout << "The cross-section data of the fission of this element is not available." << G4endl;
152       G4cout << G4endl;
153       continue;
154     }
155 
156     for (G4int ie = 0; ie < 130; ++ie) {
157       G4double eKinetic = 1.0e-5 * G4Pow::GetInstance()->powA(10.0, ie / 10.0) * eV;
158       G4bool outOfRange = false;
159 
160       if (eKinetic < 20 * MeV) {
161         G4cout << eKinetic / eV << " "
162                << (*((*theCrossSections)(i))).GetValue(eKinetic, outOfRange) / barn << G4endl;
163       }
164     }
165 
166     G4cout << G4endl;
167   }
168 #endif
169 }
170 
171 G4double G4ParticleHPFissionData::GetCrossSection(const G4DynamicParticle* aP, const G4Element* anE,
172                                                   G4double aT)
173 {
174   G4double result = 0;
175   if (anE->GetZ() < 88) return result;
176   G4bool outOfRange;
177   auto index = (G4int)anE->GetIndex();
178 
179   if (((*theCrossSections)(index))->GetVectorLength() == 0) return result;
180 
181   // prepare neutron
182   G4double eKinetic = aP->GetKineticEnergy();
183   G4ReactionProduct theNeutronRP(aP->GetDefinition());
184   theNeutronRP.SetMomentum(aP->GetMomentum());
185   theNeutronRP.SetKineticEnergy(eKinetic);
186 
187   if (G4ParticleHPManager::GetInstance()->GetNeglectDoppler()) {
188     // NEGLECT_DOPPLER
189     G4double factor = 1.0;
190     if (eKinetic < aT * k_Boltzmann) {
191       // below 0.1 eV neutrons
192       // Have to do some, but now just igonre.
193       // Will take care after performance check.
194       // factor = factor * targetV;
195     }
196     return ((*((*theCrossSections)(index))).GetValue(eKinetic, outOfRange)) * factor;
197   }
198 
199   // prepare thermal nucleus
200   G4Nucleus aNuc;
201   G4double eps = 0.0001;
202   G4double theA = anE->GetN();
203   G4double theZ = anE->GetZ();
204   G4double eleMass;
205   eleMass = (G4NucleiProperties::GetNuclearMass(static_cast<G4int>(theA + eps),
206                                                 static_cast<G4int>(theZ + eps)))
207             / G4Neutron::Neutron()->GetPDGMass();
208 
209   G4ReactionProduct boosted;
210   G4double aXsection;
211 
212   // MC integration loop
213   G4int counter = 0;
214   G4double buffer = 0;
215   G4int size = G4int(std::max(10., aT / 60 * kelvin));
216   G4ThreeVector neutronVelocity =
217     1. / G4Neutron::Neutron()->GetPDGMass() * theNeutronRP.GetMomentum();
218   G4double neutronVMag = neutronVelocity.mag();
219 
220   while (counter == 0
221          || std::abs(buffer - result / std::max(1, counter))
222               > 0.01 * buffer)  // Loop checking, 11.05.2015, T. Koi
223   {
224     if (counter != 0) buffer = result / counter;
225     while (counter < size)  // Loop checking, 11.05.2015, T. Koi
226     {
227       counter++;
228       G4ReactionProduct aThermalNuc = aNuc.GetThermalNucleus(eleMass, aT);
229       boosted.Lorentz(theNeutronRP, aThermalNuc);
230       G4double theEkin = boosted.GetKineticEnergy();
231       aXsection = (*((*theCrossSections)(index))).GetValue(theEkin, outOfRange);
232       // velocity correction.
233       G4ThreeVector targetVelocity = 1. / aThermalNuc.GetMass() * aThermalNuc.GetMomentum();
234       aXsection *= (targetVelocity - neutronVelocity).mag() / neutronVMag;
235       result += aXsection;
236     }
237     size += size;
238   }
239   result /= counter;
240   return result;
241 }
242 
243 G4int G4ParticleHPFissionData::GetVerboseLevel() const
244 {
245   return G4ParticleHPManager::GetInstance()->GetVerboseLevel();
246 }
247 
248 void G4ParticleHPFissionData::SetVerboseLevel(G4int newValue)
249 {
250   G4ParticleHPManager::GetInstance()->SetVerboseLevel(newValue);
251 }
252 
253 void G4ParticleHPFissionData::CrossSectionDescription(std::ostream& outFile) const
254 {
255   outFile << "High Precision cross data based on Evaluated Nuclear Data Files (ENDF)\n"
256           << "for induced fission reaction of neutrons below 20MeV\n";
257 }
258