Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/particle_hp/src/G4ParticleHPFSFissionFS.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // neutron_hp -- source file
 27 // J.P. Wellisch, Nov-1996
 28 // A prototype of the low energy neutron transport model.
 29 //
 30 // P. Arce, June-2014 Conversion neutron_hp to particle_hp
 31 //
 32 #include "G4ParticleHPFSFissionFS.hh"
 33 
 34 #include "G4Alpha.hh"
 35 #include "G4Deuteron.hh"
 36 #include "G4LorentzVector.hh"
 37 #include "G4Nucleus.hh"
 38 #include "G4ParticleHPDataUsed.hh"
 39 #include "G4ParticleHPManager.hh"
 40 #include "G4Poisson.hh"
 41 #include "G4Proton.hh"
 42 #include "G4ReactionProduct.hh"
 43 #include "G4ThreeVector.hh"
 44 #include "G4Triton.hh"
 45 
 46 void G4ParticleHPFSFissionFS::Init(G4double A, G4double Z, G4int M, const G4String& dirName,
 47                                    const G4String&, G4ParticleDefinition*)
 48 {
 49   G4String tString = "/FS/";
 50   G4bool dbool;
 51   const G4ParticleHPDataUsed& aFile =
 52     theNames.GetName(static_cast<G4int>(A), static_cast<G4int>(Z), M, dirName, tString, dbool);
 53   const G4String& filename = aFile.GetName();
 54   SetAZMs(A, Z, M, aFile);
 55   if (!dbool) {
 56     hasAnyData = false;
 57     hasFSData = false;
 58     hasXsec = false;
 59     return;
 60   }
 61 
 62   std::istringstream theData(std::ios::in);
 63   G4ParticleHPManager::GetInstance()->GetDataStream(filename, theData);
 64 
 65   G4int infoType, dataType;
 66   hasFSData = false;
 67   while (theData >> infoType)  // Loop checking, 11.05.2015, T. Koi
 68   {
 69     hasFSData = true;
 70     theData >> dataType;
 71     switch (infoType) {
 72       case 1:
 73         if (dataType == 4) theNeutronAngularDis.Init(theData);
 74         if (dataType == 5) thePromptNeutronEnDis.Init(theData);
 75         if (dataType == 12) theFinalStatePhotons.InitMean(theData);
 76         if (dataType == 14) theFinalStatePhotons.InitAngular(theData);
 77         if (dataType == 15) theFinalStatePhotons.InitEnergies(theData);
 78         break;
 79       case 2:
 80         if (dataType == 1) theFinalStateNeutrons.InitMean(theData);
 81         break;
 82       case 3:
 83         if (dataType == 1) theFinalStateNeutrons.InitDelayed(theData);
 84         if (dataType == 5) theDelayedNeutronEnDis.Init(theData);
 85         break;
 86       case 4:
 87         if (dataType == 1) theFinalStateNeutrons.InitPrompt(theData);
 88         break;
 89       case 5:
 90         if (dataType == 1) theEnergyRelease.Init(theData);
 91         break;
 92       default:
 93         G4cout << "G4ParticleHPFSFissionFS::Init: unknown data type" << dataType << G4endl;
 94         throw G4HadronicException(__FILE__, __LINE__,
 95                                   "G4ParticleHPFSFissionFS::Init: unknown data type");
 96         break;
 97     }
 98   }
 99 }
100 
101 G4DynamicParticleVector* G4ParticleHPFSFissionFS::ApplyYourself(G4int nPrompt, G4int nDelayed,
102                                                                 G4double* theDecayConst)
103 {
104   G4int i;
105   auto aResult = new G4DynamicParticleVector;
106   G4ReactionProduct boosted;
107   boosted.Lorentz(*(fCache.Get().theNeutronRP), *(fCache.Get().theTarget));
108   G4double eKinetic = boosted.GetKineticEnergy();
109 
110   // Build neutrons
111   std::vector<G4ReactionProduct> theNeutrons; 
112   for (i = 0; i < nPrompt + nDelayed; ++i) {
113     theNeutrons.emplace_back();
114     theNeutrons[i].SetDefinition(G4Neutron::Neutron());
115   }
116 
117   // sample energies
118   G4int it, dummy;
119   G4double tempE;
120   for (i = 0; i < nPrompt; ++i) {
121     tempE =
122       thePromptNeutronEnDis.Sample(eKinetic, dummy);  // energy distribution (file5) always in lab
123     theNeutrons[i].SetKineticEnergy(tempE);
124   }
125   for (i = nPrompt; i < nPrompt + nDelayed; ++i) {
126     theNeutrons[i].SetKineticEnergy(theDelayedNeutronEnDis.Sample(eKinetic, it));  // dito
127     if (it == 0) theNeutrons[i].SetKineticEnergy(thePromptNeutronEnDis.Sample(eKinetic, dummy));
128     theDecayConst[i - nPrompt] = theFinalStateNeutrons.GetDecayConstant(it);  // this is returned
129   }
130 
131   // sample neutron angular distribution
132   for (i = 0; i < nPrompt + nDelayed; ++i) {
133     theNeutronAngularDis.SampleAndUpdate(
134       theNeutrons[i]);  // angular comes back in lab automatically
135   }
136 
137   // already in lab. Add neutrons to dynamic particle vector
138   for (i = 0; i < nPrompt + nDelayed; ++i) {
139     auto dp = new G4DynamicParticle;
140     dp->SetDefinition(theNeutrons[i].GetDefinition());
141     dp->SetMomentum(theNeutrons[i].GetMomentum());
142     aResult->push_back(dp);
143   }
144   return aResult;
145 }
146 
147 void G4ParticleHPFSFissionFS::SampleNeutronMult(G4int& all, G4int& Prompt, G4int& delayed,
148                                                 G4double eKinetic, G4int off)
149 {
150   G4double promptNeutronMulti = 0;
151   promptNeutronMulti = theFinalStateNeutrons.GetPrompt(eKinetic);
152   G4double delayedNeutronMulti = 0;
153   delayedNeutronMulti = theFinalStateNeutrons.GetDelayed(eKinetic);
154 
155   if (delayedNeutronMulti == 0 && promptNeutronMulti == 0) {
156     Prompt = 0;
157     delayed = 0;
158     G4double totalNeutronMulti = theFinalStateNeutrons.GetMean(eKinetic);
159     all = (G4int)G4Poisson(totalNeutronMulti - off);
160     all += off;
161   }
162   else {
163     Prompt = (G4int)G4Poisson(promptNeutronMulti - off);
164     Prompt += off;
165     delayed = (G4int)G4Poisson(delayedNeutronMulti);
166     all = Prompt + delayed;
167   }
168 }
169 
170 G4DynamicParticleVector* G4ParticleHPFSFissionFS::GetPhotons()
171 {
172   // sample photons
173   G4ReactionProductVector* temp;
174   G4ReactionProduct boosted;
175 
176   // the photon distributions are in the Nucleus rest frame.
177   boosted.Lorentz(*(fCache.Get().theNeutronRP), *(fCache.Get().theTarget));
178   G4double anEnergy = boosted.GetKineticEnergy();
179   temp = theFinalStatePhotons.GetPhotons(anEnergy);
180   if (temp == nullptr) {
181     return nullptr;
182   }
183 
184   // lorentz transform, and add photons to final state
185   unsigned int i;
186   auto result = new G4DynamicParticleVector;
187   for (i = 0; i < temp->size(); ++i) {
188     // back to lab
189     temp->operator[](i)->Lorentz(*(temp->operator[](i)), -1. * (*(fCache.Get().theTarget)));
190     auto theOne = new G4DynamicParticle;
191     theOne->SetDefinition(temp->operator[](i)->GetDefinition());
192     theOne->SetMomentum(temp->operator[](i)->GetMomentum());
193     result->push_back(theOne);
194     delete temp->operator[](i);
195   }
196   delete temp;
197   return result;
198 }
199